Toshifumi Asano, Philipp Sasse, Takao Nakata. Development of a Cre-recombination-based color-switching reporter system for cell fusion detection. Biochemical and Biophysical Research Communications (in press).

Hironori Inaba, Qianqian Miao, Takao Nakata. Optogenetic control of small GTPases reveals RhoA mediates intracellular calcium signaling. Journal of Biological Chemistry. Jan-Jun 2021;296:100290. doi: 10.1016/j.jbc.2021.100290. Epub 2021 Jan 13.

Moe Sato, Toshifumi Asano, Jun Hosomichi, Takashi Ono, Takao Nakata. Optogenetic manipulation of intracellular calcium by BACCS promotes differentiation of MC3T3-E1 cells. Biochemical and Biophysical Research Communications. 2018 Oct 27. pii: S0006-291X(18)32269-1. doi: 10.1016/j.bbrc.2018.10.107.

Toshifumi Asano, Hiroyuki Igarashi, Toru Ishizuka, Hiromu Yawo. Organelle optogenetics: Direct manipulation of intracellular Ca2+ dynamics by light. Frontiers in Neuroscience. 2018 Aug 17. doi: 10.3389/fnins.2018.00561.

Tomohiro Ishii, Koji Sato, Toshiyuki Kakumoto, Shigenori Miura, Kazushige Touhara, Shoji Takeuchi, Takao Nakata.
Light generation of intracellular Ca2+ signals by a genetically encoded protein BACCS.
Nature Communications. 2015 Aug 18; 6:8021. doi: 10.1038/ncomms9021

T. Kakumoto, T. Nakata. Optogenetic control of PIP3: PIP3 is sufficient to induce the actin-based active part of growth cones and is regulated via endocytosis. PLoS One. 2013 Aug 7; 8(8):e70861. doi: 10.1371/journal.pone.0070861. eCollection 2013.

T. Nakata, S. Niwa, Y. Okada, F. Perez, and N. Hirokawa. Preferential binding of a kinesin-1 motor to GTP-tubulin-rich microtubules underlies polarized vesicle transport. The Journal of Cell Biology 194:245-255. 2011.

T. Nakata and N. Hirokawa. Neuronal polarity and the kinesin superfamily proteins. Sci STKE. 2007 Feb 6; (372):pe6.2007

J. Teng, T. Ray, Y. Tanaka, Y. Takei, T. Nakata, M. Hirasawa, A.B. Kulkarni, N. Hirokawa. The KIF3 motor transports N-cadherin and organizes the developing neuroepithelium. Nature Cell Biology 2005 May;7(5):474-82.

T. Nakata and N. Hirokawa. Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. Journal of Cell Biology 162(6): 1045-55. 2003.

N. Homma, Y. Takei, Y. Tanaka, T. Nakata, S. Terada, M. Kikkawa, Y. Noda, and N. Hirokawa. Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell 114(2): 229-39. 2003.

Y. Xu, S. Takeda, T. Nakata, Y. Noda, Y. Tanaka, and N. Hirokawa. Role of KIFC3 motor protein in Golgi positioning and integration. Journal of Cell Biology 158(2): 293-303. 2002.

K. Nakajima, Y. Takei, Y. Tanaka, T. Nakagawa, T. Nakata, Y. Noda, M. Setou, and N. Hirokawa. Molecular motor KIF1C is not essential for mouse survival and motor-dependent retrograde Golgi apparatus-to-endoplasmic reticulum transport. Molecular and Cellular Biology 22(3): 866-73. 2002.

J. Teng, Y. Takei, A. Harada, T. Nakata, J. Chen, and N. Hirokawa. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. Journal of Cell Biology 155(1): 65-76. 2001.

C. Zhao, J. Takita, Y. Tanaka, M. Setou, T. Nakagawa, S. Takeda, H. W. Yang, S. Terada, T. Nakata, Y. Takei, M. Saito, S. Tsuji, Y. Hayashi, and N. Hirokawa. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105(5): 587-97. 2001.

J. Chen, T. Nakata, Z. Zhang, and N. Hirokawa. The C-terminal tail domain of neurofilament protein-H (NF-H) forms the crossbridges and regulates neurofilament bundle formation. Journal of Cell Science 113 Pt 21: 3861-9. 2000.

T. Nakata, S. Terada, and N. Hirokawa. Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. Journal of Cell Biology 140(3): 659-74. 1998.

K. I. Nagata, A. Puls, C. Futter, P. Aspenstrom, E. Schaefer, T. Nakata, N. Hirokawa, and A. Hall. The MAP kinase kinase kinase MLK2 co-localizes with activated JNK along microtubules and associates with kinesin superfamily motor KIF3. EMBO Journal 17(1): 149-58. 1998.

H. Yamazaki, T. Nakata, Y. Okada, and N. Hirokawa. Cloning and characterization of KAP3: a novel kinesin superfamily-associated protein of KIF3A/3B. Proceedings of the National Academy of Sciences of the United States of America 93(16): 8443-8. 1996.

S. Terada, T. Nakata, A. C. Peterson, and N. Hirokawa. Visualization of slow axonal transport in vivo. Science 273(5276): 784-8. 1996.

R. Takemura, T. Nakata, Y. Okada, H. Yamazaki, Z. Zhang, and N. Hirokawa. mRNA expression of KIF1A, KIF1B, KIF2, KIF3A, KIF3B, KIF4, KIF5, and cytoplasmic dynein during axonal regeneration. Journal of Neuroscience 16(1): 31-5. 1996.

T. Nakata, and N. Hirokawa. Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport. Journal of Cell Biology 131(4): 1039-53. 1995.

H. Yamazaki, T. Nakata, Y. Okada, and N. Hirokawa. KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport. Journal of Cell Biology 130(6): 1387-99. 1995.

T. Hayashi, F. Soulie, T. Nakata, and N. Hirokawa. Redistribution of synapsin I and synaptophysin in response to electrical stimulation in the rat neurohypophysial nerve endings. Cell Structure and Function 19(4): 253-62. 1994.

M. Kikkawa, T. Ishikawa, T. Nakata, T. Wakabayashi, and N. Hirokawa. Direct visualization of the microtubule lattice seam both in vitro and in vivo. Journal of Cell Biology 127(6 Pt 2): 1965-71. 1994.

A. Ando, K. Yonezawa, I. Gout, T. Nakata, H. Ueda, K. Hara, Y. Kitamura, Y. Noda, T. Takenawa, and N. Hirokawa. A complex of GRB2-dynamin binds to tyrosine-phosphorylated insulin receptor substrate-1 after insulin treatment. EMBO Journal 13(13): 3033-8. 1994.

S. Kondo, R. Sato-Yoshitake, Y. Noda, H. Aizawa, T. Nakata, Y. Matsuura, and N. Hirokawa. KIF3A is a new microtubule-based anterograde motor in the nerve axon. Journal of Cell Biology 125(5): 1095-107. 1994.

H. Miki, K. Miura, K. Matuoka, T. Nakata, N. Hirokawa, S. Orita, K. Kaibuchi, Y. Takai, and T. Takenawa. Association of Ash/Grb-2 with dynamin through the Src homology 3 domain. Journal of Biological Chemistry 269(8): 5489-92. 1994.

T. Nakata, R. Sato-Yoshitake, Y. Okada, Y. Noda, and N. Hirokawa. Thermal drift is enough to drive a single microtubule along its axis even in the absence of motor proteins. Biophysical Journal 65(6): 2504-10. 1993.

Z. Zhang, Y. Tanaka, S. Nonaka, H. Aizawa, H. Kawasaki, T. Nakata, and N. Hirokawa. The primary structure of rat brain (cytoplasmic) dynein heavy chain, a cytoplasmic motor enzyme. Proceedings of the National Academy of Sciences of the United States of America 90(17): 7928-32. 1993.

Y. Noda, T. Nakata, and N. Hirokawa. Localization of dynamin: widespread distribution in mature neurons and association with membranous organelles. Neuroscience 55(1): 113-27. 1993.

T. Nakata, R. Takemura, and N. Hirokawa. A novel member of the dynamin family of GTP-binding proteins is expressed specifically in the testis. Journal of Cell Science 105 ( Pt 1): 1-5. 1993.

T. Nakata and N. Hirokawa. Is dynamin GTPase a microtubule based motor? In: Neuronal Cytoskeleton(N. Hirokawa, editor, CRC Press. London) p285-303 1993.

Y. Tanaka, K. Kawahata, T. Nakata, and N. Hirokawa. Chronological expression of microtubule-associated proteins (MAPs) in EC cell P19 after neuronal induction by retinoic acid. Brain Research 596(1-2): 269-78. 1992.

K. Maeda, T. Nakata, Y. Noda, R. Sato-Yoshitake, and N. Hirokawa. Interaction of dynamin with microtubules: its structure and GTPase activity investigated by using highly purified dynamin. Molecular Biology of the Cell 3(10): 1181-94. 1992.

T. Nakata, and N. Hirokawa. Organization of cortical cytoskeleton of cultured chromaffin cells and involvement in secretion as revealed by quick-freeze, deep-etching, and double-label immunoelectron microscopy. Journal of Neuroscience 12(6): 2186-97. 1992.

T. Nakata, A. Iwamoto, Y. Noda, R. Takemura, H. Yoshikura, and N. Hirokawa. Predominant and developmentally regulated expression of dynamin in neurons. Neuron 7(3): 461-9. 1991.

T. Nakata, K. Sobue, and N. Hirokawa. Conformational change and localization of calpactin I complex involved in exocytosis as revealed by quick-freeze, deep-etch electron microscopy and immunocytochemistry. Journal of Cell Biology 110(1): 13-25. 1990.

T. Nakata, and N. Hirokawa. Cytoskeletal reorganization of human platelets after stimulation revealed by the quick-freeze deep-etch technique. Journal of Cell Biology 105(4): 1771-80. 1987.