医学・歯学分野における数理・データサイエンス・AI教育開発事業
「AI戦略2019」において、2025年度を目標年度として、①文理を問わず、全ての大学・高専生が初級レベルの能力を習得すること、②大学・高専生が、自らの専門分野への応用基礎力を習得することが掲げられています。
本学では、医学・歯学分野における数理・DS・AI教育のモデルカリキュラム・教材を開発し、本学のカリキュラムに組み込むとともに全国の医学部、歯学部へ普及・展開することを目指しており、2021年度は全学共通科目に「医療とAI・ビッグデータ入門」を新設しました。
本学では、医学・歯学分野における数理・DS・AI教育のモデルカリキュラム・教材を開発し、本学のカリキュラムに組み込むとともに全国の医学部、歯学部へ普及・展開することを目指しており、2021年度は全学共通科目に「医療とAI・ビッグデータ入門」を新設しました。
本事業の目標


教育プログラム
医療系データサイエンス入門
2017年度より設立された「数理・データサイエンス・AI教育強化拠点コンソーシアム」では、文理を問わず全国すべての高等教育機関の学生が、数理・データサイエンス・AIを習得できるような教育体制の構築・普及を目指して活動しており、2021年には会員校140機関を超える規模にまで拡大しております。また2019年に政府が提示した「AI戦略2019」においては、2025年までに全ての大学・高専生の年間約50万人が初級レベルの数理・データサイエンス・AIを習得することを目標に掲げております。
本学は2020年度よりコンソーシアムの唯一の医学歯学分野における特定分野協力校に選定されました。本プログラムでは、コンソーシアムのモデルカリキュラムをベースに、医学歯学分野の専門性を加味した科目群を提供します。データサイエンスの基礎となる情報学、数学、統計学と共に、医療データを用いた実戦的な臨床統計、臨床疫学、医療AIなどを体系的に学ぶことを目的としたプログラムです。
本プログラムを学内外に公開し、他医療系大学でのデータサイエンス教育の普及・展開を図ります。また自己点検・評価の結果も公開することで、教育プログラムの改善、一層の充実に努めます。
本学は2020年度よりコンソーシアムの唯一の医学歯学分野における特定分野協力校に選定されました。本プログラムでは、コンソーシアムのモデルカリキュラムをベースに、医学歯学分野の専門性を加味した科目群を提供します。データサイエンスの基礎となる情報学、数学、統計学と共に、医療データを用いた実戦的な臨床統計、臨床疫学、医療AIなどを体系的に学ぶことを目的としたプログラムです。
本プログラムを学内外に公開し、他医療系大学でのデータサイエンス教育の普及・展開を図ります。また自己点検・評価の結果も公開することで、教育プログラムの改善、一層の充実に努めます。
東京医科歯科大学の申請内容
実施体制
委員会など |
役割 |
統計・データサイエンスWG長 |
本プログラムの運営責任者 |
統合教育機構 |
本プログラムの運営 |
M&Dデータ科学センター |
教育コンテンツの整備 |
数理・データサイエンス関連科目担当教員 |
授業内容の作成 |
統計・データサイエンスWG |
本プログラムの自己点検・評価 本プログラムの改善・進化 |
対象科目
本プログラムは下記科目で構成されます
科目名 |
単位数 |
医療とAI・ビッグデータ入門 |
1 |
修了要件
医療とAI・ビッグデータ入門の1単位を取得すること
学生が身につけられる能力
・社会におけるデータ・AI利活用に関する知識と医療分野におけるデータ利活用の実例を知識として身に付ける事ができる。
・実臨床のデータを用いた統計解析を通じてデータを適切に読み解く能力と解析に必要な統計学的知識を身に付ける事ができる。
・医療画像での深層学習を体験するラミングの基礎知識を習得する事ができる。事で、AIの基本的な仕組みとプログラミングの基礎知識を習得する事ができる。
授業科目と内容
医療とAIビッグデータ入門の概要




シラバス
授業スライド(2021年度) -医療とAI・ビッグデータ入門-
本学は、卒業までに学部生が必要なデータサイエンスの要素として下記のようなスキルセットを予定しております(2022年5月時点)
今後、科目とスキルセットの対応やスキルセットの更新を行い、本プログラムを充実させていく予定です。
今後、科目とスキルセットの対応やスキルセットの更新を行い、本プログラムを充実させていく予定です。
本プログラム対象科目のモデルカリキュラムとの対応
コンソーシアムの掲げるモデルカリキュラム(リテラシーレベル)は関連リンク参照
授業に含まれている内容・要素 | 講義内容 | |
(1)現在進行中の社会変化(第4次産業革命、Society 5.0、データ駆動型社会等)に深く寄与しているものであり、それが自らの生活と密接に結びついている | 1-1 | ・ビッグデータ、IoT、AI、ロボット「医療とAI・ビッグデータ入門」(1回目) ・データ量の増加、計算機の処理性能の向上、AIの非連続的進化「医療とAI・ビッグデータ入門」(1回目) |
1-6 | ・AI最新技術の活用例(深層生成モデル、敵対的生成ネットワーク、強化学習、転移学習など) 「医療とAI・ビッグデータ入門」(2回目、5回目、6回目) |
|
(2)「社会で活用されているデータ」や「データの活用領域」は非常に広範囲であって、日常生活や社会の課題を解決する有用なツールになり得るもの | 1-2 | ・調査データ、実験データ、人の行動ログデータ、機械の稼働ログデータなど 「医療とAI・ビッグデータ入門」(3回目、6回目) ・データ作成(ビッグデータとアノテーション) 「医療とAI・ビッグデータ入門」(5回目、6回目) |
1-3 | ・データ・AI活用領域の広がり(生産、消費、文化活動など) 「医療とAI・ビッグデータ入門」(2回目) ・仮説検証、知識発見、原因究明、計画策定、判断支援、活動代替、新規生成など 「医療とAI・ビッグデータ入門」(5回目、6回目) |
|
(3)様々なデータ利活用の現場におけるデータ利活用事例が示され、様々な適用領域(流通、製造、金融、サービス、インフラ、公共、ヘルスケア等)の知見と組み合わせることで価値を創出するもの | 1-4 | ・データ解析:予測、グルーピング、パターン発見、最適化、シミュレーション・データ同化など 「医療とAI・ビッグデータ入門」(6回目) ・データ可視化:複合グラフ、2軸グラフ、多次元の可視化、関係性の可視化、地図上の可視化、挙動・軌跡の可視化、リアルタイム可視化など 「医療とAI・ビッグデータ入門」(2回目、6回目) |
1-5 | ・流通、製造、金融、サービス、インフラ、公共、ヘルスケア等におけるデータ・AI利活用事例紹介 「医療とAI・ビッグデータ入門」(2回目、6回目) |
|
(4)活用に当たっての様々な留意事項(ELSI、個人情報、データ倫理、AI社会原則等)を考慮し、情報セキュリティや情報漏洩等、データを守る上での留意事項への理解をする | 3-1 | ・データ・AIを利活用する上で知っておくべきこと「医療とAI・ビッグデータ入門」 |
3-2 | ・データを守る上で知っておくべきこと「医療とAI・ビッグデータ入門」 | |
(5)実データ・実課題(学術データ等を含む)を用いた演習など、社会での実例を題材として、「データを読む、説明する、扱う」といった数理・データサイエンス・AIの基本的な活用法に関するもの | 2-1 | ・データの種類(量的変数、質的変数)「臨床統計Ⅲ」 ・データの分布(ヒストグラム)と代表値(平均値、中央値、最頻値)「臨床統計Ⅲ」 ・代表値の性質の違い(実社会では平均値=最頻値でないことが多い)「臨床統計Ⅲ」 ・データのばらつき(分散、標準偏差、偏差値)「臨床統計Ⅲ」 ・相関と因果(相関係数、擬似相関、交絡)「臨床統計Ⅲ」 ・統計情報の正しい理解(誇張表現に惑わされない)「臨床統計Ⅲ」 |
2-2 | ・データ表現(棒グラフ、折線グラフ、散布図、ヒートマップ) 「医療とAI・ビッグデータ入門」(8回目)「臨床統計Ⅲ」 ・データの図表表現(チャート化) 「医療とAI・ビッグデータ入門」(10回目) ・優れた可視化事例の紹介(可視化することによって新たな気付きがあった事例など) 「医療とAI・ビッグデータ入門」(13回目) |
|
2-3 | ・データの集計(和、平均)「医療とAI・ビッグデータ入門」(7回目)「臨床統計Ⅲ」 ・表形式のデータ(csv)「医療とAI・ビッグデータ入門」(7回目、10回目、12回目、13回目) |
自己評価
関連リンク
数理・データサイエンス・AI教育プログラム認定制度(リテラシーレベル)
数理・データサイエンス・AI教育プログラム認定制度(リテラシーレベル):文部科学省 (mext.go.jp)
数理・データサイエンス・AI教育強化事業(東京医科歯科大学)
医学・歯学分野における数理・データサイエンス・AI教育開発事業 | 国立大学法人 東京医科歯科大学 (tmd.ac.jp)
数理・データサイエンス・AI教育強化拠点コンソーシアム
数理・データサイエンス・AI教育強化拠点コンソーシアム (u-tokyo.ac.jp)
数理・データサイエンス・AI教育プログラム認定制度(リテラシーレベル):文部科学省 (mext.go.jp)
数理・データサイエンス・AI教育強化事業(東京医科歯科大学)
医学・歯学分野における数理・データサイエンス・AI教育開発事業 | 国立大学法人 東京医科歯科大学 (tmd.ac.jp)
数理・データサイエンス・AI教育強化拠点コンソーシアム
数理・データサイエンス・AI教育強化拠点コンソーシアム (u-tokyo.ac.jp)