「強度近視患者の長期的な視力と視力障害リスクを予測する機械学習モデルを開発」【大野京子 教授】

大野 京子(おおの きょうこ) 大学院医歯学総合研究科 眼科学分野 教授(左)
Yining Wang(いーにん おう)大学院医歯学総合研究科 眼科学分野 大学院生(右)
― 失明リスクの高い患者の早期診断・早期治療を可能にする ―

ポイント
- 強度近視は我が国を主とする東アジア諸国の主要な失明の原因です。
- 現在失明していない患者も多くが、将来の失明の不安を抱えています。
- 強度近視患者の臨床情報と眼底写真などの画像データを用いて、長期的な視力と視力障害リスクを予測する機械学習モデルを開発しました。
- この開発により、強度近視患者における不安の軽減および失明予防の治療に貢献すると考えられます。
研究の背景
近年では人工知能(artificial intelligence:AI)が著しく発展し、眼科領域におけるAIの研究成果が急速に拡大していますが、長期的な視力に関する AI 研究は依然として不足しています。

図1. さまざまなタイプの近視性黄斑症を示す眼底写真
研究成果の概要
まず、3年後と5年後の視力を予測するために、AIの特徴選択方法を使用して34の特徴をスクリーニングし、最も重要な特徴を選択しました。これら特徴を用いて、5つの機械学習モデルを開発し、予測精度を比較しました。3年後のBCVAを予測するには、サポートベクターマシン(SVM) が最良の予測精度を示し(決定係数※2R2=0.682; 95%CI、0.625~0.733)、5年後にランダムフォレスト(RF)が最良の予測精度を示しました(R2=0.66、95%CI、0.604~0.71)。
続いて、選択した特徴を用いて、患者の5年後の視力障害リスク、つまり視力障害が発生、発生しないに分類する二値分類問題を予測する機械学習モデルを5種類開発し、予測精度を比較しました。ロジスティック回帰が最良の予測精度を示しました。このモデルは正解率0.868(95%信頼区間(CI):0.823-0.901)、感度0.6(95%信頼区間(CI):0.404-0.742)、特異度0.896(95%CI:0.816-0.923)、AUC 0.87(95%CI:0.82-0.92)を達成しました。
さらに、ロジスティック回帰モデルを可視化して、ノモグラムを作成しました。このノモグラムを使って、変数を組み合わせて、個々の患者についてより5年後の視力障害リスクの正確な予後予測が可能になるとされています。

図2. 視力障害リスクの予測確率を計算するノモグラム
研究成果の意義
近視は世界的な公衆衛生問題であり、東アジアではその有病率が急速に増加しています。これは病的近視の増加による近視性黄斑症、さらに重度の視力障害を招く可能性があります。
本研究では、臨床情報および画像情報を用いて、高度近視眼の長期視力を正確に予測する機械学習モデルを開発することができることを確認しました。また、個人的な視力障害リスクの予測結果を可視化できるから、患者の強度近視に伴い眼底病変に対する不安の軽減および予防や治療に貢献すると考えられます。
用語解説
※1 近視性黄斑症のカテゴリー:近視性黄斑症は,近視性網脈絡膜萎縮病変と3つのプラス病変から構成されます。近視性黄斑症は病的近視のメタ解析スタディグループ(META-PM Study Group)の診断ガイドラインに基づいて「病変なし」(カテゴリー0),「豹紋状眼底」(カテゴリー1),「びまん性萎縮病変」(カテゴリー2),「限局性萎縮病変」(カテゴリー3),「黄斑萎縮」(カテゴリー4)に分類される。
※2 決定係数R2 (R2 coefficient):R2はモデルがその特徴に基づいて予測できる結果の分散の割合を表す。
論文情報
掲載誌:JAMA Ophthalmology
論文タイトル:Machine learning models for predicting long-term visual acuity in highly myopic eyes
DOI:https://doi.org/10.1001/jamaophthalmol.2023.4786
研究者プロフィール

Yining Wang (イーニン オウ)
東京医科歯科大学 大学院医歯学総合研究科
眼科学分野 大学院生
・研究領域
近視
網膜疾患

東京医科歯科大学 大学院医歯学総合研究科
眼科学分野 教授
・研究領域
近視
網膜疾患
問い合わせ先
<研究に関すること>
東京医科歯科大学大学院医歯学総合研究科
眼科学分野 氏名 大野 京子 (オオノ キョウコ)
E-mail:k.ohno.oph[at]tmd.ac.jp
<報道に関すること>
東京医科歯科大学 総務部総務秘書課広報係
〒113-8510 東京都文京区湯島1-5-45
E-mail:kouhou.adm[at]tmd.ac.jp
※E-mailは上記アドレス[at]の部分を@に変えてください。