Publication

2021

Kazuhisa Nakayama(Graduate School of Pharmaceutical Sciences, Kyoto University)

  1. Inoue, H., Takatsu, H., Hamamoto, A., Takayama, M., Nakabuchi, R., Muranaka, Y., Yagi, T., Nakayama, K. & Shin, H.-W.(2021)The interaction of ATP11C-b with ezrin contributes to its polarized localization.J. Cell Sci. 134, jcs258523.
  2. Fujisawa, S., Qiu, H., Nozaki, S., Chiba, S., Katoh, Y. & Nakayama, K. (2021) ARL3 and ARL13B GTPases participate in distinct steps of INPP5E targeting to the ciliary membrane. Biol. Open 10, bio058843.
  3. Ishida, Y., Kobayashi, T., Chiba, S., Katoh, Y. & Nakayama, K. (2021) Molecular basis of ciliary defects caused by compound heterozygous IFT144/WDR19 mutations found in cranioectodermal dysplasia. Hum. Mol. Genet., 30, 213-225.
  4. Qiu, H., Fujisawa, S., Nozaki, S., Katoh, Y. & Nakayama, K. (2021) Interaction of INPP5E with ARL13B is essential for its ciliary membrane retention but dispensable for its ciliary entry. Biol. Open 10, bio057653.
  5. Kobayashi, T., Ishida, Y., Hirano, T., Katoh, Y. & Nakayama, K. (2021) Cooperation of the IFT-A complex with the IFT-B complex is required for ciliary retrograde protein trafficking and GPCR import. Mol. Biol. Cell, 32, 45-56.

Hideki Nishitoh(Laboratory of Biochemistry and Molecular Biology, University of Miyazaki)

  1. Sugiyama, T., Murao, N., Kadowaki, H., Takao, K., Miyakawa, T., Matsushita, Y., Katagiri, T., Futatsugi, A., Shinmyo, Y., Kawasaki, H., Sakai, J., Shiomi, K., Nakazato, M., Takeda, K., Mikoshiba, K., Ploegh, H.L., Ichijo, H., Nishitoh, H. (2021) ERAD components Derlin-1 and Derlin-2 are essential for postnatal brain development and motor function. iScience, 24:102758.

Akihiko Nakano(RIKEN Center for Advanced Photonics, Live Cell Super-Resolution Imaging Research Team)

  1. Shimizu, Y., Takagi, J., Ito, E., Ito, Y., Ebine, K., Komatsu, Y., Goto, Y., Sato, M., Toyooka, K., Ueda, T., Kurokawa, K., Uemura, T., and Nakano, A. (2021). Cargo sorting zones in the trans-Golgi network visualized by super-resolution confocal live imaging microscopy in plants. Nat. Commun. 12:1901.
  2. Rizzo, R., Russo, D., Kurokawa, K., Sahu, P., Lombardi, B., Supino, D., Zhukovsky, M. A., Vocat, A., Pothukuchi, P., Kunnathully, V., Capolupo, L., Boncompain, G., Vitagliano, C., Marino, F. Z., Aquino, G., Montariello, D., Henklein, P., Mandrich, L., Botti, G., Clausen, H., Mandel, U., Yamaji, T., Hanada, K., Budillon, A., Perez, F., Parashuraman, S., Hannun, Y. A., Nakano, A., Corda, D., D’Angelo, G., and Luini, A. (2021). Golgi maturation-dependent glycoenzyme recycling controls glycosphingolipid biosynthesis and cell growth via GOLPH3. EMBO J. 40:e107238.
  3. Rodriguez-Gallardo, S., Kurokawa, K., Sabido-Bozo, S., Cortes-Gomez, A., Perez-Linero, A.M., Aguilera-Romero, A., Lopez, S., Waga, M., Nakano, A., and Muñiz, M. (2021). Assay for dual cargo sorting into endoplasmic reticulum exit sites imaged by 3D super-resolution confocal live imaging microscopy (SCLIM). PLOS ONE 16:e0258111.
  4. Tojima, T., Miyashiro, D., Kosugi, Y., and Nakano, A. (2022). Super-resolution live imaging of cargo traffic through the Golgi apparatus in mammalian cells. Methods Mol. Biol. in press.
  5. Rodriguez-Gallardo, S., Sabido-Bozo, S., Ikeda, A., Araki, M., Okazaki, K., Nakano, M., Aguilera-Romero, A., Cortes-Gomez, A., Lopez, S., Waga, M., Nakano, A., Kurokawa, K., Muñiz, M., and Funato, K. (2022). Quality-controlled lipid-based protein sorting into selective ER exit sites. Cell Rep. 39:110768.
  6. Nakano, A. (2022). The Golgi apparatus and its next-door neighbors. Frontiers Cell Dev. Biol. 10:884360.
  7. Hasegawa, Y., Reyes,T. H., Uemura, T., Baral, A., Fujimaki, A., Luo, Y., Morita, Y., Saeki, Y., Maekawa, S., Yasuda, S., Mukuta, K., Fukao, Y., Tanaka, K., Nakano, A., Takagi, J., Bhalerao, R., Yamaguchi, J., and Sato, T. (2022). TGN/EE SNARE protein SYP61 and ubiquitin ligase ATL31 cooperatively regulate carbon/nitrogen-nutrient responses in Arabidopsis. Plant Cell 34:1354-1374.

Kaoru Katoh(Senior Researcher, Biomedical Research Institute National Institute of Advanced Industrial Sciences and Technology (AIST))

  1. Ohzono T.. Katoh K., Terentjev E.M. (2021)
    Microscopy of diffuse nematic-isotropic transition in main-chain nematic liquid crystal elastomers. Macromolecules (in press)

  2. Ohzono T., Katoh K., Minamikawa H., Saed M. O., Terentjev E.M. (2021)
    Internal constraints and arrested relaxation in main-chain nematic elastomers
    Nat Commun 12, 787 (2021). https://doi.org/10.1038/s41467-021-21036-3

Kentaro Hanada(Department of Biochemistry & Cell Biology National Institute of Infectious Diseases)

  1. Rizzo, R., Russo, D., Kurokawa, K., Sahu, P., Lombardi, B., Supino, D., Zhukovsky, M., Vocat, A., Pothukuchi, P., Kunnathully, V., Capolupo, L., Boncompain, G., Vitagliano, C., Marino, F.Z,, Aquino, G., Montariello, D., Henklein, P., Mandrich, L., Botii, G., Clausen, H., Mandel, U., Yamaji, T., Hanada, K., Budillon, A., Perez, F., Parashuraman, S., Hannun, Y.A., Nakano, A., Corda, D., D’Angelo, G., and Luini, A. (2021) Golgi maturation-dependent glycoenzyme recycling controls glycosphingolipid biosynthesis and cell growth via GOLPH3. EMBO J., 2021, 40, e107238. Doi: org/10.15252/embj.2020107238
  2. Sakuma, C., Sekizuka, T., Kuroda, M., Hanada, K., and Yamaji, T. (2021) Identification of SYS1 as a host factor required for Shiga toxin-mediated cytotoxicity in Vero cells. Int. J. Mol. Sci., 22, artcile 4936. Open access: https://doi.org/10.3390/ijms22094936
  3. Tamura, N., Sakai, S., Martorell, L., Colomé, R., Mizuike, A., Goto, A., Ortigoza-Escobar, J.D., and Hanada, K. (2021) Intellectual disability-associated mutations in the ceramide transport protein gene CERT1 lead to aberrant function and subcellular distribution. J. Biol. Chem., 297, article 101338. Open access: https://doi.org/10.1016/j.jbc.2021.101338
  4. Hanada, K., Sakai, S., and Kumagai, K. (2022) Natural ligand-mimetic and nonmimetic inhibitors of the ceramide transport protein CERT. Int. J. Mol. Sci., 23, article 2098. Open access: https://doi.org/10.3390/ijms23042098
  5. Fujita, J., Taniguchi, M., Hashizume, C., Ueda, Y., Sakai, S., Kondo, T., Hashimoto-Nishimura, M., Hanada, K., Kosaka, T., and Okazaki, T. (2022) Nuclear ceramide is associated with ATM activation in the neocarzinostatin-induced apoptosis of lymphoblastoid cells. Mol. Pharmacol., 101, 322-333. DOI: https://doi.org/10.1124/molpharm.121.000379
  6. Shimasaki, K., Kumagai, K., Sakai, S., Yamaji, T., and Hanada, K. (2022) Hyperosmotic stress induces phosphorylation of CERT and enhances its tethering throughout the endoplasmic reticulum. Int. J. Mol. Sci., 23, article 4025. Open access: https://doi.org/10.3390/ijms23074025

2020

Akihiko Nakano(RIKEN Center for Advanced Photonics, Live Cell Super-Resolution Imaging Research Team)

  1. Fujii, S., Kurokawa, K., Tago, T., Inaba, R., Takiguchi, A., Nakano, A., Satoh, T., and Satoh, A. (2020). Sec71 separates Golgi stacks in Drosophila S2 cells. J. Cell Sci. 133:jcs245571.
  2. Kanazawa, T., Morinaka, H., Ebine, K., Shimada, T. L., Ishida, S., Minamino, N., Yamaguchi, K., Shigenobu, S., Kohchi, T., Nakano, A., and Ueda, T. (2020). The liverwort oil body is formed by redirection of the secretory pathway. Nat. Commun. 11:6152.
  3. Rodriguez-Gallardo, S.†, Kurokawa, K.†, Sabido-Bozo, S., Cortes-Gomez, A., Ikeda, A., Zoni, V., Aguilera-Romero, A., Maria Perez-Linero, A., Lopez, S., Waga, M., Araki, M., Nakano, M., Riezman, H., Funato, K., Vanni, S., Nakano, A., and Muñiz, M. (2020). Ceramide chain length-dependent protein sorting into selective endoplasmic reticulum exit sites. Sci. Adv. 6:eaba8237. († equal contribution)
  4. Ikeda, A., Schlarmann, P., Kurokawa, K., Nakano, A., Riezman, H., and Funato, K. (2020). Tricalbins are required for nonvesicular ceramide transport at ER-Golgi contacts and modulate lipid droplet biogenesis. iScience 23:101603.
  5. Murakami-Sekimata, A., Sekimata, M., Sato, N., Hayasaka, Y., and Nakano, A. (2020). Deletion of pin4 suppresses the protein transport defects caused by sec12-4 mutation in Saccharomyces cerevisiae. Microbial Physiol. 30:25-35.
  6. Fujii, S., Kurokawa, K., Inaba, R., Hiramatsu, N., Tago, T., Nakamura, Y., Nakano, A., Satoh, T., and Satoh, A. K. (2020). Recycling endosomes attach to the trans-side of Golgi stacks in Drosophila and mammalian cells. J. Cell Sci. 133: jcs236935.
  7. Kurokawa, K. and Nakano, A. (2020). Live-cell imaging by super-resolution confocal live imaging microscopy (SCLIM): simultaneous three-color and four-dimensional live cell imaging with high space and time resolution. Bio-protocol 10:e3732.

Kaoru Katoh(Senior Researcher, Biomedical Research Institute National Institute of Advanced Industrial Sciences and Technology (AIST))

  1. Higaki T., Akita K., Katoh K (2020)
    Coefficient of variation as an image-intensity metric for cytoskeleton bundling
    Sci. Rep. 10, 22187. https://doi.org/10.1038/s41598-020-79136-x

  2. Yamaguchi H., Honda S., Torii S., Shimizu K., Katoh K., Miyake K., Miyake N., Fujikake N.,
    Sakurai H.T., Arakawa S., Shimizu S.(2020)
    Wipi3 is essential for alternative autophagy and its loss causes neurodegeneration. Nat Commun 11, 5311. https://doi.org/10.1038/s41467-020-18892

  3. Ueno Y., Matsuda K., Katoh K., Kuzuya A., Kakugo A., Konagaya A. (2020)  Modeling a Microtubule Filaments Mesh Structure from Confocal Microscopy Imaging. Micromachines 11 (9), 844 https://doi.org/10.3390/mi11090844
  4. Pelc R., Hostounský Z., Otaki T., Katoh K. (2020)  Conventional, Apodized, and Relief Phase-Contrast Microscopy. In: Pelc R., Walz W., Doucette J. (eds) Neurohistology and Imaging Techniques. Neuromethods, vol 153. Humana, New York, NY.
    https://doi.org/10.1007/978-1-0716-0428-1_10

Taroh Kinoshita(Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University)

  1. Kobayashi, A.*, Hirata, T.*, Nishikaze, T., Ninomiya, A., Maki, Y., Takada, Y., Kitamoto, T., and Kinoshita, T. (2020) α2, 3-linkage of sialic acid to a GPI-anchor and an unpredicted GPI attachment site in human prion protein. J. Biol. Chem., 295(22):7789-7798.

  2. Lee, G.-H., Fujita, M., Nakanishi, H., Miyata, H., Ikawa, M., Maeda, Y., Murakami, Y., and Kinoshita, T. (2020) PGAP6, a GPI-specific phospholipase A2, has narrow substrate specificity against GPI-anchored proteins. J. Biol. Chem., 295(42):14501-14509.

  3. Langemeijer, S., Schaap, C., Preijers, F., Jansen, J. H., Blijlevens, N., Inoue, N., Muus, P., Kinoshita, T., and Murakami, Y. (2020) Paroxysmal nocturnal hemoglobinuria caused by CN-LOH of constitutional PIGB mutation and 70-kb microdeletion on 15q. Blood Adv., 4(22):5755-5761.

  4. Guo, X.-Y., Liu, Y.-S., Gao, X.-D., Kinoshita, T., and Fujita, M. (2020) Calnexin mediates the maturation of GPI-anchors through ER retention. J. Biol. Chem., in press.
  5. Okuda, T., Yonekawa, T., Murakami, Y., Kinoshita, T., Matsushita, K., Koike, Y., Inoue, M., Uchida, K., Yodoya, N., Ohashi, H., Sawada, H., Iwamoto, S., Mitani, Y., and Hirayama, M. (2020) PIGO variants in a boy with features of Mabry syndrome who also exhibits Fryns syndrome with peripheral neuropathy. Am. J. Med. Genet. A, in press.

  6. Kinoshita, T. (2020) Biosynthesis and biology of mammalian GPI-anchored proteins. Open Biol., 10: 190290. (Review)
    https://www.ncbi.nlm.nih.gov/pubmed/32156170

  7. Wang, Y., Maeda, Y., Liu, Y.-S., Takada, Y., Ninomiya, A., Hirata, T., Fujita, M., Murakami, Y., and Kinoshita, T. (2020) Cross-talks of glycosylphosphatidylinositol biosynthesis with glycosphingolipid biosynthesis and ER-associated degradation. Nat. Commun., 11:860.
    https://www.ncbi.nlm.nih.gov/pubmed/32054864

  8. Nguyen, T. T. M., Murakami, Y., Mobilio, S., Niceta, M., Zampino, G., Philippe, C., Moutton, S., Zaki, M. S., James, K., Musaev, D., Mu, W., Baranano, K., Nance, J. R., Rosenfeld, J. A., Braverman, N., Ciolfi, A., Millan, F., Person, R. E., Bruel, A.-L., Thauvin-Robinet, C., Ververi, A., DeVile, C., Male, A., Efthymiou, S., Maroofian, R., Houlden, H., Maqbool, S., Rahman, F., Baratang, N. V., Rousseau, J., St-Denis, A., Elrick, M. J., Anselm, I., Rodan, L.H., Tartaglia, M., Gleeson, J., Kinoshita, T., and Campeau, P. M. (2020) Bi-allelic variants in the GPI transamidase subunit PIGK cause a neurodevelopmental syndrome with hypotonia and cerebellar atrophy and epilepsy. Am. J. Hum. Genet., in press.
    https://www.ncbi.nlm.nih.gov/pubmed/32220290

Kazuhisa Nakayama(Graduate School of Pharmaceutical Sciences, Kyoto University)

  1. Nakamura, K., Noguchi, T., Takahara, M., Omori, Y., Furukawa, T., Katoh, Y., and Nakayama, K. (2020) Anterograde trafficking of ciliary MAP kinase-like ICK/CILK1 by the intraflagellar transport machinery is required for intraciliary retrograde protein trafficking. J. Biol. Chem., 295, 13363-13376.
  2. Okazaki, M., Kobayashi, T., Chiba, S., Takei, R., Liang, L., Nakayama, K., and Katoh, Y. (2020) Formation of the B9-domain protein complex MKS1–B9D2–B9D1 is essential as a diffusion barrier for ciliary membrane proteins. Mol. Biol. Cell, 31, 2259-2268.

  3. Katoh, Y., Chiba, S., and Nakayama, K. (2020) Practical method for super-resolution imaging of primary cilia and centrioles by expansion microscopy using an amplibody for fluorescence signal amplification. Mol. Biol. Cell, 31, 2195-2206.

  4. Okamoto, S., Naito, T., Shigetomi, R., Kosugi, Y., Nakayama, K., Takatsu, H., and Shin, H.-W. (2020) The N- or C-terminal cytoplasmic regions of P4-ATPases determine their cellular localization. Mol. Biol. Cell, 31, 2115–2124.

  5. Nakayama, K. and Katoh, Y. (2020) Architecture of the IFT ciliary trafficking machinery and interplay between its components. Crit. Rev. Biochem. Mol. Biol., 55, 179-196.

  6. Tone, T., Nakayama, K., Takatsu, H., and Shin, H.-W. (2020) ATPase reaction cycle of P4-ATPases affects their transport from the endoplasmic reticulum. FEBS Lett., 594, 412-423.

Masaya Ono(Department of Clinical Proteomics, National Cancer Center Research Institute)

  1. Yoshida, S., Aoki, K., Fujiwara, K., Nakakura, T., Kawamura, A., Yamada, K., Ono, M., Yogosawa, S., Yoshida, K. (2020) The novel ciliogenesis regulator DYRK2 governs Hedgehog signaling during mouse embryogenesis. Elife, 9, e57381.
  2. Gao, Y., Nihira, N.T., Bu, X., Chu, C., Zhang, J., Kolodziejczyk, A., Fan, Y., Chan, N.T., Ma, L., Liu, J., Wang, D., Dai, X., Liu, H., Ono, M., Nakanishi, A., Inuzuka, H., North, B.J., Huang, Y.H., Sharma, S., Geng, Y., Xu, W., Liu, X.S., Li, L., Miki, Y., Sicinski, P., Freeman, G.J., Wei, W. (2020) Acetylation-dependent regulation of PD-L1 nuclear translocation dictates the efficacy of anti-PD-1 immunotherapy. Nat Cell Biol., Epub ahead.

Yasushi Tamura(Faculty of Science, Yamagata University)

  1. Nakamura, S., Matsui, A., Akabane, S. Tamura, Y., Hatano, Z., Miyano, Y., Omote, H., Kajikawa, M., Maenaka, K., Moriyama, Y., Endo, T., & Oka T. (2020) The mitochondrial inner membrane protein LETM1 modulates cristae organization through its LETM domain. Commun Biol., 3: 99.
  2. Kudo S., Shiino H., Furuta S., Tamura Y.* (2020) Yeast transformation stress, together with loss of Pah1, phosphatidic acid phosphatase, leads to Ty1 retrotransposon insertion into the INO4 gene FASEB J., 34(3): 4749-4763.
  3. Watanabe Y., Tamura Y., Kakuta C., Watanabe S., and Endo T.* (2020) Structural basis for inter-organelle phospholipid transport mediated by VAT-1 JBC., 295(10): 3257-3268.

  4. Tamura Y. Kawano S. and Endo T*. (2020) Lipid homeostasis in mitochondria. Biol Chem., in press (DOI: 10.1515/hsz-2020-0121.).

Kazunori Imaizumi(Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University)

  1. Okamoto, T., Imaizumi, K., and Kaneko, M. (2020) The Role of Tissue-Specific Ubiquitin Ligases, RNF183, RNF186, RNF182 and RNF152, in Disease and Biological Function. Int J Mol Sci, 21:3921.
  2. Matsuhisa, K., Saito, A., Cai, L., Kaneko, M., Okamoto, T., Sakaue, F., Asada, R., Urano, F., Yanagida, K., Okochi, M., Kudo, Y., Matsumoto, M., Nakayama, K. I., and Imaizumi, K. (2020) Production of BBF2H7-derived small peptide fragments via endoplasmic reticulum stress-dependent regulated intramembrane proteolysis. FASEB J, 34:865-880.
  3. Okamoto, T., Wu, Y., Matsuhisa, K., Saito, A., Sakaue, F., Imaizumi, K., and Kaneko, M. (2020) Hypertonicity-responsive ubiquitin ligase RNF183 promotes Na, K-ATPase lysosomal degradation through ubiquitination of its beta1 subunit. Biochem Biophys Res Commun, 521:1030-1035.

Hirokazu Yagi(Graduate School of Pharmaceutical Sciences, Nagoya City University)

  1. Yagi, H., Yagi-Utsumi, M., Honda, R., Ohta, Y., Saito, T., Nishio, M., Ninagawa, S., Suzuki, K., Anzai, T., Kamiya, Y., Aoki, K., Nakanishi, M., Satoh, T. and Kato, K. (2020) Improved secretion of glycoproteins using an N-glycan-restricted passport sequence tag recognized by cargo receptor. Nature Commun., 11, Article number: 1368
  2. George, G., Ninagawa, S., Yagi, H., Saito, T., Ishikawa, T., Sakuma, T., Yamamoto, T., Imami, K., Ishihama, Y., Kato, K., Okada, T. and Mori, K. (2020) EDEM2 stably disulfide-bonded to TXNDC11 catalyzes the first mannose trimming step in mammalian glycoprotein ERAD. eLife, 9, e53455

Kentaro Hanada(Department of Biochemistry & Cell Biology National Institute of Infectious Diseases)

  1. Tachida, Y., Kumagai, K., Sakai, S., Ando, S., Yamaji, T., and Hanada, K. (2020) Chlamydia trachomatis-infected human cells convert ceramide to sphingomyelin without sphingomyelin synthases 1 and 2. FEBS Lett., 594, 519-529. Doi: 10.1002/1873-3468.13632
  2. Hanada, K. (2020) Organelle contacts: sub-organelle zones to facilitate rapid and accurate inter-organelle trafficking of lipids. Traffic, 21, 189-196. Open access: https://doi.org/10.1111/tra.12716
  3. Morimoto, K., Suzuki, N., Tanida, I., Kakuta, S., Furuta, Y., Uchiyama, Y., Hanada, K., Suzuki, Y., and Yamaj, T. (2020) Blood group P1 antigen-bearing glycoproteins are functional but less efficient receptors of Shiga toxin than conventional glycolipid-based receptors. J. Biol. Chem., 295, 9490-9501. Open access: https://doi.org/10.1074/jbc.RA120.013926
  4. Goto, A., Mizuike, A., and Hanada, K. (2020) Sphingolipid metabolism occurring at the ER-Golgi contact zone and its impact on membrane trafficking. CONTACT, 3, 1-13. (A.G. and A.M. are co-first authors) Open access: https://journals.sagepub.com/doi/10.1177/2515256420959514
  5. Murakami, H., Tamura, N., Enomoto, Y., Shimasaki, K., Kurosawa, K., and Hanada, K. (2020) Intellectual disability-associated gain-of-function mutations in CERT1 that encodes the ceramide transport protein CERT. PLoS ONE, 15, e0243980. (H.M. and N.T. are co-first authors.) Open access: https://doi.org/10.1371/journal.pone.0243980

Hideki Nishitoh(Laboratory of Biochemistry and Molecular Biology, University of Miyazaki)

  1. Kato, H., Okabe, K., Miyake, M., Hattori, K., Fukaya, T., Tanimoto, K., Beini, S., Mizuguchi, M., Torii, S., Arakawa, S., Ono, M., Saito, Y., Sugiyama, T., Funatsu, T., Sato, K., Shimizu, S., Oyadomari, S., Ichijo, H., Kadowaki, H., Nishitoh, H. (2020) ER-resident sensor PERK is essential for mitochondrial thermogenesis in brown adipose tissue. Life Sci. Alliance DOI:10.26508/lsa.201900576

2019

Kaoru Katoh(Senior Researcher, Biomedical Research Institute National Institute of Advanced Industrial Sciences and Technology (AIST))

  1. Ishida K., Goto S., Ishimura M., Amanuma M., Hara Y., Suzuki R., Katoh K., Morita E. (2019)
    Functional Correlation between Subcellular Localizations of Japanese Encephalitis Virus Capsid Protein and Virus Production.
    J Virol 93:e00612-19. https://doi.org/10.1128/JVI.00612-19

  2. Morita, M, Ota, Y, Katoh, K, Noda, N (2019)  Bacterial Cell Culture at the Single-cell Level Inside Giant Vesicles.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, (146):10.3791/59555

  3. Tanaka, M., Fujii, Y., Hirano, K., Higaki, T., Nagasaki, A., Ishikawa, R., Okajima, T., Katoh, K (2019). Fascin in lamellipodia contributes to cell elasticity by controlling the orientation of filamentous actin.
    Genes to Cells . 24, p202-213,  https://doi.org/10.1111/gtc.12671

  4. Takata, H., Madung, M., Katoh, K., Fukui, K.(2019) Cdk1-dependent phosphorylation of KIF4A at S1186 triggers lateral chromosome compaction during early mitosis.
    PLoS One 13(12): e0209614  doi.org/10.1371/journal.pone.0209614

Yasushi Tamura(Faculty of Science, Yamagata University)

  1. Matsumoto S., Nakatsukasa K., Kakuta C., Tamura Y., Esaki M., and Endo T. (2019) Msp1 Clears Mistargeted Proteins by Facilitating Their Transfer from Mitochondria to the ER Mol. Cell., 76: 191-205.
  2. Wang C., Taki M., Sato Y., Tamura Y., Yaginuma H., Okada Y., and Yamaguchi S. (2019) A photostable fluorescent marker for the superresolution live imaging of the dynamic structure of the mitochondrial cristae PNAS., 116: 15817-15822.

Kazunori Imaizumi(Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University)

  1. Wu, Y., Kimura, Y., Okamoto, T., Matsuhisa, K., Asada, R., Saito, A., Sakaue, F., Imaizumi, K., and Kaneko, M. (2019) Inflammatory bowel disease-associated ubiquitin ligase RNF183 promotes lysosomal degradation of DR5 and TRAIL-induced caspase activation. Sci Rep, 9:20301.
  2. Maeoka, Y., Okamoto, T., Wu, Y., Saito, A., Asada, R., Matsuhisa, K., Terao, M., Takada, S., Masaki, T., Imaizumi, K., and Kaneko, M. (2019) Renal medullary tonicity regulates RNF183 expression in the collecting ducts via NFAT5. Biochem Biophys Res Commun, 514:436-442.
  3. Osaki, Y., Matsuhisa, K., Che, W., Kaneko, M., Asada, R., Masaki, T., Imaizumi, K., and Saito, A. (2019) Calnexin promotes the folding of mutant iduronate 2-sulfatase related to mucopolysaccharidosis type II. Biochem Biophys Res Commun, 514:217-223.
  4. Maeoka, Y., Wu, Y., Okamoto, T., Kanemoto, S., Guo, X. P., Saito, A., Asada, R., Matsuhisa, K., Masaki, T., Imaizumi, K., and Kaneko, M. (2019) NFAT5 up-regulates expression of the kidney-specific ubiquitin ligase gene Rnf183 under hypertonic conditions in inner-medullary collecting duct cells. J Biol Chem, 294:101-115.
  5. Ariyasu, D., Kubo, E., Higa, D., Shibata, S., Takaoka, Y., Sugimoto, M., Imaizumi, K., Hasegawa, T., and Araki, K. (2019) Decreased Activity of the Ghrhr and Gh Promoters Causes Dominantly Inherited GH Deficiency in Humanized GH1 Mouse Models.Endocrinology, 160:2673-

Hirokazu Yagi(Graduate School of Pharmaceutical Sciences, Nagoya City University)

  1. Yogo, R., Yamaguchi, Y., Watanabe, H., Yagi, H., Satoh, T., Nakanishi, M., Onitsuka, M., Omasa, T., Shimada,M., Maruno,T., Torisu, T., Watanabe, S., Higo, D., Uchihashi, T., Yanaka, S., Uchiyama, S., and Kato, K. (2019) The Fab portion of immunoglobulin G contributes to its binding to Fcγ receptor III. Sci. Rep., 9, Article number: 11957

  2. Yanaka, S., Yogo, R., Inoue, R., Sugiyama, M., Itoh, S.G., Okumura, H., Miyanoiri, Y., Yagi, H., Satoh, T., Yamaguchi, T. and Kato, K. (2019) Dynamic views of the Fc region of immunoglobulin G provided by experimental and computational observations. Antibodies, 8, 39
  3. Harada, Y., Kizuka, Y., Tokoro, Y., Kondo, K., Yagi, H., Kato, K., Inoue, H., Taniguchi, N. and Maruyama, I. (2019) N-glycome inheritance from cells to extracellular vesicles in B16 melanomas. FEBS Lett., 593, 942-951

  4. Narentuya, Y., Takeda-Uchimura, T., Foyez, Z., Zhang, T., Akama, O., Yagi, H., Kato, K., Komatsu, Y., Kadomatsu, K. and Uchimura, K. (2019) GlcNAc6ST3 is a keratan sulfate sulfotransferase for the protein- tyrosine phosphatase PTPRZ in the adult brain. Sci. Rep., 9, Article number: 4387

  5. Harada, Y., Suzuki, T., Fukushige, T., Kizuka, Y., Yagi, H., Yamamoto, M., Kondo, K., Inoue, H., Kato, K., Taniguchi, N., Kanekura, T., Dohmae, N. and Maruyama, I. (2019) Generation of the heterogeneity of extracellular vesicles by membrane organization and sorting machineries Biochim. Biophys. Acta –General Subjects, 1863, 681-691

Kentaro Hanada(Department of Biochemistry & Cell Biology National Institute of Infectious Diseases)

  1. Kumagai. K., and Hanada, K. (2019) Structure, functions, and regulation of CERT, a lipid-transfer protein for the delivery of ceramide at the ER-Golgi membrane contact sites, FEBS Let., 593, 2366-2377. (K.K. and K.H. are co-correspondence) doi: org/10.1002/1873-3468.13511. (invited review)
  2. Yamaji, T., Hanamatsu, H., Sekizuka, T., Kuroda, M., Ohnishi, M.,Furukawa, J., Yahiro, K., and Hanada, K. (2019) A CRISPR screen using subtilase cytotoxin identifies SLC39A9 as a glycan-regulating factor, iScience, 15, 407-420. doi: 10.1016/j.isci.2019.05.005.
  3. Nakao, N., Ueno, M., Sakai, S., Egawa, D., Hanzawa, H., Kawasaki, S., Kumagai, K., Suzuki, M., Kobayashi, S., and Hanada, K. (2019) Natural ligand-nonmimetic inhibitors to the lipid transfer protein CERT, Comms. Chem., 2, article 20. (N.N., M.U., and S.S. are co-first authors. S.K. and K.H. are co-correspondence) doi: 10.1038/s42004-019-0118-3 (open access: https://www.nature.com/articles/s42004-019-0118-3)
  4. Yamaji, T., Sekizuka, T., Tachida, Y., Sakuma, C., Kuroda, M., and Hanada, K. (2019) A CRISPR screen identifies LAPTM4A and TM9SF proteins as glycolipid-regulating factors, iScience, 11, 409-424. doi: org/10.1016/j.isci.2018.12.039.
  5. Shimizu, Y., Shirasago, Y., Suzuki, T., Hata, T., Kondoh, M., Hanada, K., Yagi, K., and Fukasawa, M. (2019) Characterization of monoclonal antibodies recognizing each extracellular loop domain of occluding, J Biochem, 166, 297-308. doi: 10.1093/jb/mvz037

Taroh Kinoshita(Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University)

  1. Wang, Y., Hirata, T., Maeda, Y., Murakami, Y., Fujita, M., and Kinoshita, T. (2019) Free, unlinked glycosylphosphatidylinositols on mammalian cell surfaces revisited. J. Biol. Chem., 294:5038-5049.
    https://www.ncbi.nlm.nih.gov/pubmed/30728244

  2. Sou, Y-S, Kakuta, S., Kamikubo, Y., Niisato, K., Sakurai, T., Parajuli, L. K., Tanida, I., Saito, H., Suzuki, N., Sakimura, K., Maeda, Y., Kinoshita, T., Uchiyama, Y., and Koike, M. (2019) Cerebellar neurodegeneration and neuronal circuit remodeling in Golgi pH regulator-deficient mice. eNeuro, 6(3): e0427-18.2019.
    https://www.ncbi.nlm.nih.gov/pubmed/31118204

  3. Murakami, Y.,* Nguyen*, T. T. M., Baratang, N., Raju, P. K., Knaus, A., Ellard, S., Jones, G., Lace, B., Rousseau, J., Ajeawung, N. F., Kamei, A., Minase, G., Akasaka, M., Araya, N., Koshimizu, E., van den Ende, J., Erger, F., Altmüller, J., Krumina, Z., Strautmanis, J., Inashkina, I., Stavusis, J., El-Gharbawy, A., Sebastian, J., Dua Puri, R., Kulshrestha, S., Verma, I. C., Maier, E. M., Haack, T., Israni, A., Baptista, J., Gunning, A., Rosenfeld, J. A., Liu, P., Joosten, M., Rocha, M. E., Hashem, M. O., Aldhalaan, H. M., Alkuraya, F. S., Miyatake, S., Matsumoto, N., Krawitz, P., Rossignol, E., Kinoshita, T., and Campeau, P. M. (2019) Mutations in PIGB cause an inherited GPI biosynthesis defect with an axonal neuropathy and metabolic abnormality in severe cases. Am. J. Hum. Genet., 105:384-394.
    https://www.ncbi.nlm.nih.gov/pubmed/31256876

  4. Knaus, A., Kortüm, F., Kleefstra, T., Stray-Pedersen, A., Dukić, D., Murakami, Y., Gerstner, T., van Bokhoven, H., Iqbal, Z., Horn, D., Kinoshita, T., Hempel, M., and Krawitz, P, M. (2019) Mutations in PIGU impair the function of the GPI transamidase complex causing severe intellectual disability, epilepsy and brain anomalies. Am. J. Hum. Genet., 105:395-402.
    https://www.ncbi.nlm.nih.gov/pubmed/31353022

  5. Hoechsmann, B.*, Murakami, Y. *, Osato, M. *, Knaus, A., Kawamoto, M., Inoue, N., Hirata, T., Murata, S., Anliker, M., Eggermann, T., Jaeger, M., Floettmann, R., Hoellein, A., Murase, S., Ueda, Y., Nishimura, J., Kanakura, Y., Kohara, N., Schrezenmeier, H.+, Krawitz, P. M.+, and Kinoshita, T. + (2019) Complement and inflammasome overactivation mediates paroxysmal nocturnal hemoglobinuria with autoinflammation. J. Clin. Invest.,129:5123-5136. doi: 10.1172/JCI123501
    https://www.ncbi.nlm.nih.gov/pubmed/31430258

  6. Thompson, M., Knaus, A., Caliebe, A., Muhle, H., Nguyen, M., Baratang, N., Kinoshita, T., Percy, M., Campeau, P., Murakami, Y., Krawitz, P., Cole, D., and Mabry, C. (2019) A post glycosylphosphatidylinositol (GPI) attachment to proteins, type 2 (PGAP2) variant identified in Mabry syndrome index cases: molecular genetics of the prototypical inherited GPI disorder. Eur. J. Med. Genet., in press.
    https://doi.org/10.1016/j.ejmg.2019.103822

Toyomasa Katagiri(Division of Genome Medicine, Institute for Genome Research, Tokushima University)

  1. Kimura R, Yoshimaru T, Matsushita Y, Matsuo T, Ono M, Park JH, Sasa M, Miyoshi Y, Nakamura Y, *Katagiri T
    The GALNT6-LGALS3BP axis promotes breast cancer cell growth. Int J Oncol., in press.

Hiderou Yoshida(Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo

  1. Jamaludin, M. I., Wakabayashi S., Sasaki K., Komori R., Kawamura H., Takase H., Sakamoto M., Yoshida H. (2019) MGSE regulates crosstalk from the mucin pathway to the TFE3 pathway of the Golgi stress response. Cell Struct Funct. in press.
  2. Kimura M, Sasaki K, Fukutani Y, Yoshida H, Ohsawa I, Yohda M, Sakurai K. (2019) Anticancer saponin OSW-1 is a novel class of selective Golgi stress inducer, Bioorg Med Chem Lett. 29, 1732-1736. doi: 10.1016/j.bmcl.2019.05.022s
  3. Sasaki K, Yoshida H. (2019) Organelle Zones, Cell Struct Funct. 44, 85-94. doi: 10.1247/csf.19010
  4. Sasaki K, Yoshida H. (2019) Golgi stress response and organelle zones, FEBS Lett., in press. doi: 10.1002/1873-3468.13554
  5. Sasaki K, Komori R, Taniguchi M, Shimaoka A, Midori S, Yamamoto M, Okuda C, Tanaka R, Sakamoto M, Wakabayashi S, Yoshida H. (2019) PGSE Is a Novel Enhancer Regulating the Proteoglycan Pathway of the Mammalian Golgi Stress Response, Cell Struct Funct. 44, 1-19. doi: 10.1247/csf.18031.

Hideki Nishitoh(Laboratory of Biochemistry and Molecular Biology, University of Miyazaki)

  1. Tatenaka, Y., Kato, H., Ishiyama, M., Sasamoto, K., Shiga, M., Nishitoh, H., Ueno, Y. (2019) Monitoring lipid droplet dynamics in living cells by using fluorescent probes. Biochemistry 58:499-503.
  2. Nishitoh, H. (2019) Paradigm shift from “Compartment” to “Zone” in the understanding of organelles. J Biochem. 165, 97–99.
  3. Kadowaki, H. and Nishitoh, H. (2019) Endoplasmic reticulum quality control by garbage disposal. FEBS J. 286:232-240.

Akihiko Nakano(RIKEN Center for Advanced Photonics, Live Cell Super-Resolution Imaging Research Team)

  1. Ishii, A., Kurokawa, K., Hotta, M., Yoshizaki, S., Kurita, M., Koyama, A., Nakano, A., and Kimura, Y. (2019). Role of Atg8 in the regulation of vacuolar membrane invagination. Sci. Rep. 9:14828.
  2. Shimada, T. L., Shimada, T., Okazaki, Y., Higashi, Y., Saito, K., Kuwata, K., Oyama, K., Kato, M., Ueda, H., Nakano, A., Ueda, T., Takano, Y., and Hara-Nishimura, I. (2019). HIGH STEROL ESTER 1 is a key factor in plant sterol homeostasis. Nat. Plants 5:1154-1166.
  3. Tojima, T., Suda, Y., Ishii, M., Kurokawa, K., and Nakano, A. (2019). Spatiotemporal dissection of the trans-Golgi network in budding yeast. J. Cell Sci. 132:jcs231159.
  4. Maeda, M., Kurokawa, K., Katada, T., Nakano, A., and Saito, K. (2019). COPII proteins exhibit distinct subdomains within each ER exit site for executing their functions. Sci. Rep. 9:7346.
  5. Shimada, T. L., Betsuyaku, S., Inada, N., Ebine, K., Fujimoto, M., Uemura, T., Takano, Y., Fukuda, H., Nakano, A., and Ueda, T. (2019). Enrichment of phosphatidylinositol 4,5-bisphosphate in the extra-invasive hyphal membrane promotes Colletotrichum infection of Arabidopsis thaliana. Plant Cell Physiol. 60:1514-1524.
  6. Abe, M., Kosaka, S., Shibuta, M., Nagata, K., Uemura, T., Nakano, A., and Kaya, H. (2019). Transient activity of the florigen complex during the floral transition in Arabidopsis thaliana. Development 146:dev171504.

  7. Kurokawa, K., Osakada, H., Kojidani, T., Waga, M., Suda, Y., Asakawa, H., Haraguchi, T., and Nakano, A. (2019). Visualization of secretory cargo transport within the Golgi apparatus in living yeast cells. J. Cell Biol. 218:1602-1618.
  8. Nakano, A. and von Blume, J. (2019). Organelle zones. Mol. Biol. Cell 30:731.
  9. Uemura, T., Nakano, R. T., Takagi, J., Wang, Y., Kramer, K., Finkemeier, I., Nakagami, H., Tsuda, K., Ueda, T., Schulze-Lefert, P., and Nakano,A. (2019). A Golgi-released subpopulation of the trans-Golgi network mediates protein secretion in Arabidopsis. Plant Physiol. 179:519-532.
  10. Kurokawa, K., and Nakano, A. (2019) The ER exit sites are specialized ER zones for the transport of cargo proteins from the ER to the Golgi apparatus. J Biochem. 165, 109–114.

Masanori Izumi(Frontier Research Institute for Interdisciplinary Sciences, Tohoku University)

  1. Izumi, M., Nakamura, S., Li, N. (2019) Autophagic turnover of chloroplasts: its roles and regulatory mechanisms in response to sugar starvation. Front. Plant Sci. 10: 280

  2. Nakamura, S., Izumi, M. (2019) Chlorophagy is ATG gene-dependent microautophagy process, Plant Signal. Behav. 14: 1554469

  3. Izumi, M., Ishida, H. (2019) An additional role for chloroplast proteins—an amino acid reservoir for energy production during sugar starvation, Plant Signal. Behav. 14: 1552057

Shin-Ichiroh Saitoh(Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo)

  1. Saitoh, SI., Saitoh, YM., Kontani, K., Sato, K., Miyake, K. (2019) ADP-ribosylation factor-like 8b is required for the development of mouse models of systemic lupus erythematosus. International Immunology. 31(4):225-37. doi: 10.1093/intimm/dxy084. PubMed PMID: 30753473.
  2. Furusho, K., Shibata, T., Sato, R., Fukui, R., Motoi, Y., Zhang, Y., Saitoh, SI., Ichinohe, T., Moriyama, M., Nakamura, S., Miyake, K. (2019)  Cytidine deaminase enables Toll-like receptor 8 activation by cytidine or its analogs. International Immunology. 31: 167-173. doi: 10.1093/intimm/dxy075. PubMed PMID: 30535046.

Yasushi Tamura(Faculty of Science, Yamagata University)

  1. Tamura, Y., Kojima, R., Endo, T. (2019) Advanced In Vitro Assay System to Measure Phosphatidylserine and Phosphatidylethanolamine Transport at ER/Mitochondria Interface. In: Drin G. (eds) Intracellular Lipid Transport. Methods Mol. Biol. vol 1949. Humana Press, New York, NY

  2. Sakaue, H., Shiota, T., Ishizaka, N., Kawano, S., Tamura, Y., Tan, KS., Imai, K., Motono, C., Hirokawa, T., Taki, K., Miyata, N., Kuge, O., Lithgow, T., and Endo, T. (2019) Porin Associates with Tom22 to Regulate the Mitochondrial Protein Gate Assembly Mol. Cell, 73, 1044–1055

  3. Sawasato, K., Sato, R., Nishikawa, H., Iimura, N., Kamemoto, Y., Fujikawa, K., Yamaguchi, T., Kuruma, Y., Tamura, Y., Endo, T., Ueda, T., Shimamoto, K. and Nishiyama, K. (2019) CdsA is involved in biosynthesis of glycolipozyme MPIase essential for membrane protein integration in vivo. Sci. Rep., 9, Article number: 1372

  4. Ueda, E., Tamura, Y., Sakaue, H., Kawano, S., Kakuta, C., Matsumoto, S., and Endo, T. (2019) Myristoyl group-aided protein import into the mitochondrial intermembrane space. Sci. Rep., 9, Article number: 1185.
  5. Kojima, R., Kakimoto, Y., Furuta, S., Itoh, K., Sesaki, H., Endo, T., and Tamura, Y. (2019) Maintenance of Cardiolipin and Crista Structure Requires Cooperative Functions of Mitochondrial Dynamics and Phospholipid Transport. Cell Rep., 26, 518–528.
  6. Tashiro, S. Caaveiro, J. Nakakido, M. Tanabe, A. Nagatoishi, S. Tamura, Y. Matsuda, N. Liu, D. Hoang, Q. and Tsumoto, K. (2018). Discovery and Optimization of Inhibitors of the Parkinson’s Disease Associated Protein DJ-1. ACS. Chem. Biol., 13(9):2783-2793. doi: 10.1021/acschembio.8b00701.

  7. Tamura, Y., Kawano, S., and Endo T. (2019) Organelle contact zones as sites for lipid transfer. J Biochem. 165, 115–123.

Shigeomi Shimizu(Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University)

  1. Shimizu, S. (2019) Organelle zones in mitochondria. J Biochem. 165, 101–107.

2018

Kaoru Katoh(Senior Researcher, Biomedical Research Institute National Institute of Advanced Industrial Sciences and Technology (AIST))

  1. Kijima, S. Staiger, C., Katoh, K., Nagasaki, A., Ito, K., and Uyeda, T. (2018)  Arabidopsis vegetative actin isoforms, AtACT2 and AtACT7, generate distinct filament arrays in living plant cells. Sci Rep., 8:4381 | DOI:10.1038/s41598-018-22707-w.
  2. Ito, N., Katoh, K., Kushige, H., Saito, Y., Umemoto, T., Matsuzaki, Y., Kiyonari, H., Kobayashi, D., Soga, M., Era, T., Araki, N., Furuta, Y., Suda, T., Kida, Y., and Ohta K. (2018) Ribosome Incorporation into Somatic Cells Promotes Lineage Transdifferentiation towards Multipotency. Sci Rep. 8, 1634 | DOI:10.1038/s41598-018-20057-1

Kazunori Imaizumi(Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University)

  1. Saito, A. and Imaizumi, K. (2018) Unfolded Protein Response-Dependent Communication and Contact among Endoplasmic Reticulum, Mitochondria and Plasma Membrane.Int J Mol Sci, 19:3215.
  2. Osaki, Y., Saito, A., Kanemoto, S., Kaneko, M., Matsuhisa, K., Asada, R., Masaki, T., Orii, K., Fukao, T., Tomatsu, S., and Imaizumi, K. (2018) Shutdown of ER-associated degradation pathway rescues functions of mutant iduronate 2-sulfatase linked to mucopolysaccharidosis type II. Cell Death Dis, 9:808.
  3. Ohtake, Y., Matsuhisa, K., Kaneko, M., Kanemoto, S., Asada, R., Imaizumi, K., and Saito, A. (2018) Axonal Activation of the Unfolded Protein Response Promotes Axonal Regeneration Following Peripheral Nerve Injury.Neuroscience, 375:34-48.
  4. Wu, Y., Guo, X. P., Kanemoto, S., Maeoka, Y., Saito, A., Asada, R., Matsuhisa, K., Ohtake, Y., Imaizumi, K., and Kaneko, M. (2018) Sec16A, a key protein in COPII vesicle formation, regulates the stability and localization of the novel ubiquitin ligase RNF183. Plos One, 13:e0190407.
  5. Saito, A., Cai, L., Matsuhisa, K., Ohtake, Y., Kaneko, M., Kanemoto, S., Asada, R., and Imaizumi, K. (2018) Neuronal activity-dependent local activation of dendritic unfolded protein response promotes expression of brain-derived neurotrophic factor in cell soma.J Neurochem, 144:35-49.

Hirokazu Yagi(Graduate School of Pharmaceutical Sciences, Nagoya City University)

  1. Yagi, H., Takakura, D., Roumenina, L.T., Fridman, W.H., Sautès-Fridman, C., Kawasaki, N. and Kato, K. (2018) Site-specific N-glycosylation analysis of soluble Fcγ receptor IIIb in human serum. Sci. Rep., 8, Article number: 2719

  2. Yagi, H., Yan, G., Suzuki, T., Tsuge, S., Yamaguchi, T. and Kato, K. Lewis X-carrying neoglycolipids evoke selective apoptosis in neural stem cells (2018) Neurochem. Res., 43, 212-218

Yasushi Tamura(Faculty of Science, Yamagata University)

  1. Tashiro, S. Caaveiro, J. Nakakido, M. Tanabe, A. Nagatoishi, S. Tamura, Y. Matsuda, N. Liu, D. Hoang, Q. and Tsumoto, K. (2018). Discovery and Optimization of Inhibitors of the Parkinson’s Disease Associated Protein DJ-1. ACS. Chem. Biol., 13(9):2783-2793. doi: 10.1021/acschembio.8b00701.

  2. Kakimoto,Y.,  Tashiro, S., Kojima, R., Morozumi, Y., Endo, T., and Tamura, Y. (2018) Visualizing multiple inter-organelle contact sites using the organelle-targeted split-GFP system. Sci. Rep., 8, 6175. DOI:10.1038/s41598-018-24466-0

  3. Endo, T., and Tamura, Y. (2018) News and Views;  Shuttle mission in the mitochondrial intermembrane space.  EMBO J. e98993

Akihiko Nakano(RIKEN Center for Advanced Photonics, Live Cell Super-Resolution Imaging Research Team)

  1. Muro, K., Matsuura-Tokita, K., Tsukamoto, R., Kanaoka, M. M., Ebine, K., Higashiyama, T., Nakano, A., and Ueda, T. (2018) ANTH domain-containing proteins are required for the pollen tube plasma membrane integrity via recycling ANXUR kinases. Commun. Biol. 1:152.
  2. Ishikawa, K., Tamura, K., Ueda, H., Ito, Y., Nakano, A., Hara-Nishimura, I., and Shimada, T. (2018) The synaptotagmin-associated ER-plasma membrane contact sites are distributed to immobile ER tubules. Plant Physiol. 178:641-653.

  3. Haraguchi, T., Ito, K., Duan, Z., Sa, R., Takahashi, K., Shibuya, Y., Hagino, N., Miyatake, Y., Nakano, A., and Tominaga, M. (2018) Functional diversity of class XI myosins in Arabidopsis thalianaPlant Cell Physiol. 59:2268-2277.

  4. Ishii, M., Lupashin, V. V., and Nakano, A. (2018). Detailed analysis of the interaction of yeast COG complex. Cell Struct. Funct. 43:119-127.

  5. Ito, E., Ebine, K., Choi, S.-W., Ichinose, S., Uemura, T., Nakano, A., and Ueda, T. (2018). Integration of two RAB5 groups during endosomal transport in plants. eLife 7:e34064.

  6. Minamino, N., Kanazawa, T., Era, A., Ebine, K., Nakano, A., and Ueda, T. (2018) RAB GTPases in the basal land plant Marchantia polymorpha. Plant Cell Physiol. 59:845-856.

  7. Tanabashi, S., Shoda, K., Saito, C., Sakamoto, T., Kurata, T., Uemura, T., and Nakano, A. (2018) A missense mutation in the NSF gene causes abnormal Golgi morphology in Arabidopsis thaliana. Cell Struct. Funct. 43:41-51.

  8. Takemoto, K., Ebine, K., Askani, J. C., Goh, T., Schumacher, K.,Nakano, A., and Ueda, T. (2018) Distinct sets of tethering complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at the vacuole in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 115:E2457-E2466.

  9. Suda, Y., Kurokawa, K., and Nakano, A. Regulation of ER-Golgi transport dynamics by GTPases in budding yeast. Frontiers Cell Dev. Biol. 5:122.

  10. Suda, Y., Tachikawa, H., Inoue, I., Kurita, T., Saito, C., Kurokawa, K., Nakano, A., and Irie, K. (2018) Activation of Rab GTPase Sec4 by its GEF Sec2 is required for prospore membrane formation during sporulation in yeast Saccharomyces cerevisiae. FEMS Yeast Res. 18:fox095.

  11. Sanchez-Rodriguez, C., Shi, Y., Kesten, C., Zhang, D., Sancho-Andrés, G., Ivakov, A., Lampugnani, E. R., Sklodowski, K., Fujimoto, M., Nakano, A., Bacic, A., Wallace, I. S., Ueda, T., van Damme, D., Zhou, Y., and Persson, S. (2018) The cellulose synthases are cargo of the TPLATE adaptor complex. Mol. Plant 11:346-349.

  12. Ito, Y., Uemura, T., and Nakano, A. (2018) Golgi Entry Core Compartment functions as the COPII-independent scaffold for ER-Golgi transport in plant cells. J. Cell Sci. 131:jcs203893.

Hideki Nishitoh(Laboratory of Biochemistry and Molecular Biology, University of Miyazaki)

  1. Kadowaki, H., Satrimafitrah, P., Takami, Y. and Nishitoh, H. (2018) Molecular mechanism of ER stress-induced pre-emptive quality control involving association of the translocon, Derlin-1, and HRD1. Sci. Rep., 8, 7317 | DOI:10.1038/s41598-018-25724-x

Shigeomi Shimizu(Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University)

  1. Shimizu, S. (2018) Organelle zones in mitochondria. J Biochem. in press.
  2. Yamaguchi, T., Suzuki, T., Sato, T., Takahashi, A., Watanabe, H., Kadowaki, A., Natsui, M., Inagaki, H., Arakawa, S., Nakaoka, S., Koizumi, Y., Seki, S., Adachi, S., Fukao, A., Fujiwara, T., Natsume, T., Kimura, A., Komatsu, M., Shimizu, S., Ito, H., Suzuki, Y., Penninger, J. M., Yamamoto, T., Ima Y. and Kuba, K. (2018) The CCR4-NOT deadenylase complex controls Atg7-dependent cell death and heart function. Scientific Signaling, 6, 11(516).
  3. Iwashita, H., Tajima Sakurai, H., Nagahora, N., Ishiyama, M., Shioji, K., Sasamoto, K., Okuma, K., Shimizu, S. and Ueno, Y. (2018) Small Fluorescent molecules for monitoring autophagic flux. FEBS Lett. 592, 559-567.
  4. Nagata, M., Arakawa, S., Yamaguchi, H., Torii, S., Endo, H., Tsujioka, M., Honda, S., Nishida, Y., Konishi, A. and Shimizu, S. (2018) Dram1 regulates DNA damage-induced alternative autophag Cell Stress 2, 55-65.
  5. Shimizu, S. (2018) Biological Roles of Alternative Autophagy. Mol Cells, 41, 50-54.
  6. Fujikake, N., Shin, M. and Shimizu, S. (2018) Association between autophagy and neurodegenerative diseases. Frontiers in Neuroscience, in press

Satoshi Goto(Department of Life Science, College of Science, Rikkyo University)

  1. Nuclear envelope localization of PIG-B is essential for GPI-anchor synthesis in Drosophila.
    Yamamoto-Hino.M., Katsumata, E., Suzuki, E., Maeda, Y., Kinoshita, T. and Goto, S.
    J. Cell Sci., 131, jcs218024 (2018)
    DOI: 10.1242/jcs.218024

Taroh Kinoshita(Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University)

  1. Nuclear envelope localization of PIG-B is essential for GPI-anchor synthesis in Drosophila.
    Yamamoto-Hino.M., Katsumata, E., Suzuki, E., Maeda, Y., Kinoshita, T. and Goto, S.
    J. Cell Sci., 131, jcs218024 (2018)
    DOI: 10.1242/jcs.218024
  2. Kinoshita, T. (2018) Congenital defects in the expression of the glycosylphosphatidylinositol-anchored complement regulatory proteins CD59 and decay-accelerating factor. Semin. Hematol., 55:136-140.

  3. Mogami, Y., Suzuki, Y., Murakami, Y., Ikeda, T., Kimura, S., Yanagihara, K., Okamoto, N., and Kinoshita, T. (2018) Early infancy-onset stimulation-induced myoclonic seizures in three siblings with inherited glycosylphosphatidylinositol (GPI) anchor deficiency. Epileptic Disord., 20:42-50.

  4. Pagnamenta, A. T. *, Murakami, Y. *, Anzilotti, C., Titheradge, H., Oates, A. J., Morton, J., The DDD Study, Kinoshita, T.+, Kini, U.+, and Taylor, J. C.+. (2018) A homozygous variant disrupting the PIGH start-codon is associated with developmental delay, epilepsy and microcephaly. Hum. Mutat., 39:822-826. (* and +, equal contribution)

  5. Yoko-o, T., Umemura, M., Komatsuzaki, A., Ikeda, K., Ichikawa, D., Takase, K., Kanzawa, N., Saito, K., Kinoshita, T., Taguchi, R., and Jigami, Y. (2018) Lipid moiety of glycosylphosphatidylinositol-anchored proteins contributes to the determination of their final destination in yeast. Genes Cells, 23:880-892.

  6. Kawamoto, M., Murakami, Y., Kinoshita, T., and Kohara, N. (2018) Recurrent aseptic meningitis with PIGT mutations: a novel pathogenesis of recurrent meningitis successfully treated by eculizumab. BMJ Case Rep., pii: bcr-2018-225910.

  7. Nguyen, T. T. M., Murakami, Y., Wigby, K. M., Baratang, N. V., St-Denis, A., Rosenfeld, J. A., Laniewski, S. C., Jones, J., Iglesias, A. D., Jones, M. C., Masser-Frye, D., Scheuerle, A. E., Taft, R. J., Le Deist, F., Thompson, M., Kinoshita, T., and Campeau, P. M. (2018) Mutations in PIGS, encoding a GPI transamidase, cause a neurological syndrome ranging from fetal akinesia to epileptic encephalopathy. Am. J. Hum. Genet., 103:602-611.

  8. Yamamoto-Hino, M., Katsumata, E., Suzuki, E., Maeda, Y., Kinoshita, T., and Goto, S. (2018) Nuclear envelope localization of PIG-B is essential for GPI anchor synthesis in Drosophila. J. Cell Sci., 131: pii: jcs218024.

Shin-Ichiroh Saitoh(Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo)

  1. Sato, R., Kato, A., Chimura, T., Saitoh,S., Shibata, T., Murakami, Y., Fukui, R., Liu, K., Zhang, Y., Arii, J., Sun-Wada, GH., Wada, Y., Ikenoue, T., Barber, GN., Manabe, T., Kawaguchi, Y., Miyake, K. (2018) Combating herpesvirus encephalitis by potentiating a TLR3-mTORC2 axis. Nature Immunology. Sep 10, doi: 10.1038/s41590-018-0203-2. 

Masaya Ono(Department of Clinical Proteomics, National Cancer Center Research Institute)

  1. Ono, M., Lai, K. K. Y., Wu, K., Nguyen, C., Lin, D. P., Murali, R., Kahn, M. (2018) Nuclear receptor/Wnt beta-catenin interactions are regulated via differential CBP/p300 coactivator usage. PLoS One., e0200714.
    http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200714

Masanori Izumi(Frontier Research Institute for Interdisciplinary Sciences, Tohoku University)

  1. Nakamura, S., Hidema, J., Ishida, H., Sakamoto, W., Izumi, M. (2018) Selective elimination of membrane-damaged chloroplasts via microautophagy, Plant Physiol. 177, 1007-1026.
  2. Nakamura, S., and Izumi, M. (2018) Regulation of chlorophagy during photoinhibition and senescence: Lessons from mitophagy. Plant Cell Physiol. 59, 1135-1143

Kentaro Hanada(Department of Biochemistry & Cell Biology
National Institute of Infectious Diseases)

  1. Sakuma, C., Sekizuka, T., Kuroda, M., Kasai, F., Saito, K., Ikeda, M., Yamaji, T., Osada, N., and Hanada, K. (2018) Novel endogenous simian retroviral integrations in Vero cells: implications for quality control of a human vaccine cell substrate. Sci. Rep., 8, 644. (CS and TS are co-first authors. NO and KH are co-correspondence)
  2. Otsuki, N., Sakata, M., Saito, K., Okamoto, K., Mori, Y., Hanada, K., Takeda, M. (2018) Both sphingomyelin and cholesterol in the host cell membrane are essential for Rubella virus entry. J. Virol., 92, e01130-17. (K.H. and M.T. are co-correspondence. This article was selected as Spotlight of the issue)
  3. Shimasaki, K., Watanabe-Takahash, M., Umeda, M., Funamoto, S., Saito, Y., Noguchi, N., Kumagai, K., Hanada, K., Tsukahara, F., Maru, Y., Shibata, N., Naito, M., and Nishikawa, K. (2018) Pleckstrin homology domain of p210 BCR-ABL interacts with cardiolipin to regulate its mitochondrial translocation and subsequent mitophagy. Genes Cells, 23, 22-34.
  4. Shimizu, Y., Shirasago, Y., Kondoh, M., Suzuki, T., Wakita, T., Hanada, K., Yagi, K., and Fukasawa, M. (2018)  Monoclonal antibodies against occludin completely prevented hepatitis C virus infection in a mouse model. J. Virol., 92, e02258-17.
  5. Sugiki, T., Egawa, D., Kumagai, K., Kojima, C., Fujiwara, T., Takeuchi, K., Shimada, I., Hanada, K., and Takahashi, H. (2018) Phosphoinositide binding by the PH domain in ceramide transfer protein (CERT) is inhibited by hyperphosphorylation of an adjacent serine-repeat motif. J. Biol. Chem., 293(28), 11206-11217. (T.S. and D.E. are co-first authors. K.H. and H.T. are co-correspondence)
  6. Ikeda, M., Satomura, K., Sekizuka,T., Hanada, K., Endo, T., and Osada, N. (2018) Comprehensive phylogenomic analysis reveals a novel cluster of simian endogenous retroviral sequences in Colobinae monkeys. Am. J. Primatol., 80(7), e22882.
  7. Hanada, K. (2018) Lipid transfer proteins rectify inter-organelle flux and accurately deliver lipids at membrane contact sites (Invited review). J. Lipid Res., 59(8), 1341-1366.
  8. Shirasago, Y., Fukazawa, H., Aizaki, H., Suzuki, T., Suzuki, T., Sugiyama, K., Wakita, T., Hanada, K., Abe, R., and Fukasawa, M. (2018) Thermostable hepatitis C virus JFH1-derived variant isolated by adaptation to Huh7.5.1 cells. J. Gen. Virol., 99(10), 1407-1417.
  9. Kumagai, K., Elwell, CA., Ando, S., Engel, JN. and Hanada, K. (2018) Both the N- and C- terminal regions of the Chlamydial inclusion protein D (IncD) are required for interaction with the pleckstrin homology domain of the ceramide transport protein CERT. Biochem Biophys Res Commun., 505(4), 1070-1076. (K.K. and K.H. are co-correspondence)

Tomotake Kanki(Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Scienc)

  1. Furukawa, K., Fukuda, T., Yamashita, SI., Saigusa, T., Kurihara, Y., Yoshida, Y., Kirisako, H., Nakatogawa, H., Kanki, T. (2018) The PP2A-like Protein Phosphatase Ppg1 and the Far Complex Cooperatively Counteract CK2-Mediated Phosphorylation of Atg32 to Inhibit Mitophagy. Cell Rep., 23(12):3579-3590.

Kazunori Imaizumi(Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University)

  1. Ohtake Y, Matsuhisa K, Kaneko M, Kanemoto S, Asada R, Imaizumi K, and Saito A. (2018) Axonal Activation of the Unfolded Protein Response Promotes Axonal Regeneration Following Peripheral Nerve Injury. Neuroscience, 375:34-48.
  2. Wu Y, Guo XP, Kanemoto S, Maeoka Y, Saito A, Asada R, Matsuhisa K, Ohtake Y, Imaizumi K, and Kaneko M. (2018) Sec16A, a key protein in COPII vesicle formation, regulates the stability and localization of the novel ubiquitin ligase RNF183. Plos One, 13: e0190407.
 

Isao Naguro(Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo)

  1. Imamura, K., Yoshitane, H., Hattori, K., Yamaguchi, M., Yoshida, K., Okubo, T., Naguro, I., Ichijo, H. and Fukada, Y. (2018) ASK family kinases mediate cellular stress and redox signaling to circadian clock.  Natl. Acad. Sci. U.S.A.in press
  2. Watanabe, K., Umeda, T., Niwa, K., Naguro, I. and Ichijo, H.(2018)A PP6-ASK3 module coordinates the bidirectional cell volume regulation under osmotic stress. Cell Rep. 13, 2809-2817.
  3. Kamiyama, M., Naguro, I. and Ichijo, H.  (2018) mASKing cancer cells in a tumor microenvironment. Cell Cyclein press

Toyomasa Katagiri(Division of Genome Medicine, Institute for Genome Research, Tokushima University)

  1. Daizumoto, K., Yoshimaru, T., Matsushita, Y., Fukawa, T., Uehara, H., Ono, M., Komatsu, M., Kanayama, H., and Katagiri, T. (2018) A DDX31/mutant-p53/EGFR axis promotes multistep progression of muscle invasive bladder cancer. Cancer Res. in press.
  2. Miyagawa, Y., Matsushita, Y., Suzuki, , Komatsu, M., Yoshimaru, T., Kimura, R., Yanai, A., Honda, J., Tangoku, A., Sasa, M., Miyoshi, Y., and Katagiri, T. (2018) Frequent downregulation of LRRC26by epigenetic alterations is involved in the malignant progression of triple-negative breast cancers. Int J Oncol. in press.

After July 2017

Kazunori Imaizumi(Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University)

  1. Saito, A. and Imaizumi, K. (2017) The Broad Spectrum of Signaling Pathways Regulated by Unfolded Protein Response in Neuronal Homeostasis. Neurochem Int, 119:26-34.
  2. Imaizumi, K. (2017) 60th Anniversary of the Japanese Society for Neurochemistry. J Neurochem, 141:788-789.
  3. Kaneko, M., Imaizumi, K., Saito, A., Kanemoto, S., Asada, R., Matsuhisa, K., and Ohtake, Y. (2017) ER Stress and Disease: Toward Prevention and Treatment. Biol Pharm Bull, 40:1337-1343.

Mie Shimojima(School of Life Science and Technology, Tokyo Institute of Technology)

  1. Yoshitake Y, Sato R, Madoka Y, Ikeda K, Murakawa M, Suruga K, Sugiura D, Noguchi K, Ohta H, Shimojima M. (2017) Arabidopsis phosphatidic acid phosphohydrolases are essential for growth under nitrogen-depleted conditions. Front Plant Sci. 8, 1847

Akihiko Nakano(RIKEN Center for Advanced Photonics, Live Cell Super-Resolution Imaging Research Team)

  1. Yamagami, A., Saito, C., Sakuta, M., Shinozaki, M., Osada, H., Nakano, A., Asami, T., and Nakano, T. (2017) Brassinosteroids regulate vacuolar morphology in root meristem cells of ArabidopsisthalianaPlant Signal. Behav. 13: e1417722
  2. Yamagami, A., Saito, C., Nakazawa, M., Fujioka, S., Uemura, T., Matsui, M., Sakuta, M., Shinozaki, K., Osada, H., Nakano, A., Asami, T., and Nakano, T. (2017) Evolutionarily conserved BIL4 suppresses the degradation of brassinosteroid receptor BRI1 and regulates cell elongation. Sci. Rep. 7, 5739
    https://www.ncbi.nlm.nih.gov/pubmed/28720789
  3. Kobayashi, K., Suemasa, F., Sagara, H., Nakamura, S., Ino, Y., Kobayashi, K., Hiramatsu, H., Haraguchi, T., Kurokawa, K., Todo, T., Nakano, A., and Iba, H. (2017) MiR-199a inhibits secondary envelopment of herpes simplex virus-1 through the downregulation of Cdc42-specific GTPase activating protein localized in Golgi apparatus. Sci. Rep. 7, 6650
    https://www.ncbi.nlm.nih.gov/pubmed/28751779

Kentaro Hanada(Department of Biochemistry & Cell Biology
National Institute of Infectious Diseases)

  1. Tóth, E. A., Oszvald, Á., Péter, M., Balogh, G., Osteikoetxea-Molnár, A., Bozó, T., Szabó-Meleg, E., Nyitrai, M., Derényi, I., Yamaji, T., Hanada, K., Vígh, L., Matkó, J. (2017) Nanotubes connecting B lymphocytes: High impact of differentiation-dependent lipid composition on their growth and mechanics. Biochim. Biophys. Acta, 1862, 991-1000.
  2. Hanada, K. (2017) Ceramide transport from the endoplasmic reticulum to the trans Golgi region at organelle membrane contact sites.  In: Tagaya, M., Simmen, T. (eds) Organelle Contact Sites. Adv. Exp. Med. Biol., 997, 69-81, Springer, Singapore

Shigeomi Shimizu(Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University)

  1. Arakawa, S., Tsujioka, M., Yoshida, T., Tajima-Sakurai, H., Nishida, Y., Matsuoka, Y., Yoshino, I., Tsujimoto, Y. and Shimizu, S. (2017) Role of Atg5-dependent cell death in the embryonic development of Bax/Bak double-knockout mice. Cell Death Differ., 24,1598-1608.
  2. Asano, J., Sato, T., Ichinose, S., Kajita, M., Onai, N., Shimizu, S. and Ohteki, T., (2017) Intrinsic autophagy is required for the maintenance of intestinal stem cells and for irradiation-induced intestinal regeneration. Cell Rep., 20, 1050–1060.
  3. Hidefumi, I., Satoru, T., Noriyoshi, N., Munetaka, I., Kosei, S., Kazumi, S., Shimizu, S. and Kentaro. O., (2017) Live Cell Imaging of Mitochondrial Autophagy with a Novel Fluorescent Small Molecule. ACS Chemical Biology, 12, 2546-2551.
  4. Kanemoto, K. Sugimura, Y. Shimizu, S. Yoshida, S. and Hosoya, T. (2017) Rhodium-catalyzed odorless synthesis of diaryl sulfides from borylarenes and S-aryl thiosulfonates. Commun., 53, 10640–10643.
  5. Yotsumoto, S., Muroi, Y., Chiba, T., Ohmura, R., Yoneyama, M., Magarisawa, M., Dodo, K., Terayama, N., Sodeoka, M., Aoyagi, R., Arita, M., Arakawa, S., Shimizu, S. and Tanaka, M. (2017) Hyperoxidation of ether-linked phospholipids accelerates neutrophil extracellular trap formation. Rep., 7, 16026

Kazunori Imaizumi(Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University)

  1. Saito A, Cai L, Matsuhisa K, Ohtake Y, Kaneko M, Kanemoto S, Asada R, Imaizumi K. (2017) Neuronal activity-dependent local activation of dendritic unfolded protein response promotes expression of brain-derived neurotrophic factor in cell soma, Journal of Neurochemistry, 144:35-49.

Yasushi Tamura(Faculty of Science, Yamagata University)

  1. Kawano, S., Tamura, Y., Kojima, R., Bala, S., Asai, E,  Michel, AH., Kornmann, B., Riezman, I., Riezman, H., Sakae, Y., Okamoto, Y., and Endo T. (2017). Structure–function insights into direct lipid transfer between membranes by Mmm1–Mdm12 of ERMES.  J. Cell. Biol. 217, 959–974. DOI: 10.1083/jcb.201704119.

  2. Tamura, Y. and Endo, T. (2017) Role of Intra- and Inter-mitochondrial Membrane Contact Sites in Yeast Phospholipid Biogenesis. In: Tagaya, M., Simmen, T. (eds) Organelle Contact Sites. Adv. Exp. Med. Biol., 997, 121-133, Springer, Singapore

Isao Naguro(Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo)

  1. Hirata, Y., Katagiri, K., Nagaoka, K., Morishita, T., Kudoh, Y., Hatta, T., Naguro, I., Kano, K., Udagawa, T., Natsume, T., Aoki, J., Inada, T., Noguchi, T., Ichijo, H. and Matsuzawa, A. (2017) TRIM48 promotes ASK1 activation and cell death through ubiquitination-dependent degradation of the ASK1-negative regulator PRMT1. Cell Rep.21, 2447-2457.
  2. Hattori, K., Ishikawa, H., Sakauchi, C., Takayanagi, S., Naguro, I. and Ichijo, H. (2017) Cold stress-induced ferroptosis involves the ASK1-p38 pathway. EMBO Rep.18, 2067-2078.
  3. Kamiyama, M., Shirai, T., Tamura, S., Suzuki-Inoue, K., Ehata, S., Takahashi, K., Miyazono, K., Hayakawa, Y., Sato, T., Takeda, K., Naguro, I. and Ichijo, H. (2017) ASK1 facilitates tumor metastasis through phosphorylation of an ADP receptor P2Y12 in platelets. Cell Death Differ.24, 2066-2076.

Kaoru Katoh(Senior Researcher, Biomedical Research Institute National Institute of Advanced Industrial Sciences and Technology (AIST))

  1. Ohzono, T., Katoh, K., Wang, C., Fukazawa, A., Yamaguchi, S., and Fukuda, J. (2017) Uncovering different states of topological defects in schlieren textures of a nematic liquid crystal. Sci. Rep. 7, 16814 | DOI:10.1038/s41598-017-16967-1

Taroh Kinoshita(Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University)

  1. Nguyen, Thi Tuyet Mai*, Y. Murakami*, E. Sheridan*, S. Ehresmann, J. Rousseau, A. St-Denis, G. Chai, N. F. Ajeawung, L. Fairbrother, T. Reimschisel, A. Bateman, E. Berry-Kravis, F. Xia, J. Tardif, D. A. Parry, C. V. Logan, C. Diggle, C. P. Bennett, L. Hattingh, J. A. Rosenfeld, M. S. Perry, M. J. Parker, F. Le Deist, M. S. Zaki, E. Ignatius, P. Isohanni, T. Loennqvist, C. J. Carroll, C. A. Johnson, J. G. Gleeson, T. Kinoshita and P. M. Campeau. (2017) Mutations in GPAA1, encoding a GPI transamidase complex protein, cause developmental delay, epilepsy, cerebellar atrophy, and osteopenia. Am. J. Hum. Genet., 101:856-865.
  2. Liu, Y.-S., X.-Y. Guo, T. Hirata, Y. Rong, D. Motooka, T. Kitajima, Y. Murakami, X.-D. Gao, S. Nakamura, T. Kinoshita and M. Fujita. (2017) N-Glycan dependent protein folding and endoplasmic reticulum retention regulate GPI-anchor processing. J. Cell Biol., 217: 585-599.
  3. Hirata, T., S. K. Mishra, S. Nakamura, K. Saito, D. Motooka, Y. Takada, N. Kanzawa, Y. Murakami, Y. Maeda, M. Fujita, Y. Yamaguchi and T. Kinoshita. (2017) Identification of a Golgi GPI-N-acetylgalactosamine transferase with tandem transmembrane regions in the catalytic domain. Nat. Commun., 9:405.
  4. Colley, K. J., Varki, A. and Kinoshita, T.  (2017) Cellular Organization of Glycosylation. In Essentials of Glycobiology 3rd ed. Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A., Kinoshita, T., Packer, N.J., Prestegard, J., Schnaar, R., Seeberger, P. (eds.), p41-49. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.
    https://www.ncbi.nlm.nih.gov/pubmed/28876808

  5. Schnaar, R. L. and Kinoshita, T.  (2017) Glycosphingolipids. In Essentials of Glycobiology 3rd ed. Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A., Kinoshita, T., Packer, N.J., Prestegard, J., Schnaar, R., Seeberger, P. (eds.), p125-135. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.
    https://www.ncbi.nlm.nih.gov/pubmed/28876845

  6. Ferguson, M. A. J., Hart, G. W. and Kinoshita, T.  (2017) Glycosylphosphatidylinositol anchors. In Essentials of Glycobiology 3rd ed. Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A., Kinoshita, T., Packer, N.J., Prestegard, J., Schnaar, R., Seeberger, P. (eds.), p137-150. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.
    https://www.ncbi.nlm.nih.gov/pubmed/28876821

  7. Freeze, H. H., Kinoshita, T and Schnaar, R. L.  (2017) Genetic disorders of glycan degradation. In Essentials of Glycobiology 3rd ed. Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A., Kinoshita, T., Packer, N.J., Prestegard, J., Schnaar, R., Seeberger, P. (eds.), p553-568. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.
    https://www.ncbi.nlm.nih.gov/pubmed/28876818

  8. Freeze, H. H., H. Schachter and Kinoshita, T.  (2017) Genetic disorders of glycosylation. In Essentials of Glycobiology 3rd ed. Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A., Kinoshita, T., Packer, N.J., Prestegard, J., Schnaar, R., Seeberger, P. (eds.), p569-582. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.
    https://www.ncbi.nlm.nih.gov/pubmed/28876812

  9. Freeze, H. H., Kinoshita, T and Varki, A. (2017) Glycans in acquired human diseases. In Essentials of Glycobiology 3rd ed. Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A., Kinoshita, T., Packer, N.J., Prestegard, J., Schnaar, R., Seeberger, P. (eds.), p583-595. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.
    https://www.ncbi.nlm.nih.gov/pubmed/28876835

  10. Kohashi, K., A. Ishiyama, S. Yuasa, T. Tanaka, K. Miya, Y. Adachi, N. Sato, H. Saitsu, C. Ohba, N. Matsumoto, Y. Murakami, T. Kinoshita, K. Sugai and M. Sasaki. 2017. Epileptic apnea in a patient with inherited glycosylphosphatidylinositol anchor deficiency and PIGT mutations. Brain Dev., 2017 Jul 17. pii: S0387-7604(17)30174-2. PMID: 28728837

Tatsuya Saitoh(The University of Tokushima)

  1. Takahama M, Akira S, and Saitoh, T. (2017) Autophagy limits activation of the inflammasomes. Immunol Rev.  doi:10.1111/imr.12613, in press
  2. Takahama, M., Fukuda, M., Ohbayashi, N., Kozaki, T., Misawa, T., Okamoto, T., Matsuura, Y., Akira, S., and Saitoh, T. (2017) The RAB2B-GARIL5 complex promotes cytosolic DNA-induced innate immune responses. Cell Rep. 20, 2944-2954.

  3. Misawa, T., Takahama, M., and Saitoh, T. (2017) Mitochondria–Endoplasmic Reticulum Contact Sites Mediate Innate Immune Responses. In: Tagaya, M., Simmen, T. (eds) Organelle Contact Sites. Adv. Exp. Med. Biol., 997, 187-197, Springer, Singapore

Hirokazu Yagi(Graduate School of Pharmaceutical Sciences, Nagoya City University)

  1. Yagi, H., Yan, G., Suzuki, T., Tsuge, S., Yamaguchi, T., and Kato, K. (2017) Lewis X-carrying neoglycolipids evoke selective apoptosis in neural stem cells. Neurochem Res in press
  2. Yanaka, S., Yamazaki, T., Yogo, R., Noda, M., Uchiyama, S., Yagi, H., and Kato, K. (2017) NMR Detection of Semi-Specific Antibody Interactions in Serum Environments. Molecules 22, E1619
  3.  Yogo, R., Yanaka, S., Yagi, H., Martel, A., Porcar, L., Ueki, Y., Inoue, R., Sato, N., Sugiyama, M., and Kato, K. (2007) Characterization of conformational deformation-coupled interaction between immunoglobulin G1 Fc glycoprotein and a low-affinity Fcγ receptor by deuteration-assisted small-angle neutron scattering. Biochem Biophys Rep 16, 1-4
  4. Yagi, H., Tateno, H., Hayashi, K., Hayashi, T., Takahashi, K., Hirabayashi, J., Kato, K., and Tsuboi, M. (2017) Lectin microarray analysis of isolated polysaccharides from Sasa veitchii. Biosci Biotechnol Biochem 81, 1687-1689

Kazutoshi Mori(Department of Biophysics, Graduate School of Science, Kyoto University)

  1. Ishikawa, T., Kashima, M., Nagano, A. J., Ishikawa-Fujiwara, T., Kamei, Y., Todo, T. and Mori, K. (2017) Unfolded Protein Response Transducer IRE1-mediated Signaling Independent of XBP1 mRNA Splicing Is Not Required for Growth and Development of Medaka Fish. eLife, 6, e26845.

Takamitsu Hosoya(Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University)

  1. Nishiyama, Y., Hazama, Y., Yoshida, S., and Hosoya, T. (2017) Synthesis of Unsymmetrical Tertiary Phosphine Oxides via Sequential Substitution Reaction of Phosphonic Acid Dithioesters with Grignard Reagents. Org. Lett. 19, 3899-3902

Masaya Ono(Department of Clinical Proteomics, National Cancer Center Research Institute)

  1. Kagami, Y., Ono, M., and Yoshida, K. (2017) Plk1 phosphorylation of CAP-H2 triggers chromosome condensation by condensin II at the early phase of mitosis. Sci Rep 7, 5583

Motoi Kanagawa(Molecular Brain Science, Kobe University Graduate School of Medicine)

  1. Kamizaki, K., Doi, R., Hayashi, M., Saji, T., Kanagawa, M., Toda, T., Fukada, SI., Ho, HH., Greenberg, ME., Endo, M., Minami, Y. (2017) The Ror1 receptor tyrosine kinase plays a critical role in regulating satellite cell proliferation during regeneration of injured muscle. J. Biol. Chem.in press (jbc.M117.785709. doi:10.1074/jbc.M117.785709)