「 脳機能結合の情報からギャンブル障害の判別器を開発 」【高橋英彦 教授】
― 人工知能技術の応用により診断や治療に新たな道! ―
ポイント
- 安静時脳機能結合の情報に人工知能技術を適用し、生物学的情報に基づくギャンブル障害の判別器の開発に世界で初めて成功しました。
- 本研究で開発した判別器は、ギャンブル障害の診断の一助になることが期待されます。
- 本研究結果は、ギャンブル障害の新規治療法の開発や依存症全般の病態の理解に繋がる可能性があります。
東京医科歯科大学 大学院医歯学総合研究科 精神行動医科学分野の高橋英彦教授、京都大学大学院医学研究科脳病態生理学講座(精神医学)の村井俊哉教授、(株)国際電気通信基礎技術研究所(ATR)・脳情報通信総合研究所の川人光男所長、量子科学技術研究開発機構(QST) ・量子生命科学研究所の八幡憲明チームリーダーの研究グループが、脳機能画像による安静時脳機能結合の情報を基にしたギャンブル障害の判別器を開発しました。本判別器は、主観的症状とギャンブルに関連する行動から行われているギャンブル障害の診断の一助になることが期待されます。この研究は、国立研究開発法人日本医療研究開発機構(AMED)・戦略的 国際脳科学研究推進プログラムの「脳科学とAI技術に基づく精神神経疾患の診断と治療技術開発とその応用」(JP19dm0307008, JP21dm0307008)、長寿・障害対策総合研究事業「ギャンブル障害に対するニューロフィードバック法の開発」(JP20dk0307080)、日本学術振興会科研費「ギャンブル障害のコネクトーム」(17K16376)の支援のもとでおこなわれたもので、その研究成果は、国際科学誌Psychiatry and Clinical Neurosciencesに、2022年4月15日正午(日本時間)にオンライン版で発表されます。
研究の背景
近年、MRIによる脳画像データを用いて精神疾患の特徴を理解しようとする研究が行われるようになり、なかでも安静時脳機能画像※1(rsfMRI)における安静時脳機能結合※2を患者と健常者において比較することで精神疾患の神経基盤を探索する研究が盛んです。ギャンブル障害においてもrsfMRI研究はいくつか行われていますが、安静時脳機能結合の情報からギャンブル障害の診断のバイオマーカーとなる指標を取り出し、ギャンブル障害の診断を予測する研究はありませんでした。本研究では、人工知能技術を用いて、安静時脳機能結合の情報からギャンブル障害のバイオマーカーとなる指標を抽出し、ギャンブル障害の診断を予測する判別器の開発を試みました。
研究成果の概要

研究成果の意義
用語解説
複雑な課題や刺激を用いず、安静状態で機能的 MRI を測定する手法。この検査において、研究対象者は開眼または閉眼で安静にし深く物事を考えこまないことだけが求められ、測定時間も約10分程度と短く、身体的負担が少ない。
※2 安静時脳機能結合
安静状態にあっても脳は多くのエネルギーを使って自発的な活動を行っている。脳機能結合とは、空間的に隔たっている脳領域どうしの活動パターンの同期関係(類似度)を表すもの。脳活動を反映するMRI 信号(BOLD 信号)の時間的変動の相関係数から評価を行う。相関係数は、二領域間の脳活動の同方向の関係(=一方の活動が高い時にもう一方の活動も高く、一方の活動が低い時にもう一方も低い)であると1に近い値に、逆方向の関係(一方の活動が高いときにもう一方の活動が低く、一方の活動が低い時にもう一方の活動が高い)であると-1 に近い値に、互いに関連しないとき0に近い値を取る。
※3 革新的な人工知能技術
L1 正則化スパース正準相関分析法(L1-regularized sparse canonical correlation analysis)とスパースロジスティック回帰法(sparse logistic regression)を組み合わせた人工知能技術。この技術を用いて、過学習を防ぎ、MRI装置の機種や撮像方法などと関連する脳機能結合は除外し、診断に関連する数少ない脳機能的結合の抽出と、各結合の重み付けの計算を行う。判別器は、最終的に選択された脳機能結合 (本研究では15本)の相関係数とそれぞれの結合の重み付けを掛け算したものを全て足し合わせた数値を指標(バイオマーカー)とし、その数値が0以上であればギャンブル障害患者、0以下であれば健常者、と予測する。
※4 AUC(Area Under the Curve)
ROC曲線を作成した時に、グラフの曲線より下の部分の面積のことであり、疾患群と健常群などの二値分類を行う手法の精度を評価する指標として用いられる。0~1の数値をとり、1に近い値ほど、優れた判別方法であることを示す。ランダムで判別には向かない方法では 0.5 に近い値になる。
※5 汎化性能
判別器作成時に使用された訓練データとは別の、新たなデータに対する予測性能のこと。訓練データに対して高い予測性能を有していても未知のデータに対して同様の予測を行えるとは限らず、訓練データに対して過学習していると、訓練データに対する判別性能は非常に高いが未知のデータの予測性能は低い、という現象が起こる。
※6 ニューロフィードバック
機能的MRIなどを用いて自分の脳活動を可視化し、脳活動をモニターしながら、その活動にフィードバックを受けることで脳活動を望ましい方向に操作する方法を学んだり脳活動を制御したりする手法。
論文情報
掲載誌:Psychiatry and Clinical Neurosciences
論文タイトル:Development of a classifier for gambling disorder based on functional connections between brain regions
DOI:https://doi.org/10.1111/pcn.13350
研究者プロフィール

東京医科歯科大学大学院医歯学総合研究科
精神行動医科学分野 教授
・研究領域
精神医学
行動科学
神経科学
問い合わせ先
<研究に関すること>
東京医科歯科大学大学院医歯学総合研究科
精神行動医学分野 氏名 高橋 英彦
E-mail:hidepsyc[@]tmd.ac.jp
京都大学大学院医学研究科脳病態生理学講座
精神医学分野 氏名 竹内 秀暁
E-mail:tkuchihd[@]kuhp.kyoto-u.ac.jp
<報道に関すること>
東京医科歯科大学 総務部総務秘書課広報係
〒113-8510 東京都文京区湯島1-5-45
E-mail:kouhou.adm[@]tmd.ac.jp
京都大学 総務部広報課国際広報室
〒606-8501 京都市左京区吉田本町
E-mail:comms[@]mail2.adm.kyoto-u.ac.jp
(株)国際電気通信基礎技術研究所(ATR) 経営統括部 企画・広報チーム
Email:pr[@]atr.jp
国立研究開発法人量子科学技術研究開発機構 (QST) 経営企画部 広報課
E-mail:info[@]qst.go.jp
※E-mailは上記アドレス[@]の部分を@に変えてください。