Hironori Inaba, Qianqian Miao, Takao Nakata. Optogenetic control of small GTPases reveals RhoA mediates intracellular calcium signaling. Journal of Biological Chemistry. 2021 Jan 13;100290. doi: 10.1016/j.jbc.2021.100290. Online ahead of print.

Moe Sato, Toshifumi Asano, Jun Hosomichi, Takashi Ono, Takao Nakata. Optogenetic manipulation of intracellular calcium by BACCS promotes differentiation of MC3T3-E1 cells. Biochemical and Biophysical Research Communications. 2018 Oct 27. pii: S0006-291X(18)32269-1. doi: 10.1016/j.bbrc.2018.10.107.

Toshifumi Asano, Hiroyuki Igarashi, Toru Ishizuka, Hiromu Yawo. Organelle optogenetics: Direct manipulation of intracellular Ca2+ dynamics by light. Frontiers in Neuroscience. 2018 Aug 17. doi: 10.3389/fnins.2018.00561.

Tomohiro Ishii, Koji Sato, Toshiyuki Kakumoto, Shigenori Miura, Kazushige Touhara, Shoji Takeuchi, Takao Nakata.
Light generation of intracellular Ca2+ signals by a genetically encoded protein BACCS.
Nature Communications. 2015 Aug 18; 6:8021. doi: 10.1038/ncomms9021

T. Kakumoto, T. Nakata. Optogenetic control of PIP3: PIP3 is sufficient to induce the actin-based active part of growth cones and is regulated via endocytosis. PLoS One. 2013 Aug 7; 8(8):e70861. doi: 10.1371/journal.pone.0070861. eCollection 2013.

T. Nakata, S. Niwa, Y. Okada, F. Perez, and N. Hirokawa. Preferential binding of a kinesin-1 motor to GTP-tubulin-rich microtubules underlies polarized vesicle transport. The Journal of Cell Biology 194:245-255. 2011.

T. Nakata and N. Hirokawa. Neuronal polarity and the kinesin superfamily proteins. Sci STKE. 2007 Feb 6; (372):pe6.2007

J. Teng, T. Ray, Y. Tanaka, Y. Takei, T. Nakata, M. Hirasawa, A.B. Kulkarni, N. Hirokawa. The KIF3 motor transports N-cadherin and organizes the developing neuroepithelium. Nature Cell Biology 2005 May;7(5):474-82.

T. Nakata and N. Hirokawa. Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. Journal of Cell Biology 162(6): 1045-55. 2003.

N. Homma, Y. Takei, Y. Tanaka, T. Nakata, S. Terada, M. Kikkawa, Y. Noda, and N. Hirokawa. Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell 114(2): 229-39. 2003.

Y. Xu, S. Takeda, T. Nakata, Y. Noda, Y. Tanaka, and N. Hirokawa. Role of KIFC3 motor protein in Golgi positioning and integration. Journal of Cell Biology 158(2): 293-303. 2002.

K. Nakajima, Y. Takei, Y. Tanaka, T. Nakagawa, T. Nakata, Y. Noda, M. Setou, and N. Hirokawa. Molecular motor KIF1C is not essential for mouse survival and motor-dependent retrograde Golgi apparatus-to-endoplasmic reticulum transport. Molecular and Cellular Biology 22(3): 866-73. 2002.

J. Teng, Y. Takei, A. Harada, T. Nakata, J. Chen, and N. Hirokawa. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. Journal of Cell Biology 155(1): 65-76. 2001.

C. Zhao, J. Takita, Y. Tanaka, M. Setou, T. Nakagawa, S. Takeda, H. W. Yang, S. Terada, T. Nakata, Y. Takei, M. Saito, S. Tsuji, Y. Hayashi, and N. Hirokawa. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105(5): 587-97. 2001.

J. Chen, T. Nakata, Z. Zhang, and N. Hirokawa. The C-terminal tail domain of neurofilament protein-H (NF-H) forms the crossbridges and regulates neurofilament bundle formation. Journal of Cell Science 113 Pt 21: 3861-9. 2000.

T. Nakata, S. Terada, and N. Hirokawa. Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. Journal of Cell Biology 140(3): 659-74. 1998.

K. I. Nagata, A. Puls, C. Futter, P. Aspenstrom, E. Schaefer, T. Nakata, N. Hirokawa, and A. Hall. The MAP kinase kinase kinase MLK2 co-localizes with activated JNK along microtubules and associates with kinesin superfamily motor KIF3. EMBO Journal 17(1): 149-58. 1998.

H. Yamazaki, T. Nakata, Y. Okada, and N. Hirokawa. Cloning and characterization of KAP3: a novel kinesin superfamily-associated protein of KIF3A/3B. Proceedings of the National Academy of Sciences of the United States of America 93(16): 8443-8. 1996.

S. Terada, T. Nakata, A. C. Peterson, and N. Hirokawa. Visualization of slow axonal transport in vivo. Science 273(5276): 784-8. 1996.

R. Takemura, T. Nakata, Y. Okada, H. Yamazaki, Z. Zhang, and N. Hirokawa. mRNA expression of KIF1A, KIF1B, KIF2, KIF3A, KIF3B, KIF4, KIF5, and cytoplasmic dynein during axonal regeneration. Journal of Neuroscience 16(1): 31-5. 1996.

T. Nakata, and N. Hirokawa. Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport. Journal of Cell Biology 131(4): 1039-53. 1995.

H. Yamazaki, T. Nakata, Y. Okada, and N. Hirokawa. KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport. Journal of Cell Biology 130(6): 1387-99. 1995.

T. Hayashi, F. Soulie, T. Nakata, and N. Hirokawa. Redistribution of synapsin I and synaptophysin in response to electrical stimulation in the rat neurohypophysial nerve endings. Cell Structure and Function 19(4): 253-62. 1994.

M. Kikkawa, T. Ishikawa, T. Nakata, T. Wakabayashi, and N. Hirokawa. Direct visualization of the microtubule lattice seam both in vitro and in vivo. Journal of Cell Biology 127(6 Pt 2): 1965-71. 1994.

A. Ando, K. Yonezawa, I. Gout, T. Nakata, H. Ueda, K. Hara, Y. Kitamura, Y. Noda, T. Takenawa, and N. Hirokawa. A complex of GRB2-dynamin binds to tyrosine-phosphorylated insulin receptor substrate-1 after insulin treatment. EMBO Journal 13(13): 3033-8. 1994.

S. Kondo, R. Sato-Yoshitake, Y. Noda, H. Aizawa, T. Nakata, Y. Matsuura, and N. Hirokawa. KIF3A is a new microtubule-based anterograde motor in the nerve axon. Journal of Cell Biology 125(5): 1095-107. 1994.

H. Miki, K. Miura, K. Matuoka, T. Nakata, N. Hirokawa, S. Orita, K. Kaibuchi, Y. Takai, and T. Takenawa. Association of Ash/Grb-2 with dynamin through the Src homology 3 domain. Journal of Biological Chemistry 269(8): 5489-92. 1994.

T. Nakata, R. Sato-Yoshitake, Y. Okada, Y. Noda, and N. Hirokawa. Thermal drift is enough to drive a single microtubule along its axis even in the absence of motor proteins. Biophysical Journal 65(6): 2504-10. 1993.

Z. Zhang, Y. Tanaka, S. Nonaka, H. Aizawa, H. Kawasaki, T. Nakata, and N. Hirokawa. The primary structure of rat brain (cytoplasmic) dynein heavy chain, a cytoplasmic motor enzyme. Proceedings of the National Academy of Sciences of the United States of America 90(17): 7928-32. 1993.

Y. Noda, T. Nakata, and N. Hirokawa. Localization of dynamin: widespread distribution in mature neurons and association with membranous organelles. Neuroscience 55(1): 113-27. 1993.

T. Nakata, R. Takemura, and N. Hirokawa. A novel member of the dynamin family of GTP-binding proteins is expressed specifically in the testis. Journal of Cell Science 105 ( Pt 1): 1-5. 1993.

T. Nakata and N. Hirokawa. Is dynamin GTPase a microtubule based motor? In: Neuronal Cytoskeleton(N. Hirokawa, editor, CRC Press. London) p285-303 1993.

Y. Tanaka, K. Kawahata, T. Nakata, and N. Hirokawa. Chronological expression of microtubule-associated proteins (MAPs) in EC cell P19 after neuronal induction by retinoic acid. Brain Research 596(1-2): 269-78. 1992.

K. Maeda, T. Nakata, Y. Noda, R. Sato-Yoshitake, and N. Hirokawa. Interaction of dynamin with microtubules: its structure and GTPase activity investigated by using highly purified dynamin. Molecular Biology of the Cell 3(10): 1181-94. 1992.

T. Nakata, and N. Hirokawa. Organization of cortical cytoskeleton of cultured chromaffin cells and involvement in secretion as revealed by quick-freeze, deep-etching, and double-label immunoelectron microscopy. Journal of Neuroscience 12(6): 2186-97. 1992.

T. Nakata, A. Iwamoto, Y. Noda, R. Takemura, H. Yoshikura, and N. Hirokawa. Predominant and developmentally regulated expression of dynamin in neurons. Neuron 7(3): 461-9. 1991.

T. Nakata, K. Sobue, and N. Hirokawa. Conformational change and localization of calpactin I complex involved in exocytosis as revealed by quick-freeze, deep-etch electron microscopy and immunocytochemistry. Journal of Cell Biology 110(1): 13-25. 1990.

T. Nakata, and N. Hirokawa. Cytoskeletal reorganization of human platelets after stimulation revealed by the quick-freeze deep-etch technique. Journal of Cell Biology 105(4): 1771-80. 1987.

Japanese Page