研究成果

2021年

中山和久(京都大学大学院 薬学研究科)

  1. Noguchi, T., Nakamura, K., Satoda, Y., Katoh, Y. & Nakayama, K. (2021) CCRK/CDK20 regulates ciliary retrograde protein trafficking via interacting with BROMI/TBC1D32.PLoS ONE 16, e0258497.
  2. Inoue, H., Takatsu, H., Hamamoto, A., Takayama, M., Nakabuchi, R., Muranaka, Y., Yagi, T., Nakayama, K. & Shin, H.-W.(2021)The interaction of ATP11C-b with ezrin contributes to its polarized localization.J. Cell Sci. 134, jcs258523.
  3. Fujisawa, S., Qiu, H., Nozaki, S., Chiba, S., Katoh, Y. & Nakayama, K. (2021) ARL3 and ARL13B GTPases participate in distinct steps of INPP5E targeting to the ciliary membrane. Biol. Open 10, bio058843.
  4. Ishida, Y., Kobayashi, T., Chiba, S., Katoh, Y. & Nakayama, K. (2021) Molecular basis of ciliary defects caused by compound heterozygous IFT144/WDR19 mutations found in cranioectodermal dysplasia. Hum. Mol. Genet., 30, 213-225.
  5. Qiu, H., Fujisawa, S., Nozaki, S., Katoh, Y. & Nakayama, K. (2021) Interaction of INPP5E with ARL13B is essential for its ciliary membrane retention but dispensable for its ciliary entry. Biol. Open 10, bio057653.
  6. Kobayashi, T., Ishida, Y., Hirano, T., Katoh, Y. & Nakayama, K. (2021) Cooperation of the IFT-A complex with the IFT-B complex is required for ciliary retrograde protein trafficking and GPCR import. Mol. Biol. Cell, 32, 45-56.

西頭英起(宮崎大学 医学部)

  1. Sugiyama, T., Murao, N., Kadowaki, H., Takao, K., Miyakawa, T., Matsushita, Y., Katagiri, T., Futatsugi, A., Shinmyo, Y., Kawasaki, H., Sakai, J., Shiomi, K., Nakazato, M., Takeda, K., Mikoshiba, K., Ploegh, H.L., Ichijo, H., Nishitoh, H. (2021) ERAD components Derlin-1 and Derlin-2 are essential for postnatal brain development and motor function. iScience, 24:102758.

中野明彦(理化学研究所)

  1. Shimizu, Y., Takagi, J., Ito, E., Ito, Y., Ebine, K., Komatsu, Y., Goto, Y., Sato, M., Toyooka, K., Ueda, T., Kurokawa, K., Uemura, T., and Nakano, A. (2021). Cargo sorting zones in the trans-Golgi network visualized by super-resolution confocal live imaging microscopy in plants. Nat. Commun. 12:1901.
  2. Rizzo, R., Russo, D., Kurokawa, K., Sahu, P., Lombardi, B., Supino, D., Zhukovsky, M. A., Vocat, A., Pothukuchi, P., Kunnathully, V., Capolupo, L., Boncompain, G., Vitagliano, C., Marino, F. Z., Aquino, G., Montariello, D., Henklein, P., Mandrich, L., Botti, G., Clausen, H., Mandel, U., Yamaji, T., Hanada, K., Budillon, A., Perez, F., Parashuraman, S., Hannun, Y. A., Nakano, A., Corda, D., D’Angelo, G., and Luini, A. (2021). Golgi maturation-dependent glycoenzyme recycling controls glycosphingolipid biosynthesis and cell growth via GOLPH3. EMBO J. 40:e107238.

  3. Rodriguez-Gallardo, S., Kurokawa, K., Sabido-Bozo, S., Cortes-Gomez, A., Perez-Linero, A.M., Aguilera-Romero, A., Lopez, S., Waga, M., Nakano, A., and Muñiz, M. (2021). Assay for dual cargo sorting into endoplasmic reticulum exit sites imaged by 3D super-resolution confocal live imaging microscopy (SCLIM). PLOS ONE 16:e0258111.
  4. Tojima, T., Miyashiro, D., Kosugi, Y., and Nakano, A. (2022). Super-resolution live imaging of cargo traffic through the Golgi apparatus in mammalian cells. Methods Mol. Biol. in press.
  5. Rodriguez-Gallardo, S., Sabido-Bozo, S., Ikeda, A., Araki, M., Okazaki, K., Nakano, M., Aguilera-Romero, A., Cortes-Gomez, A., Lopez, S., Waga, M., Nakano, A., Kurokawa, K., Muñiz, M., and Funato, K. (2022). Quality-controlled lipid-based protein sorting into selective ER exit sites. Cell Rep. 39:110768.
  6. Nakano, A. (2022). The Golgi apparatus and its next-door neighbors. Frontiers Cell Dev. Biol. 10:884360.
  7. Hasegawa, Y., Reyes,T. H., Uemura, T., Baral, A., Fujimaki, A., Luo, Y., Morita, Y., Saeki, Y., Maekawa, S., Yasuda, S., Mukuta, K., Fukao, Y., Tanaka, K., Nakano, A., Takagi, J., Bhalerao, R., Yamaguchi, J., and Sato, T. (2022). TGN/EE SNARE protein SYP61 and ubiquitin ligase ATL31 cooperatively regulate carbon/nitrogen-nutrient responses in Arabidopsis. Plant Cell 34:1354-1374.

加藤薫(産業技術総合研究所 バイオメディカル研究部門)

  1. Ohzono T.. Katoh K., Terentjev E.M. (2021)
    Microscopy of diffuse nematic-isotropic transition in main-chain nematic liquid crystal elastomers. Macromolecules (in press)

  2. Ohzono T., Katoh K., Minamikawa H., Saed M. O., Terentjev E.M. (2021)
    Internal constraints and arrested relaxation in main-chain nematic elastomers
    Nat Commun 12, 787 (2021). https://doi.org/10.1038/s41467-021-21036-3

花田賢太郎(国立感染症研所) 

  1. Rizzo, R., Russo, D., Kurokawa, K., Sahu, P., Lombardi, B., Supino, D., Zhukovsky, M., Vocat, A., Pothukuchi, P., Kunnathully, V., Capolupo, L., Boncompain, G., Vitagliano, C., Marino, F.Z,, Aquino, G., Montariello, D., Henklein, P., Mandrich, L., Botii, G., Clausen, H., Mandel, U., Yamaji, T., Hanada, K., Budillon, A., Perez, F., Parashuraman, S., Hannun, Y.A., Nakano, A., Corda, D., D’Angelo, G., and Luini, A. (2021) Golgi maturation-dependent glycoenzyme recycling controls glycosphingolipid biosynthesis and cell growth via GOLPH3. EMBO J., 2021, 40, e107238. Doi: org/10.15252/embj.2020107238

  2. Sakuma, C., Sekizuka, T., Kuroda, M., Hanada, K., and Yamaji, T. (2021) Identification of SYS1 as a host factor required for Shiga toxin-mediated cytotoxicity in Vero cells. Int. J. Mol. Sci., 22, artcile 4936. Open access: https://doi.org/10.3390/ijms22094936

  3. Tamura, N., Sakai, S., Martorell, L., Colomé, R., Mizuike, A., Goto, A., Ortigoza-Escobar, J.D., and Hanada, K. (2021) Intellectual disability-associated mutations in the ceramide transport protein gene CERT1 lead to aberrant function and subcellular distribution. J. Biol. Chem., 297, article 101338. Open access: https://doi.org/10.1016/j.jbc.2021.101338

  4. Hanada, K., Sakai, S., and Kumagai, K. (2022) Natural ligand-mimetic and nonmimetic inhibitors of the ceramide transport protein CERT. Int. J. Mol. Sci., 23, article 2098. Open access: https://doi.org/10.3390/ijms23042098
  5. Fujita, J., Taniguchi, M., Hashizume, C., Ueda, Y., Sakai, S., Kondo, T., Hashimoto-Nishimura, M., Hanada, K., Kosaka, T., and Okazaki, T. (2022) Nuclear ceramide is associated with ATM activation in the neocarzinostatin-induced apoptosis of lymphoblastoid cells. Mol. Pharmacol., 101, 322-333. DOI: https://doi.org/10.1124/molpharm.121.000379
  6. Shimasaki, K., Kumagai, K., Sakai, S., Yamaji, T., and Hanada, K. (2022) Hyperosmotic stress induces phosphorylation of CERT and enhances its tethering throughout the endoplasmic reticulum. Int. J. Mol. Sci., 23, article 4025. Open access: https://doi.org/10.3390/ijms23074025

2020年

中野明彦(理化学研究所)

  1. Fujii, S., Kurokawa, K., Tago, T., Inaba, R., Takiguchi, A., Nakano, A., Satoh, T., and Satoh, A. (2020). Sec71 separates Golgi stacks in Drosophila S2 cells. J. Cell Sci. 133:jcs245571.
  2. Kanazawa, T., Morinaka, H., Ebine, K., Shimada, T. L., Ishida, S., Minamino, N., Yamaguchi, K., Shigenobu, S., Kohchi, T., Nakano, A., and Ueda, T. (2020). The liverwort oil body is formed by redirection of the secretory pathway. Nat. Commun. 11:6152.
  3. Rodriguez-Gallardo, S.†, Kurokawa, K.†, Sabido-Bozo, S., Cortes-Gomez, A., Ikeda, A., Zoni, V., Aguilera-Romero, A., Maria Perez-Linero, A., Lopez, S., Waga, M., Araki, M., Nakano, M., Riezman, H., Funato, K., Vanni, S., Nakano, A., and Muñiz, M. (2020). Ceramide chain length-dependent protein sorting into selective endoplasmic reticulum exit sites. Sci. Adv. 6:eaba8237. († equal contribution)
  4. Ikeda, A., Schlarmann, P., Kurokawa, K., Nakano, A., Riezman, H., and Funato, K. (2020). Tricalbins are required for nonvesicular ceramide transport at ER-Golgi contacts and modulate lipid droplet biogenesis. iScience 23:101603.
  5. Murakami-Sekimata, A., Sekimata, M., Sato, N., Hayasaka, Y., and Nakano, A. (2020). Deletion of pin4 suppresses the protein transport defects caused by sec12-4 mutation in Saccharomyces cerevisiae. Microbial Physiol. 30:25-35.
  6. Fujii, S., Kurokawa, K., Inaba, R., Hiramatsu, N., Tago, T., Nakamura, Y., Nakano, A., Satoh, T., and Satoh, A. K. (2020). Recycling endosomes attach to the trans-side of Golgi stacks in Drosophila and mammalian cells. J. Cell Sci. 133: jcs236935.

  7. Kurokawa, K. and Nakano, A. (2020). Live-cell imaging by super-resolution confocal live imaging microscopy (SCLIM): simultaneous three-color and four-dimensional live cell imaging with high space and time resolution. Bio-protocol 10:e3732.

加藤薫(産業技術総合研究所 バイオメディカル研究部門)

  1. Higaki T., Akita K., Katoh K (2020)
    Coefficient of variation as an image-intensity metric for cytoskeleton bundling
    Sci. Rep. 10, 22187. https://doi.org/10.1038/s41598-020-79136-x

  2. Yamaguchi H., Honda S., Torii S., Shimizu K., Katoh K., Miyake K., Miyake N., Fujikake N.,
    Sakurai H.T., Arakawa S., Shimizu S.(2020)
    Wipi3 is essential for alternative autophagy and its loss causes neurodegeneration. Nat Commun 11, 5311. https://doi.org/10.1038/s41467-020-18892

  3. Ueno Y., Matsuda K., Katoh K., Kuzuya A., Kakugo A., Konagaya A. (2020)  Modeling a Microtubule Filaments Mesh Structure from Confocal Microscopy Imaging. Micromachines 11 (9), 844 https://doi.org/10.3390/mi11090844
  4. Pelc R., Hostounský Z., Otaki T., Katoh K. (2020)  Conventional, Apodized, and Relief Phase-Contrast Microscopy. In: Pelc R., Walz W., Doucette J. (eds) Neurohistology and Imaging Techniques. Neuromethods, vol 153. Humana, New York, NY.
    https://doi.org/10.1007/978-1-0716-0428-1_10

木下タロウ(大阪大学)

  1. Kobayashi, A.*, Hirata, T.*, Nishikaze, T., Ninomiya, A., Maki, Y., Takada, Y., Kitamoto, T., and Kinoshita, T. (2020) α2, 3-linkage of sialic acid to a GPI-anchor and an unpredicted GPI attachment site in human prion protein. J. Biol. Chem., 295(22):7789-7798.

  2. Lee, G.-H., Fujita, M., Nakanishi, H., Miyata, H., Ikawa, M., Maeda, Y., Murakami, Y., and Kinoshita, T. (2020) PGAP6, a GPI-specific phospholipase A2, has narrow substrate specificity against GPI-anchored proteins. J. Biol. Chem., 295(42):14501-14509.

  3. Langemeijer, S., Schaap, C., Preijers, F., Jansen, J. H., Blijlevens, N., Inoue, N., Muus, P., Kinoshita, T., and Murakami, Y. (2020) Paroxysmal nocturnal hemoglobinuria caused by CN-LOH of constitutional PIGB mutation and 70-kb microdeletion on 15q. Blood Adv., 4(22):5755-5761.

  4. Guo, X.-Y., Liu, Y.-S., Gao, X.-D., Kinoshita, T., and Fujita, M. (2020) Calnexin mediates the maturation of GPI-anchors through ER retention. J. Biol. Chem., in press.
  5. Okuda, T., Yonekawa, T., Murakami, Y., Kinoshita, T., Matsushita, K., Koike, Y., Inoue, M., Uchida, K., Yodoya, N., Ohashi, H., Sawada, H., Iwamoto, S., Mitani, Y., and Hirayama, M. (2020) PIGO variants in a boy with features of Mabry syndrome who also exhibits Fryns syndrome with peripheral neuropathy. Am. J. Med. Genet. A, in press.

  6. Kinoshita, T. (2020) Biosynthesis and biology of mammalian GPI-anchored proteins. Open Biol., 10: 190290. (Review)
    https://www.ncbi.nlm.nih.gov/pubmed/32156170

  7. Wang, Y., Maeda, Y., Liu, Y.-S., Takada, Y., Ninomiya, A., Hirata, T., Fujita, M., Murakami, Y., and Kinoshita, T. (2020) Cross-talks of glycosylphosphatidylinositol biosynthesis with glycosphingolipid biosynthesis and ER-associated degradation. Nat. Commun., 11:860.
    https://www.ncbi.nlm.nih.gov/pubmed/32054864

  8. Nguyen, T. T. M., Murakami, Y., Mobilio, S., Niceta, M., Zampino, G., Philippe, C., Moutton, S., Zaki, M. S., James, K., Musaev, D., Mu, W., Baranano, K., Nance, J. R., Rosenfeld, J. A., Braverman, N., Ciolfi, A., Millan, F., Person, R. E., Bruel, A.-L., Thauvin-Robinet, C., Ververi, A., DeVile, C., Male, A., Efthymiou, S., Maroofian, R., Houlden, H., Maqbool, S., Rahman, F., Baratang, N. V., Rousseau, J., St-Denis, A., Elrick, M. J., Anselm, I., Rodan, L.H., Tartaglia, M., Gleeson, J., Kinoshita, T., and Campeau, P. M. (2020) Bi-allelic variants in the GPI transamidase subunit PIGK cause a neurodevelopmental syndrome with hypotonia and cerebellar atrophy and epilepsy. Am. J. Hum. Genet., in press.
    https://www.ncbi.nlm.nih.gov/pubmed/32220290

中山和久(京都大学大学院 薬学研究科)

  1. Nakamura, K., Noguchi, T., Takahara, M., Omori, Y., Furukawa, T., Katoh, Y., and Nakayama, K. (2020) Anterograde trafficking of ciliary MAP kinase-like ICK/CILK1 by the intraflagellar transport machinery is required for intraciliary retrograde protein trafficking. J. Biol. Chem., 295, 13363-13376.
  2. Okazaki, M., Kobayashi, T., Chiba, S., Takei, R., Liang, L., Nakayama, K., and Katoh, Y. (2020) Formation of the B9-domain protein complex MKS1–B9D2–B9D1 is essential as a diffusion barrier for ciliary membrane proteins. Mol. Biol. Cell, 31, 2259-2268.

  3. Katoh, Y., Chiba, S., and Nakayama, K. (2020) Practical method for super-resolution imaging of primary cilia and centrioles by expansion microscopy using an amplibody for fluorescence signal amplification. Mol. Biol. Cell, 31, 2195-2206.

  4. Okamoto, S., Naito, T., Shigetomi, R., Kosugi, Y., Nakayama, K., Takatsu, H., and Shin, H.-W. (2020) The N- or C-terminal cytoplasmic regions of P4-ATPases determine their cellular localization. Mol. Biol. Cell, 31, 2115–2124.

  5. Nakayama, K. and Katoh, Y. (2020) Architecture of the IFT ciliary trafficking machinery and interplay between its components. Crit. Rev. Biochem. Mol. Biol., 55, 179-196.

  6. Tone, T., Nakayama, K., Takatsu, H., and Shin, H.-W. (2020) ATPase reaction cycle of P4-ATPases affects their transport from the endoplasmic reticulum. FEBS Lett., 594, 412-423.

尾野雅哉(国立がん研究センター研究所 臨床プロテオーム解析部門)

  1. Yoshida, S., Aoki, K., Fujiwara, K., Nakakura, T., Kawamura, A., Yamada, K., Ono, M., Yogosawa, S., Yoshida, K. (2020) The novel ciliogenesis regulator DYRK2 governs Hedgehog signaling during mouse embryogenesis. Elife, 9, e57381.

  2. Gao, Y., Nihira, N.T., Bu, X., Chu, C., Zhang, J., Kolodziejczyk, A., Fan, Y., Chan, N.T., Ma, L., Liu, J., Wang, D., Dai, X., Liu, H., Ono, M., Nakanishi, A., Inuzuka, H., North, B.J., Huang, Y.H., Sharma, S., Geng, Y., Xu, W., Liu, X.S., Li, L., Miki, Y., Sicinski, P., Freeman, G.J., Wei, W. (2020) Acetylation-dependent regulation of PD-L1 nuclear translocation dictates the efficacy of anti-PD-1 immunotherapy. Nat Cell Biol., Epub ahead.

田村康(山形大学 理学部)

  1. Nakamura, S., Matsui, A., Akabane, S. Tamura, Y., Hatano, Z., Miyano, Y., Omote, H., Kajikawa, M., Maenaka, K., Moriyama, Y., Endo, T., & Oka T. (2020) The mitochondrial inner membrane protein LETM1 modulates cristae organization through its LETM domain. Commun Biol., 3: 99.

  2. Kudo S., Shiino H., Furuta S., Tamura Y.* (2020) Yeast transformation stress, together with loss of Pah1, phosphatidic acid phosphatase, leads to Ty1 retrotransposon insertion into the INO4 gene FASEB J., 34(3): 4749-4763.

  3. Watanabe Y., Tamura Y., Kakuta C., Watanabe S., and Endo T.* (2020) Structural basis for inter-organelle phospholipid transport mediated by VAT-1 JBC., 295(10): 3257-3268.

  4. Tamura Y. Kawano S. and Endo T*. (2020) Lipid homeostasis in mitochondria. Biol Chem., in press (DOI: 10.1515/hsz-2020-0121.).

今泉和則(広島大学大学院医歯薬保健学研究科 分子細胞情報学)

  1. Okamoto, T., Imaizumi, K., and Kaneko, M. (2020) The Role of Tissue-Specific Ubiquitin Ligases, RNF183, RNF186, RNF182 and RNF152, in Disease and Biological Function. Int J Mol Sci, 21:3921.
  2. Matsuhisa, K., Saito, A., Cai, L., Kaneko, M., Okamoto, T., Sakaue, F., Asada, R., Urano, F., Yanagida, K., Okochi, M., Kudo, Y., Matsumoto, M., Nakayama, K. I., and Imaizumi, K. (2020) Production of BBF2H7-derived small peptide fragments via endoplasmic reticulum stress-dependent regulated intramembrane proteolysis. FASEB J, 34:865-880.
  3. Okamoto, T., Wu, Y., Matsuhisa, K., Saito, A., Sakaue, F., Imaizumi, K., and Kaneko, M. (2020) Hypertonicity-responsive ubiquitin ligase RNF183 promotes Na, K-ATPase lysosomal degradation through ubiquitination of its beta1 subunit. Biochem Biophys Res Commun, 521:1030-1035.

矢木宏和(名古屋市立大学)

  1. Yagi, H., Yagi-Utsumi, M., Honda, R., Ohta, Y., Saito, T., Nishio, M., Ninagawa, S., Suzuki, K., Anzai, T., Kamiya, Y., Aoki, K., Nakanishi, M., Satoh, T. and Kato, K. (2020) Improved secretion of glycoproteins using an N-glycan-restricted passport sequence tag recognized by cargo receptor. Nature Commun., 11, Article number: 1368
  2. George, G., Ninagawa, S., Yagi, H., Saito, T., Ishikawa, T., Sakuma, T., Yamamoto, T., Imami, K., Ishihama, Y., Kato, K., Okada, T. and Mori, K. (2020) EDEM2 stably disulfide-bonded to TXNDC11 catalyzes the first mannose trimming step in mammalian glycoprotein ERAD. eLife, 9, e53455

花田賢太郎(国立感染症研究所)

  1. Tachida, Y., Kumagai, K., Sakai, S., Ando, S., Yamaji, T., and Hanada, K. (2020) Chlamydia trachomatis-infected human cells convert ceramide to sphingomyelin without sphingomyelin synthases 1 and 2. FEBS Lett., 594, 519-529. Doi: 10.1002/1873-3468.13632
  2. Hanada, K. (2020) Organelle contacts: sub-organelle zones to facilitate rapid and accurate inter-organelle trafficking of lipids. Traffic, 21, 189-196. Open access:
    https://doi.org/10.1111/tra.12716
  3. Morimoto, K., Suzuki, N., Tanida, I., Kakuta, S., Furuta, Y., Uchiyama, Y., Hanada, K., Suzuki, Y., and Yamaj, T. (2020) Blood group P1 antigen-bearing glycoproteins are functional but less efficient receptors of Shiga toxin than conventional glycolipid-based receptors. J. Biol. Chem., 295, 9490-9501. Open access:
    https://doi.org/10.1074/jbc.RA120.013926
  4. Goto, A., Mizuike, A., and Hanada, K. (2020) Sphingolipid metabolism occurring at the ER-Golgi contact zone and its impact on membrane trafficking. CONTACT, 3, 1-13. (A.G. and A.M. are co-first authors) Open access:
    https://journals.sagepub.com/doi/10.1177/2515256420959514
  5. Murakami, H., Tamura, N., Enomoto, Y., Shimasaki, K., Kurosawa, K., and Hanada, K. (2020) Intellectual disability-associated gain-of-function mutations in CERT1 that encodes the ceramide transport protein CERT. PLoS ONE, 15, e0243980. (H.M. and N.T. are co-first authors.) Open access:
    https://doi.org/10.1371/journal.pone.0243980

西頭英起(宮崎大学 医学部)

  1. Kato, H., Okabe, K., Miyake, M., Hattori, K., Fukaya, T., Tanimoto, K., Beini, S., Mizuguchi, M., Torii, S., Arakawa, S., Ono, M., Saito, Y., Sugiyama, T., Funatsu, T., Sato, K., Shimizu, S., Oyadomari, S., Ichijo, H., Kadowaki, H., Nishitoh, H. (2020) ER-resident sensor PERK is essential for mitochondrial thermogenesis in brown adipose tissue. Life Sci. Alliance DOI:10.26508/lsa.201900576

2019年

加藤薫(産業技術総合研究所 バイオメディカル研究部門)

  1. Ishida K., Goto S., Ishimura M., Amanuma M., Hara Y., Suzuki R., Katoh K., Morita E. (2019)
    Functional Correlation between Subcellular Localizations of Japanese Encephalitis Virus Capsid Protein and Virus Production.
    J Virol 93:e00612-19. https://doi.org/10.1128/JVI.00612-19

  2. Morita, M, Ota, Y, Katoh, K, Noda, N (2019)  Bacterial Cell Culture at the Single-cell Level Inside Giant Vesicles.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, (146):10.3791/59555

  3. Tanaka, M., Fujii, Y., Hirano, K., Higaki, T., Nagasaki, A., Ishikawa, R., Okajima, T., Katoh, K (2019). Fascin in lamellipodia contributes to cell elasticity by controlling the orientation of filamentous actin. Genes to Cells. 24, p202-213, https://doi.org/10.1111/gtc.12671
  4. Takata, H., Madung, M., Katoh, K., Fukui, K.(2019) Cdk1-dependent phosphorylation of KIF4A at S1186 triggers lateral chromosome compaction during early mitosis. PLoS One 13(12): e0209614  doi.org/10.1371/journal.pone.0209614

田村康(山形大学 理学部)

  1. Matsumoto S., Nakatsukasa K., Kakuta C., Tamura Y., Esaki M., and Endo T. (2019) Msp1 Clears Mistargeted Proteins by Facilitating Their Transfer from Mitochondria to the ER Mol. Cell., 76: 191-205.

  2. Wang C., Taki M., Sato Y., Tamura Y., Yaginuma H., Okada Y., and Yamaguchi S. (2019) A photostable fluorescent marker for the superresolution live imaging of the dynamic structure of the mitochondrial cristae PNAS., 116: 15817-15822.

今泉和則(広島大学大学院医歯薬保健学研究科 分子細胞情報学)

  1. Wu, Y., Kimura, Y., Okamoto, T., Matsuhisa, K., Asada, R., Saito, A., Sakaue, F., Imaizumi, K., and Kaneko, M. (2019) Inflammatory bowel disease-associated ubiquitin ligase RNF183 promotes lysosomal degradation of DR5 and TRAIL-induced caspase activation. Sci Rep, 9:20301.

  2. Maeoka, Y., Okamoto, T., Wu, Y., Saito, A., Asada, R., Matsuhisa, K., Terao, M., Takada, S., Masaki, T., Imaizumi, K., and Kaneko, M. (2019) Renal medullary tonicity regulates RNF183 expression in the collecting ducts via NFAT5. Biochem Biophys Res Commun, 514:436-442.
  3. Osaki, Y., Matsuhisa, K., Che, W., Kaneko, M., Asada, R., Masaki, T., Imaizumi, K., and Saito, A. (2019) Calnexin promotes the folding of mutant iduronate 2-sulfatase related to mucopolysaccharidosis type II. Biochem Biophys Res Commun, 514:217-223.
  4. Maeoka, Y., Wu, Y., Okamoto, T., Kanemoto, S., Guo, X. P., Saito, A., Asada, R., Matsuhisa, K., Masaki, T., Imaizumi, K., and Kaneko, M. (2019) NFAT5 up-regulates expression of the kidney-specific ubiquitin ligase gene Rnf183 under hypertonic conditions in inner-medullary collecting duct cells. J Biol Chem, 294:101-115.
  5. Ariyasu, D., Kubo, E., Higa, D., Shibata, S., Takaoka, Y., Sugimoto, M., Imaizumi, K., Hasegawa, T., and Araki, K. (2019) Decreased Activity of the Ghrhr and Gh Promoters Causes Dominantly Inherited GH Deficiency in Humanized GH1 Mouse Models.Endocrinology, 160:2673-

矢木宏和(名古屋市立大学)

  1. Yogo, R., Yamaguchi, Y., Watanabe, H., Yagi, H., Satoh, T., Nakanishi, M., Onitsuka, M., Omasa, T., Shimada,M., Maruno,T., Torisu, T., Watanabe, S., Higo, D., Uchihashi, T., Yanaka, S., Uchiyama, S., and Kato, K. (2019) The Fab portion of immunoglobulin G contributes to its binding to Fcγ receptor III. Sci. Rep., 9, Article number: 11957

  2. Yanaka, S., Yogo, R., Inoue, R., Sugiyama, M., Itoh, S.G., Okumura, H., Miyanoiri, Y., Yagi, H., Satoh, T., Yamaguchi, T. and Kato, K. (2019) Dynamic views of the Fc region of immunoglobulin G provided by experimental and computational observations. Antibodies, 8, 39

  3. Harada, Y., Kizuka, Y., Tokoro, Y., Kondo, K., Yagi, H., Kato, K., Inoue, H., Taniguchi, N. and Maruyama, I. (2019) N-glycome inheritance from cells to extracellular vesicles in B16 melanomas. FEBS Lett., 593, 942-951

  4. Narentuya, Y., Takeda-Uchimura, T., Foyez, Z., Zhang, T., Akama, O., Yagi, H., Kato, K., Komatsu, Y., Kadomatsu, K. and Uchimura, K. (2019) GlcNAc6ST3 is a keratan sulfate sulfotransferase for the protein- tyrosine phosphatase PTPRZ in the adult brain. Sci. Rep., 9, Article number: 4387

  5. Harada, Y., Suzuki, T., Fukushige, T., Kizuka, Y., Yagi, H., Yamamoto, M., Kondo, K., Inoue, H., Kato, K., Taniguchi, N., Kanekura, T., Dohmae, N. and Maruyama, I. (2019) Generation of the heterogeneity of extracellular vesicles by membrane organization and sorting machineries Biochim. Biophys. Acta –General Subjects, 1863, 681-691

花田賢太郎(国立感染症研究所)

  1. Kumagai. K., and Hanada, K. (2019) Structure, functions, and regulation of CERT, a lipid-transfer protein for the delivery of ceramide at the ER-Golgi membrane contact sites, FEBS Let., 593, 2366-2377. (K.K. and K.H. are co-correspondence) doi: org/10.1002/1873-3468.13511. (invited review)
  2. Yamaji, T., Hanamatsu, H., Sekizuka, T., Kuroda, M., Ohnishi, M.,Furukawa, J., Yahiro, K., and Hanada, K. (2019) A CRISPR screen using subtilase cytotoxin identifies SLC39A9 as a glycan-regulating factor, iScience, 15, 407-420. doi: 10.1016/j.isci.2019.05.005.
  3. Nakao, N., Ueno, M., Sakai, S., Egawa, D., Hanzawa, H., Kawasaki, S., Kumagai, K., Suzuki, M., Kobayashi, S., and Hanada, K. (2019) Natural ligand-nonmimetic inhibitors to the lipid transfer protein CERT, Comms. Chem., 2, article 20. (N.N., M.U., and S.S. are co-first authors. S.K. and K.H. are co-correspondence) doi: 10.1038/s42004-019-0118-3 (open access: https://www.nature.com/articles/s42004-019-0118-3)
  4. Yamaji, T., Sekizuka, T., Tachida, Y., Sakuma, C., Kuroda, M., and Hanada, K. (2019) A CRISPR screen identifies LAPTM4A and TM9SF proteins as glycolipid-regulating factors, iScience, 11, 409-424. doi: org/10.1016/j.isci.2018.12.039.
  5. Shimizu, Y., Shirasago, Y., Suzuki, T., Hata, T., Kondoh, M., Hanada, K., Yagi, K., and Fukasawa, M. (2019) Characterization of monoclonal antibodies recognizing each extracellular loop domain of occluding, J Biochem, 166, 297-308. doi: 10.1093/jb/mvz037

木下タロウ(大阪大学)

  1. Wang, Y., Hirata, T., Maeda, Y., Murakami, Y., Fujita, M., and Kinoshita, T. (2019) Free, unlinked glycosylphosphatidylinositols on mammalian cell surfaces revisited. J. Biol. Chem., 294:5038-5049.
    https://www.ncbi.nlm.nih.gov/pubmed/30728244

  2. Sou, Y-S, Kakuta, S., Kamikubo, Y., Niisato, K., Sakurai, T., Parajuli, L. K., Tanida, I., Saito, H., Suzuki, N., Sakimura, K., Maeda, Y., Kinoshita, T., Uchiyama, Y., and Koike, M. (2019) Cerebellar neurodegeneration and neuronal circuit remodeling in Golgi pH regulator-deficient mice. eNeuro, 6(3): e0427-18.2019.
    https://www.ncbi.nlm.nih.gov/pubmed/31118204

  3. Murakami, Y.,* Nguyen*, T. T. M., Baratang, N., Raju, P. K., Knaus, A., Ellard, S., Jones, G., Lace, B., Rousseau, J., Ajeawung, N. F., Kamei, A., Minase, G., Akasaka, M., Araya, N., Koshimizu, E., van den Ende, J., Erger, F., Altmüller, J., Krumina, Z., Strautmanis, J., Inashkina, I., Stavusis, J., El-Gharbawy, A., Sebastian, J., Dua Puri, R., Kulshrestha, S., Verma, I. C., Maier, E. M., Haack, T., Israni, A., Baptista, J., Gunning, A., Rosenfeld, J. A., Liu, P., Joosten, M., Rocha, M. E., Hashem, M. O., Aldhalaan, H. M., Alkuraya, F. S., Miyatake, S., Matsumoto, N., Krawitz, P., Rossignol, E., Kinoshita, T., and Campeau, P. M. (2019) Mutations in PIGB cause an inherited GPI biosynthesis defect with an axonal neuropathy and metabolic abnormality in severe cases. Am. J. Hum. Genet., 105:384-394.
    https://www.ncbi.nlm.nih.gov/pubmed/31256876

  4. Knaus, A., Kortüm, F., Kleefstra, T., Stray-Pedersen, A., Dukić, D., Murakami, Y., Gerstner, T., van Bokhoven, H., Iqbal, Z., Horn, D., Kinoshita, T., Hempel, M., and Krawitz, P, M. (2019) Mutations in PIGU impair the function of the GPI transamidase complex causing severe intellectual disability, epilepsy and brain anomalies. Am. J. Hum. Genet., 105:395-402.
    https://www.ncbi.nlm.nih.gov/pubmed/31353022

  5. Hoechsmann, B.*, Murakami, Y. *, Osato, M. *, Knaus, A., Kawamoto, M., Inoue, N., Hirata, T., Murata, S., Anliker, M., Eggermann, T., Jaeger, M., Floettmann, R., Hoellein, A., Murase, S., Ueda, Y., Nishimura, J., Kanakura, Y., Kohara, N., Schrezenmeier, H.+, Krawitz, P. M.+, and Kinoshita, T. + (2019) Complement and inflammasome overactivation mediates paroxysmal nocturnal hemoglobinuria with autoinflammation. J. Clin. Invest.,129:5123-5136. doi: 10.1172/JCI123501
    https://www.ncbi.nlm.nih.gov/pubmed/31430258

  6. Thompson, M., Knaus, A., Caliebe, A., Muhle, H., Nguyen, M., Baratang, N., Kinoshita, T., Percy, M., Campeau, P., Murakami, Y., Krawitz, P., Cole, D., and Mabry, C. (2019) A post glycosylphosphatidylinositol (GPI) attachment to proteins, type 2 (PGAP2) variant identified in Mabry syndrome index cases: molecular genetics of the prototypical inherited GPI disorder. Eur. J. Med. Genet., in press.
    https://doi.org/10.1016/j.ejmg.2019.103822

片桐豊雅(徳島大学)

  1. Kimura R, Yoshimaru T, Matsushita Y, Matsuo T, Ono M, Park JH, Sasa M, Miyoshi Y, Nakamura Y, *Katagiri T
    The GALNT6-LGALS3BP axis promotes breast cancer cell growth. Int J Oncol., in press.

吉田秀郎(兵庫県立大学 生命理学研究科)

  1. Jamaludin, M. I., Wakabayashi S., Sasaki K., Komori R., Kawamura H., Takase H., Sakamoto M., Yoshida H. (2019) MGSE regulates crosstalk from the mucin pathway to the TFE3 pathway of the Golgi stress response. Cell Struct Funct. in press.
  2. Kimura M, Sasaki K, Fukutani Y, Yoshida H, Ohsawa I, Yohda M, Sakurai K. (2019) Anticancer saponin OSW-1 is a novel class of selective Golgi stress inducer, Bioorg Med Chem Lett. 29, 1732-1736. doi: 10.1016/j.bmcl.2019.05.022s
  3. Sasaki K, Yoshida H. (2019) Organelle Zones, Cell Struct Funct. 44, 85-94. doi: 10.1247/csf.19010
  4. Sasaki K, Yoshida H. (2019) Golgi stress response and organelle zones, FEBS Lett., in press. doi: 10.1002/1873-3468.13554
  5. Sasaki K, Komori R, Taniguchi M, Shimaoka A, Midori S, Yamamoto M, Okuda C, Tanaka R, Sakamoto M, Wakabayashi S, Yoshida H. (2019) PGSE Is a Novel Enhancer Regulating the Proteoglycan Pathway of the Mammalian Golgi Stress Response, Cell Struct Funct. 44, 1-19. doi: 10.1247/csf.18031.

西頭英起(宮崎大学 医学部)

  1. Tatenaka, Y., Kato, H., Ishiyama, M., Sasamoto, K., Shiga, M., Nishitoh, H., Ueno, Y. (2019) Monitoring lipid droplet dynamics in living cells by using fluorescent probes. Biochemistry 58:499-503.
  2. Nishitoh, H. (2019) Paradigm shift from “Compartment” to “Zone” in the understanding of organelles. J Biochem. 165, 97–99.
  3. Kadowaki, H. and Nishitoh, H. (2019) Endoplasmic reticulum quality control by garbage disposal. FEBS J. 286:232-240.

中野明彦(理化学研究所)

  1. Ishii, A., Kurokawa, K., Hotta, M., Yoshizaki, S., Kurita, M., Koyama, A., Nakano, A., and Kimura, Y. (2019). Role of Atg8 in the regulation of vacuolar membrane invagination. Sci. Rep. 9:14828.
  2. Shimada, T. L., Shimada, T., Okazaki, Y., Higashi, Y., Saito, K., Kuwata, K., Oyama, K., Kato, M., Ueda, H., Nakano, A., Ueda, T., Takano, Y., and Hara-Nishimura, I. (2019). HIGH STEROL ESTER 1 is a key factor in plant sterol homeostasis. Nat. Plants 5:1154-1166.

  3. Tojima, T., Suda, Y., Ishii, M., Kurokawa, K., and Nakano, A. (2019). Spatiotemporal dissection of the trans-Golgi network in budding yeast. J. Cell Sci. 132:jcs231159.
  4. Maeda, M., Kurokawa, K., Katada, T., Nakano, A., and Saito, K. (2019). COPII proteins exhibit distinct subdomains within each ER exit site for executing their functions. Sci. Rep. 9:7346.
  5. Shimada, T. L., Betsuyaku, S., Inada, N., Ebine, K., Fujimoto, M., Uemura, T., Takano, Y., Fukuda, H., Nakano, A., and Ueda, T. (2019). Enrichment of phosphatidylinositol 4,5-bisphosphate in the extra-invasive hyphal membrane promotes Colletotrichum infection of Arabidopsis thaliana. Plant Cell Physiol. 60:1514-1524.
  6. Abe, M., Kosaka, S., Shibuta, M., Nagata, K., Uemura, T., Nakano, A., and Kaya, H. (2019). Transient activity of the florigen complex during the floral transition in Arabidopsis thaliana. Development 146:dev171504.
  7. Kurokawa, K., Osakada, H., Kojidani, T., Waga, M., Suda, Y., Asakawa, H., Haraguchi, T., and Nakano, A. (2019). Visualization of secretory cargo transport within the Golgi apparatus in living yeast cells. J. Cell Biol. 218:1602-1618.
  8. Nakano, A. and von Blume, J. (2019). Organelle zones. Mol. Biol. Cell 30:731.
  9. Uemura, T., Nakano, R. T., Takagi, J., Wang, Y., Kramer, K., Finkemeier, I., Nakagami, H., Tsuda, K., Ueda, T., Schulze-Lefert, P., and Nakano,A. (2019). A Golgi-released subpopulation of the trans-Golgi network mediates protein secretion in Arabidopsis. Plant Physiol. 179:519-532.
  10. Kurokawa, K., and Nakano, A. (2019) The ER exit sites are specialized ER zones for the transport of cargo proteins from the ER to the Golgi apparatus. J Biochem. 165, 109–114.

泉正範(東北大学 学際科学フロンティア研究所)

  1. Izumi, M., Nakamura, S., Li, N. (2019) Autophagic turnover of chloroplasts: its roles and regulatory mechanisms in response to sugar starvation. Front. Plant Sci. 10: 280

  2. Nakamura, S., Izumi, M. (2019) Chlorophagy is ATG gene-dependent microautophagy process, Plant Signal. Behav. 14: 1554469

  3. Izumi, M., Ishida, H. (2019) An additional role for chloroplast proteins—an amino acid reservoir for energy production during sugar starvation, Plant Signal. Behav. 14: 1552057

齋藤伸一郎(東京大学医科学研究所)

  1. 齋藤伸一郎 (2019) 形質細胞様樹状細胞のTLR7による1型インターフェロン産生誘導機構の解明、感染 炎症 免疫 49: 31-41.

  2. Saitoh, SI., Saitoh, YM., Kontani, K., Sato, K., Miyake, K. (2019) ADP-ribosylation factor-like 8b is required for the development of mouse models of systemic lupus erythematosus. International Immunology. 31(4):225-37. doi: 10.1093/intimm/dxy084. PubMed PMID: 30753473.
  3. Furusho, K., Shibata, T., Sato, R., Fukui, R., Motoi, Y., Zhang, Y., Saitoh, SI., Ichinohe, T., Moriyama, M., Nakamura, S., Miyake, K. (2019)  Cytidine deaminase enables Toll-like receptor 8 activation by cytidine or its analogs. International Immunology. 31: 167-173. doi: 10.1093/intimm/dxy075. PubMed PMID: 30535046.

清水重臣(東京医科歯科大学 難治疾患研究所)

  1. Shimizu, S. (2019) Organelle zones in mitochondria. J Biochem. 165, 101–107.

2018年

加藤薫(産業技術総合研究所 バイオメディカル研究部門)

  1. Morita, M., Katoh,K., Noda, N.(2018) Direct Observation of Bacterial Growth in Giant Unilamellar Vesicles: A Novel Tool for Bacterial Cultures. ChemistryOpen https://doi.org/10.1002/open.201800126
  2. 大瀧達朗、加藤薫(2018)位相差顕微鏡 実験医学 Vol36, No.20 (増刊) p24-25
  3. 加藤薫(2018)偏光観察 実験医学 Vol36, No.20 (増刊) p30-31
  4. 加藤薫(2018)複屈折顕微鏡(Polscope)実験医学 Vol36, No.20 (増刊) p73-75
  5. 大瀧達朗、加藤薫(2018)アポディぜーション位相差顕微鏡 実験医学 Vol36, No.20 (増刊) p80-81
  6. Kijima, S. Staiger, C., Katoh, K., Nagasaki, A., Ito, K., and Uyeda, T. (2018)  Arabidopsis vegetative actin isoforms, AtACT2 and AtACT7, generate distinct filament arrays in living plant cells. Sci Rep., 8:4381 | DOI:10.1038/s41598-018-22707-w.
  7. Ito, N., Katoh, K., Kushige, H., Saito, Y., Umemoto, T., Matsuzaki, Y., Kiyonari, H., Kobayashi, D., Soga, M., Era, T., Araki, N., Furuta, Y., Suda, T., Kida, Y., and Ohta K. (2018) Ribosome Incorporation into Somatic Cells Promotes Lineage Transdifferentiation towards Multipotency. Sci Rep. 8, 1634 | DOI:10.1038/s41598-018-20057-1
  8. 加藤薫(2018) 超解像光学顕微鏡, 光技術動向調査報告書2017年度、p234-241

田村康(山形大学)

  1. Tamura, Y., Kojima, R., Endo, T. (2019) Advanced In Vitro Assay System to Measure Phosphatidylserine and Phosphatidylethanolamine Transport at ER/Mitochondria Interface. In: Drin G. (eds) Intracellular Lipid Transport. Methods Mol. Biol. vol 1949. Humana Press, New York, NY
  2. Sakaue, H., Shiota, T., Ishizaka, N., Kawano, S., Tamura, Y., Tan, KS., Imai, K., Motono, C., Hirokawa, T., Taki, K., Miyata, N., Kuge, O., Lithgow, T., and Endo, T. (2019) Porin Associates with Tom22 to Regulate the Mitochondrial Protein Gate Assembly Mol. Cell, 73, 1044–1055

  3. Sawasato, K., Sato, R., Nishikawa, H., Iimura, N., Kamemoto, Y., Fujikawa, K., Yamaguchi, T., Kuruma, Y., Tamura, Y., Endo, T., Ueda, T., Shimamoto, K. and Nishiyama, K. (2019) CdsA is involved in biosynthesis of glycolipozyme MPIase essential for membrane protein integration in vivo. Sci. Rep., 9, Article number: 1372

  4. Ueda, E., Tamura, Y., Sakaue, H., Kawano, S., Kakuta, C., Matsumoto, S., and Endo, T. (2019) Myristoyl group-aided protein import into the mitochondrial intermembrane space. Sci. Rep., 9, Article number: 1185.
  5. Kojima, R., Kakimoto, Y., Furuta, S., Itoh, K., Sesaki, H., Endo, T., and Tamura, Y. (2019) Maintenance of Cardiolipin and Crista Structure Requires Cooperative Functions of Mitochondrial Dynamics and Phospholipid Transport. Cell Rep., 26, 518–528.
  6. Tashiro, S. Caaveiro, J. Nakakido, M. Tanabe, A. Nagatoishi, S. Tamura, Y. Matsuda, N. Liu, D. Hoang, Q. and Tsumoto, K. (2018). Discovery and Optimization of Inhibitors of the Parkinson’s Disease Associated Protein DJ-1. ACS. Chem. Biol., 13(9):2783-2793. doi: 10.1021/acschembio.8b00701.

  7. Tamura, Y., Kawano, S., and Endo T. (2019) Organelle contact zones as sites for lipid transfer. J Biochem. 165, 115–123.

今泉和則(広島大学大学院医歯薬保健学研究科 分子細胞情報学)

  1. Saito, A. and Imaizumi, K. (2018) Unfolded Protein Response-Dependent Communication and Contact among Endoplasmic Reticulum, Mitochondria and Plasma Membrane.Int J Mol Sci, 19:3215.
  2. Osaki, Y., Saito, A., Kanemoto, S., Kaneko, M., Matsuhisa, K., Asada, R., Masaki, T., Orii, K., Fukao, T., Tomatsu, S., and Imaizumi, K. (2018) Shutdown of ER-associated degradation pathway rescues functions of mutant iduronate 2-sulfatase linked to mucopolysaccharidosis type II. Cell Death Dis, 9:808.
  3. Ohtake Y, Matsuhisa K, Kaneko M, Kanemoto S, Asada R, Imaizumi K, and Saito A. (2018) Axonal Activation of the Unfolded Protein Response Promotes Axonal Regeneration Following Peripheral Nerve Injury. Neuroscience, 375:34-48.
  4. Wu Y, Guo XP, Kanemoto S, Maeoka Y, Saito A, Asada R, Matsuhisa K, Ohtake Y, Imaizumi K, and Kaneko M. (2018) Sec16A, a key protein in COPII vesicle formation, regulates the stability and localization of the novel ubiquitin ligase RNF183. Plos One, 13: e0190407.
  5. Saito, A., Cai, L., Matsuhisa, K., Ohtake, Y., Kaneko, M., Kanemoto, S., Asada, R., and Imaizumi, K. (2018) Neuronal activity-dependent local activation of dendritic unfolded protein response promotes expression of brain-derived neurotrophic factor in cell soma. J Neurochem, 144:35-49.

矢木宏和(名古屋市立大学)

  1. Yagi, H., Takakura, D., Roumenina, L.T., Fridman, W.H., Sautès-Fridman, C., Kawasaki, N. and Kato, K. (2018) Site-specific N-glycosylation analysis of soluble Fcγ receptor IIIb in human serum. Sci. Rep., 8, Article number: 2719
  2. Yagi, H., Yan, G., Suzuki, T., Tsuge, S., Yamaguchi, T. and Kato, K. Lewis X-carrying neoglycolipids evoke selective apoptosis in neural stem cells (2018) Neurochem. Res., 43, 212-218

田村康(山形大学)

  1. Tashiro, S. Caaveiro, J. Nakakido, M. Tanabe, A. Nagatoishi, S. Tamura, Y. Matsuda, N. Liu, D. Hoang, Q. and Tsumoto, K. (2018). Discovery and Optimization of Inhibitors of the Parkinson’s Disease Associated Protein DJ-1. ACS. Chem. Biol., 13(9):2783-2793. doi: 10.1021/acschembio.8b00701.

  2. Kakimoto,Y.,  Tashiro, S., Kojima, R., Morozumi, Y., Endo, T., and Tamura, Y. (2018) Visualizing multiple inter-organelle contact sites using the organelle-targeted split-GFP system. Sci. Rep., 8, 6175. DOI:10.1038/s41598-018-24466-0
  3. Endo, T., and Tamura, Y. (2018) News and Views;  Shuttle mission in the mitochondrial intermembrane space.  EMBO J. e98993

中野明彦(東京大学、理化学研究所)

  1. Muro, K., Matsuura-Tokita, K., Tsukamoto, R., Kanaoka, M. M., Ebine, K., Higashiyama, T., Nakano, A., and Ueda, T. (2018) ANTH domain-containing proteins are required for the pollen tube plasma membrane integrity via recycling ANXUR kinases. Commun. Biol. 1:152.
  2. Ishikawa, K., Tamura, K., Ueda, H., Ito, Y., Nakano, A., Hara-Nishimura, I., and Shimada, T. (2018) The synaptotagmin-associated ER-plasma membrane contact sites are distributed to immobile ER tubules. Plant Physiol. 178:641-653.

  3. Haraguchi, T., Ito, K., Duan, Z., Sa, R., Takahashi, K., Shibuya, Y., Hagino, N., Miyatake, Y., Nakano, A., and Tominaga, M. (2018) Functional diversity of class XI myosins in Arabidopsis thalianaPlant Cell Physiol. 59:2268-2277.

  4. Ishii, M., Lupashin, V. V., and Nakano, A. (2018). Detailed analysis of the interaction of yeast COG complex. Cell Struct. Funct. 43:119-127.

  5. Ito, E., Ebine, K., Choi, S.-W., Ichinose, S., Uemura, T., Nakano, A., and Ueda, T. (2018). Integration of two RAB5 groups during endosomal transport in plants. eLife 7:e34064.

  6. Minamino, N., Kanazawa, T., Era, A., Ebine, K., Nakano, A., and Ueda, T. (2018) RAB GTPases in the basal land plant Marchantia polymorphaPlant Cell Physiol. 59:845-856.

  7. Tanabashi, S., Shoda, K., Saito, C., Sakamoto, T., Kurata, T., Uemura, T., and Nakano, A. (2018) A missense mutation in the NSF gene causes abnormal Golgi morphology in Arabidopsis thalianaCell Struct. Funct. 43:41-51.

  8. Takemoto, K., Ebine, K., Askani, J. C., Goh, T., Schumacher, K.,Nakano, A., and Ueda, T. (2018) Distinct sets of tethering complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at the vacuole in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 115:E2457-E2466.

  9. Suda, Y., Kurokawa, K., and Nakano, A. Regulation of ER-Golgi transport dynamics by GTPases in budding yeast. Frontiers Cell Dev. Biol. 5:122.

  10. Suda, Y., Tachikawa, H., Inoue, I., Kurita, T., Saito, C., Kurokawa, K.Nakano, A., and Irie, K. (2018) Activation of Rab GTPase Sec4 by its GEF Sec2 is required for prospore membrane formation during sporulation in yeast Saccharomyces cerevisiae. FEMS Yeast Res. 18:fox095.

  11. Sanchez-Rodriguez, C., Shi, Y., Kesten, C., Zhang, D., Sancho-Andrés, G., Ivakov, A., Lampugnani, E. R., Sklodowski, K., Fujimoto, M., Nakano, A., Bacic, A., Wallace, I. S., Ueda, T., van Damme, D., Zhou, Y., and Persson, S. (2018) The cellulose synthases are cargo of the TPLATE adaptor complex. Mol. Plant 11:346-349.

  12. Ito, Y., Uemura, T., and Nakano, A. (2018) Golgi Entry Core Compartment functions as the COPII-independent scaffold for ER-Golgi transport in plant cells.  J. Cell Sci. 131:jcs203893.

西頭英起(宮崎大学 医学部)

  1. Kadowaki, H., Satrimafitrah, P., Takami, Y. and Nishitoh, H. (2018) Molecular mechanism of ER stress-induced pre-emptive quality control involving association of the translocon, Derlin-1, and HRD1. Sci. Rep., 8, 7317 | DOI:10.1038/s41598-018-25724-x

清水重臣(東京医科歯科大学 難治疾患研究所)

  1. Shimizu, S. (2018) Organelle zones in mitochondria. J Biochem. in press.
  2. Yamaguchi, T., Suzuki, T., Sato, T., Takahashi, A., Watanabe, H., Kadowaki, A., Natsui, M., Inagaki, H., Arakawa, S., Nakaoka, S., Koizumi, Y., Seki, S., Adachi, S., Fukao, A., Fujiwara, T., Natsume, T., Kimura, A., Komatsu, M., Shimizu, S., Ito, H., Suzuki, Y., Penninger, J. M., Yamamoto, T., Ima Y. and Kuba, K. (2018) The CCR4-NOT deadenylase complex controls Atg7-dependent cell death and heart function. Scientific Signaling, 6, 11(516).
  3. Iwashita, H., Tajima Sakurai, H., Nagahora, N., Ishiyama, M., Shioji, K., Sasamoto, K., Okuma, K., Shimizu, S. and Ueno, Y. (2018) Small Fluorescent molecules for monitoring autophagic flux. FEBS Lett. 592, 559-567.
  4. Nagata, M., Arakawa, S., Yamaguchi, H., Torii, S., Endo, H., Tsujioka, M., Honda, S., Nishida, Y., Konishi, A. and Shimizu, S. (2018) Dram1 regulates DNA damage-induced alternative autophag Cell Stress 2, 55-65.
  5. Shimizu, S. (2018) Biological Roles of Alternative Autophagy. Mol Cells, 41, 50-54.
  6. Fujikake, N., Shin, M. and Shimizu, S. (2018) Association between autophagy and neurodegenerative diseases. Frontiers in Neuroscience, in press

後藤聡(立教大学)

  1. Nuclear envelope localization of PIG-B is essential for GPI-anchor synthesis in Drosophila.
    Yamamoto-Hino.M., Katsumata, E., Suzuki, E., Maeda, Y., Kinoshita, T. and Goto, S.
    J. Cell Sci., 131, jcs218024 (2018)
    DOI: 10.1242/jcs.218024

木下タロウ(大阪大学)

  1. Nuclear envelope localization of PIG-B is essential for GPI-anchor synthesis in Drosophila.
    Yamamoto-Hino.M., Katsumata, E., Suzuki, E., Maeda, Y., Kinoshita, T. and Goto, S.
    J. Cell Sci., 131, jcs218024 (2018)
    DOI: 10.1242/jcs.218024
  2. Kinoshita, T. (2018) Congenital defects in the expression of the glycosylphosphatidylinositol-anchored complement regulatory proteins CD59 and decay-accelerating factor. Semin. Hematol., 55:136-140.

  3. Mogami, Y., Suzuki, Y., Murakami, Y., Ikeda, T., Kimura, S., Yanagihara, K., Okamoto, N., and Kinoshita, T. (2018) Early infancy-onset stimulation-induced myoclonic seizures in three siblings with inherited glycosylphosphatidylinositol (GPI) anchor deficiency. Epileptic Disord., 20:42-50.

  4. Pagnamenta, A. T. *, Murakami, Y. *, Anzilotti, C., Titheradge, H., Oates, A. J., Morton, J., The DDD Study, Kinoshita, T.+, Kini, U.+, and Taylor, J. C.+. (2018) A homozygous variant disrupting the PIGH start-codon is associated with developmental delay, epilepsy and microcephaly. Hum. Mutat., 39:822-826. (* and +, equal contribution)

  5. Yoko-o, T., Umemura, M., Komatsuzaki, A., Ikeda, K., Ichikawa, D., Takase, K., Kanzawa, N., Saito, K., Kinoshita, T., Taguchi, R., and Jigami, Y. (2018) Lipid moiety of glycosylphosphatidylinositol-anchored proteins contributes to the determination of their final destination in yeast. Genes Cells, 23:880-892.

  6. Kawamoto, M., Murakami, Y., Kinoshita, T., and Kohara, N. (2018) Recurrent aseptic meningitis with PIGT mutations: a novel pathogenesis of recurrent meningitis successfully treated by eculizumab. BMJ Case Rep., pii: bcr-2018-225910.

  7. Nguyen, T. T. M., Murakami, Y., Wigby, K. M., Baratang, N. V., St-Denis, A., Rosenfeld, J. A., Laniewski, S. C., Jones, J., Iglesias, A. D., Jones, M. C., Masser-Frye, D., Scheuerle, A. E., Taft, R. J., Le Deist, F., Thompson, M., Kinoshita, T., and Campeau, P. M. (2018) Mutations in PIGS, encoding a GPI transamidase, cause a neurological syndrome ranging from fetal akinesia to epileptic encephalopathy. Am. J. Hum. Genet., 103:602-611.

  8. Yamamoto-Hino, M., Katsumata, E., Suzuki, E., Maeda, Y., Kinoshita, T., and Goto, S. (2018) Nuclear envelope localization of PIG-B is essential for GPI anchor synthesis in Drosophila. J. Cell Sci., 131: pii: jcs218024.

齋藤伸一郎(東京大学医科学研究所)

  1. 齋藤伸一郎 (2018) Toll様受容体(TLR)7の応答と細胞内ロジスティクス、医学のあゆみ 265(13): 1087-1093

  2. Sato, R., Kato, A., Chimura, T., Saitoh,S., Shibata, T., Murakami, Y., Fukui, R., Liu, K., Zhang, Y., Arii, J., Sun-Wada, GH., Wada, Y., Ikenoue, T., Barber, GN., Manabe, T., Kawaguchi, Y., Miyake, K. (2018) Combating herpesvirus encephalitis by potentiating a TLR3-mTORC2 axis. Nature Immunology. Sep 10, doi: 10.1038/s41590-018-0203-2. 

尾野雅哉(国立がん研究センター研究所 臨床プロテオーム解析部門)

  1. Ono, M., Lai, K. K. Y., Wu, K., Nguyen, C., Lin, D. P., Murali, R., Kahn, M. (2018) Nuclear receptor/Wnt beta-catenin interactions are regulated via differential CBP/p300 coactivator usage. PLoS One., e0200714.
    http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200714

泉正範(東北大学 学際科学フロンティア研究所)

  1. Nakamura, S., Hidema, J., Ishida, H., Sakamoto, W., Izumi, M. (2018) Selective elimination of membrane-damaged chloroplasts via microautophagy, Plant Physiol. 177, 1007-1026.

  2. Nakamura, S., and Izumi, M. (2018) Regulation of chlorophagy during photoinhibition and senescence: Lessons from mitophagy. Plant Cell Physiol. 59, 1135-1143
  3. 中村咲耶, 泉正範, (2018) 壊れた葉緑体はオートファジーで丸ごと除去される,植物科学最前線 9, 36-45

花田賢太郎(国立感染症研究所)

  1. Sakuma, C., Sekizuka, T., Kuroda, M., Kasai, F., Saito, K., Ikeda, M., Yamaji, T., Osada, N., and Hanada, K. (2018) Novel endogenous simian retroviral integrations in Vero cells: implications for quality control of a human vaccine cell substrate. Sci. Rep., 8, 644. (CS and TS are co-first authors. NO and KH are co-correspondence)
  2. Otsuki, N., Sakata, M., Saito, K., Okamoto, K., Mori, Y., Hanada, K., Takeda, M. (2018) Both sphingomyelin and cholesterol in the host cell membrane are essential for Rubella virus entry. J. Virol., 92, e01130-17. (K.H. and M.T. are co-correspondence. This article was selected as Spotlight of the issue)
  3. Shimasaki, K., Watanabe-Takahash, M., Umeda, M., Funamoto, S., Saito, Y., Noguchi, N., Kumagai, K., Hanada, K., Tsukahara, F., Maru, Y., Shibata, N., Naito, M., and Nishikawa, K. (2018) Pleckstrin homology domain of p210 BCR-ABL interacts with cardiolipin to regulate its mitochondrial translocation and subsequent mitophagy. Genes Cells, 23, 22-34.
  4. Shimizu, Y., Shirasago, Y., Kondoh, M., Suzuki, T., Wakita, T., Hanada, K., Yagi, K., and Fukasawa, M. (2018)  Monoclonal antibodies against occludin completely prevented hepatitis C virus infection in a mouse model. J. Virol., 92, e02258-17.
  5. Sugiki, T., Egawa, D., Kumagai, K., Kojima, C., Fujiwara, T., Takeuchi, K., Shimada, I., Hanada, K., and Takahashi, H. (2018) Phosphoinositide binding by the PH domain in ceramide transfer protein (CERT) is inhibited by hyperphosphorylation of an adjacent serine-repeat motif. J. Biol. Chem., 293(28), 11206-11217. (T.S. and D.E. are co-first authors. K.H. and H.T. are co-correspondence)
  6. Ikeda, M., Satomura, K., Sekizuka,T., Hanada, K., Endo, T., and Osada, N. (2018) Comprehensive phylogenomic analysis reveals a novel cluster of simian endogenous retroviral sequences in Colobinae monkeys. Am. J. Primatol., 80(7), e22882.
  7. Hanada, K. (2018) Lipid transfer proteins rectify inter-organelle flux and accurately deliver lipids at membrane contact sites (Invited review). J. Lipid Res., 59(8), 1341-1366.
  8. Shirasago, Y., Fukazawa, H., Aizaki, H., Suzuki, T., Suzuki, T., Sugiyama, K., Wakita, T., Hanada, K., Abe, R., and Fukasawa, M. (2018) Thermostable hepatitis C virus JFH1-derived variant isolated by adaptation to Huh7.5.1 cells. J. Gen. Virol., 99(10), 1407-1417.
  9. Kumagai, K., Elwell, CA., Ando, S., Engel, JN. and Hanada, K. (2018) Both the N- and C- terminal regions of the Chlamydial inclusion protein D (IncD) are required for interaction with the pleckstrin homology domain of the ceramide transport protein CERT. Biochem Biophys Res Commun., 505(4), 1070-1076. (K.K. and K.H. are co-correspondence)

神吉智丈(新潟大学大学院 医歯学総合研究科)

  1. Furukawa, K., Fukuda, T., Yamashita, SI., Saigusa, T., Kurihara, Y., Yoshida, Y., Kirisako, H., Nakatogawa, H., Kanki, T. (2018) The PP2A-like Protein Phosphatase Ppg1 and the Far Complex Cooperatively Counteract CK2-Mediated Phosphorylation of Atg32 to Inhibit Mitophagy. Cell Rep., 23(12):3579-3590.

 

名黒功(東京大学)

  1. Imamura, K., Yoshitane, H., Hattori, K., Yamaguchi, M., Yoshida, K., Okubo, T., Naguro, I., Ichijo, H. and Fukada, Y. (2018) ASK family kinases mediate cellular stress and redox signaling to circadian clock.  Natl. Acad. Sci. U.S.A.in press
  2. Watanabe, K., Umeda, T., Niwa, K., Naguro, I. and Ichijo, H.(2018)A PP6-ASK3 module coordinates the bidirectional cell volume regulation under osmotic stress. Cell Rep. 13, 2809-2817. 
  3. Kamiyama, M., Naguro, I. and Ichijo, H.  (2018) mASKing cancer cells in a tumor microenvironment. Cell Cyclein press

片桐豊雅(徳島大学)

  1. Daizumoto, K., Yoshimaru, T., Matsushita, Y., Fukawa, T., Uehara, H., Ono, M., Komatsu, M., Kanayama, H., and Katagiri, T. (2018) A DDX31/mutant-p53/EGFR axis promotes multistep progression of muscle invasive bladder cancer. Cancer Res. in press.
  2. Miyagawa, Y., Matsushita, Y., Suzuki, , Komatsu, M., Yoshimaru, T., Kimura, R., Yanai, A., Honda, J., Tangoku, A., Sasa, M., Miyoshi, Y., and Katagiri, T. (2018) Frequent downregulation of LRRC26by epigenetic alterations is involved in the malignant progression of triple-negative breast cancers. Int J Oncol. in press.

2017年7月以降

今泉和則(広島大学大学院医歯薬保健学研究科 分子細胞情報学)

  1. Saito, A. and Imaizumi, K. (2017) The Broad Spectrum of Signaling Pathways Regulated by Unfolded Protein Response in Neuronal Homeostasis. Neurochem Int, 119:26-34.
  2. Imaizumi, K. (2017) 60th Anniversary of the Japanese Society for Neurochemistry. J Neurochem, 141:788-789.
  3. Kaneko, M., Imaizumi, K., Saito, A., Kanemoto, S., Asada, R., Matsuhisa, K., and Ohtake, Y. (2017) ER Stress and Disease: Toward Prevention and Treatment. Biol Pharm Bull, 40:1337-1343.

下嶋美恵(東京工業大学 生命理工学院)

  1. Yoshitake Y, Sato R, Madoka Y, Ikeda K, Murakawa M, Suruga K, Sugiura D, Noguchi K, Ohta H, Shimojima M. (2017) Arabidopsis phosphatidic acid phosphohydrolases are essential for growth under nitrogen-depleted conditions. Front Plant Sci. 8, 1847

中野明彦(東京大学、理化学研究所)

  1. Yamagami, A., Saito, C., Sakuta, M., Shinozaki, M., Osada, H., Nakano, A., Asami, T., and Nakano, T. (2017) Brassinosteroids regulate vacuolar morphology in root meristem cells of ArabidopsisthalianaPlant Signal. Behav. 13: e1417722
  2. Kobayashi, K., Suemasa, F., Sagara, H., Nakamura, S., Ino, Y., Kobayashi, K., Hiramatsu, H., Haraguchi, T., Kurokawa, K., Todo, T., Nakano, A., and Iba, H. (2017) MiR-199a inhibits secondary envelopment of herpes simplex virus-1 through the downregulation of Cdc42-specific GTPase activating protein localized in Golgi apparatus. Sci. Rep. 7, 6650
    https://www.ncbi.nlm.nih.gov/pubmed/28751779
  3. Yamagami, A., Saito, C., Nakazawa, M., Fujioka, S., Uemura, T., Matsui, M., Sakuta, M., Shinozaki, K., Osada, H., Nakano, A., Asami, T., and Nakano, T. (2017) Evolutionarily conserved BIL4 suppresses the degradation of brassinosteroid receptor BRI1 and regulates cell elongation. Sci. Rep. 7, 5739
    https://www.ncbi.nlm.nih.gov/pubmed/28720789

花田賢太郎(国立感染症研究所)

  1. Tóth, E. A., Oszvald, Á., Péter, M., Balogh, G., Osteikoetxea-Molnár, A., Bozó, T., Szabó-Meleg, E., Nyitrai, M., Derényi, I., Yamaji, T., Hanada, K., Vígh, L., Matkó, J. (2017) Nanotubes connecting B lymphocytes: High impact of differentiation-dependent lipid composition on their growth and mechanics. Biochim. Biophys. Acta, 1862, 991-1000.
  2. Hanada, K. (2017) Ceramide transport from the endoplasmic reticulum to the trans Golgi region at organelle membrane contact sites.  In: Tagaya, M., Simmen, T. (eds) Organelle Contact Sites. Adv. Exp. Med. Biol., 997, 69-81, Springer, Singapore

清水重臣(東京医科歯科大学 難治疾患研究所)

  1. Arakawa, S., Tsujioka, M., Yoshida, T., Tajima-Sakurai, H., Nishida, Y., Matsuoka, Y., Yoshino, I., Tsujimoto, Y. and Shimizu, S. (2017) Role of Atg5-dependent cell death in the embryonic development of Bax/Bak double-knockout mice. Cell Death Differ., 24,1598-1608.
  2. Asano, J., Sato, T., Ichinose, S., Kajita, M., Onai, N., Shimizu, S. and Ohteki, T., (2017) Intrinsic autophagy is required for the maintenance of intestinal stem cells and for irradiation-induced intestinal regeneration. Cell Rep., 20, 1050–1060.
  3. Hidefumi, I., Satoru, T., Noriyoshi, N., Munetaka, I., Kosei, S., Kazumi, S., Shimizu, S. and Kentaro. O., (2017) Live Cell Imaging of Mitochondrial Autophagy with a Novel Fluorescent Small Molecule. ACS Chemical Biology, 12, 2546-2551.
  4. Kanemoto, K. Sugimura, Y. Shimizu, S. Yoshida, S. and Hosoya, T. (2017) Rhodium-catalyzed odorless synthesis of diaryl sulfides from borylarenes and S-aryl thiosulfonates. Commun., 53, 10640–10643.
  5. Yotsumoto, S., Muroi, Y., Chiba, T., Ohmura, R., Yoneyama, M., Magarisawa, M., Dodo, K., Terayama, N., Sodeoka, M., Aoyagi, R., Arita, M., Arakawa, S., Shimizu, S. and Tanaka, M. (2017) Hyperoxidation of ether-linked phospholipids accelerates neutrophil extracellular trap formation. Rep., 7, 16026

田村康(山形大学)

  1. Kawano, S., Tamura, Y., Kojima, R., Bala, S., Asai, E,  Michel, AH., Kornmann, B., Riezman, I., Riezman, H., Sakae, Y., Okamoto, Y., and Endo T. (2017). Structure–function insights into direct lipid transfer between membranes by Mmm1–Mdm12 of ERMES.  J. Cell. Biol. 217, 959–974. DOI: 10.1083/jcb.201704119.

  2. Tamura, Y. and Endo, T. (2017) Role of Intra- and Inter-mitochondrial Membrane Contact Sites in Yeast Phospholipid Biogenesis. In: Tagaya, M., Simmen, T. (eds) Organelle Contact Sites. Adv. Exp. Med. Biol., 997, 121-133, Springer, Singapore

名黒功(東京大学)

  1. Hirata, Y., Katagiri, K., Nagaoka, K., Morishita, T., Kudoh, Y., Hatta, T., Naguro, I., Kano, K., Udagawa, T., Natsume, T., Aoki, J., Inada, T., Noguchi, T., Ichijo, H. and Matsuzawa, A. (2017) TRIM48 promotes ASK1 activation and cell death through ubiquitination-dependent degradation of the ASK1-negative regulator PRMT1. Cell Rep.21, 2447-2457. 
  2. Hattori, K., Ishikawa, H., Sakauchi, C., Takayanagi, S., Naguro, I. and Ichijo, H. (2017) Cold stress-induced ferroptosis involves the ASK1-p38 pathway. EMBO Rep.18, 2067-2078.
  3. Kamiyama, M., Shirai, T., Tamura, S., Suzuki-Inoue, K., Ehata, S., Takahashi, K., Miyazono, K., Hayakawa, Y., Sato, T., Takeda, K., Naguro, I. and Ichijo, H. (2017) ASK1 facilitates tumor metastasis through phosphorylation of an ADP receptor P2Y12 in platelets. Cell Death Differ.24, 2066-2076.

加藤薫(産業技術総合研究所 バイオメディカル研究部門)

  1. Ohzono, T., Katoh, K., Wang, C., Fukazawa, A., Yamaguchi, S., and Fukuda, J. (2017) Uncovering different states of topological defects in schlieren textures of a nematic liquid crystal. Sci. Rep. 7, 16814 | DOI:10.1038/s41598-017-16967-1

木下タロウ(大阪大学)

  1. Nguyen, Thi Tuyet Mai*, Y. Murakami*, E. Sheridan*, S. Ehresmann, J. Rousseau, A. St-Denis, G. Chai, N. F. Ajeawung, L. Fairbrother, T. Reimschisel, A. Bateman, E. Berry-Kravis, F. Xia, J. Tardif, D. A. Parry, C. V. Logan, C. Diggle, C. P. Bennett, L. Hattingh, J. A. Rosenfeld, M. S. Perry, M. J. Parker, F. Le Deist, M. S. Zaki, E. Ignatius, P. Isohanni, T. Loennqvist, C. J. Carroll, C. A. Johnson, J. G. Gleeson, T. Kinoshita and P. M. Campeau. (2017) Mutations in GPAA1, encoding a GPI transamidase complex protein, cause developmental delay, epilepsy, cerebellar atrophy, and osteopenia. Am. J. Hum. Genet., 101:856-865.

  2. Liu, Y.-S., X.-Y. Guo, T. Hirata, Y. Rong, D. Motooka, T. Kitajima, Y. Murakami, X.-D. Gao, S. Nakamura, T. Kinoshita and M. Fujita. (2017) N-Glycan dependent protein folding and endoplasmic reticulum retention regulate GPI-anchor processing. J. Cell Biol., 217: 585-599.

  3. Hirata, T., S. K. Mishra, S. Nakamura, K. Saito, D. Motooka, Y. Takada, N. Kanzawa, Y. Murakami, Y. Maeda, M. Fujita, Y. Yamaguchi and T. Kinoshita. (2017) Identification of a Golgi GPI-N-acetylgalactosamine transferase with tandem transmembrane regions in the catalytic domain. Nat. Commun., 9:405.

  4. 木下タロウ(2017)後天性突然変異で生じるGPIアンカー欠損赤血球と発作性夜間ヘモグロビン尿症、生化学、89(3):351-358.

  5. Colley, K. J., Varki, A. and Kinoshita, T.  (2017) Cellular Organization of Glycosylation. In Essentials of Glycobiology 3rd ed. Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A., Kinoshita, T., Packer, N.J., Prestegard, J., Schnaar, R., Seeberger, P. (eds.), p41-49. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.
    https://www.ncbi.nlm.nih.gov/pubmed/28876808

  6. Schnaar, R. L. and Kinoshita, T.  (2017) Glycosphingolipids. In Essentials of Glycobiology 3rd ed. Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A., Kinoshita, T., Packer, N.J., Prestegard, J., Schnaar, R., Seeberger, P. (eds.), p125-135. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.
    https://www.ncbi.nlm.nih.gov/pubmed/28876845

  7. Ferguson, M. A. J., Hart, G. W. and Kinoshita, T.  (2017) Glycosylphosphatidylinositol anchors. In Essentials of Glycobiology 3rd ed. Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A., Kinoshita, T., Packer, N.J., Prestegard, J., Schnaar, R., Seeberger, P. (eds.), p137-150. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.
    https://www.ncbi.nlm.nih.gov/pubmed/28876821

  8. Freeze, H. H., Kinoshita, T.  and Schnaar, R. L.  (2017) Genetic disorders of glycan degradation. In Essentials of Glycobiology 3rd ed. Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A., Kinoshita, T., Packer, N.J., Prestegard, J., Schnaar, R., Seeberger, P. (eds.), p553-568. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.
    https://www.ncbi.nlm.nih.gov/pubmed/28876818

  9. Freeze, H. H., H. Schachter and Kinoshita, T.  (2017) Genetic disorders of glycosylation. In Essentials of Glycobiology 3rd ed. Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A., Kinoshita, T., Packer, N.J., Prestegard, J., Schnaar, R., Seeberger, P. (eds.), p569-582. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.
    https://www.ncbi.nlm.nih.gov/pubmed/28876812

  10. Freeze, H. H., Kinoshita, T.  and Varki, A. (2017) Glycans in acquired human diseases. In Essentials of Glycobiology 3rd ed. Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A., Kinoshita, T., Packer, N.J., Prestegard, J., Schnaar, R., Seeberger, P. (eds.), p583-595. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.
    https://www.ncbi.nlm.nih.gov/pubmed/28876835

  11. Kohashi, K., A. Ishiyama, S. Yuasa, T. Tanaka, K. Miya, Y. Adachi, N. Sato, H. Saitsu, C. Ohba, N. Matsumoto, Y. Murakami, T. Kinoshita, K. Sugai and M. Sasaki. 2017. Epileptic apnea in a patient with inherited glycosylphosphatidylinositol anchor deficiency and PIGT mutations. Brain Dev., 2017 Jul 17. pii: S0387-7604(17)30174-2. PMID: 28728837

齊藤達哉(徳島大学)

  1. Takahama M, Akira S, and Saitoh, T. (2017) Autophagy limits activation of the inflammasomes. Immunol Rev.  doi:10.1111/imr.12613, in press
  2. Takahama, M., Fukuda, M., Ohbayashi, N., Kozaki, T., Misawa, T., Okamoto, T., Matsuura, Y., Akira, S., and Saitoh, T. (2017) The RAB2B-GARIL5 complex promotes cytosolic DNA-induced innate immune responses. Cell Rep. 20, 2944-2954.

  3. 髙濵充寛,齊藤達哉 (2017) インフラマソーム. 炎症と免疫 25, 94-96.

  4. 髙濵充寛,齊藤達哉 (2017) オートファジー. 周産期医学 47, 1513-1520.

  5. 渋谷周作, 齊藤達哉, 吉森保 (2017) オートファジーと生体防御応答. 実験医学増刊 The オートファジー 研究者たちの集大成が見える最新ビジュアルテキスト 35, 144-150.

  6. Misawa, T., Takahama, M., and Saitoh, T. (2017) Mitochondria–Endoplasmic Reticulum Contact Sites Mediate Innate Immune Responses. In: Tagaya, M., Simmen, T. (eds) Organelle Contact Sites. Adv. Exp. Med. Biol., 997, 187-197, Springer, Singapore
  7. 齊藤達哉. (2017) 尿酸塩結晶によるインフラマソーム活性化と痛風性関節炎. 尿酸と血糖 3, 6-9
  8. 齊藤達哉. (2017) 痛風関節炎の発症機序. カレントテラピー 35, 61-65

矢木宏和(名古屋市立大学)

  1. Yagi, H., Yan, G., Suzuki, T., Tsuge, S., Yamaguchi, T., and Kato, K. (2017) Lewis X-carrying neoglycolipids evoke selective apoptosis in neural stem cells. Neurochem Res in press
  2. Yanaka, S., Yamazaki, T., Yogo, R., Noda, M., Uchiyama, S., Yagi, H., and Kato, K. (2017) NMR Detection of Semi-Specific Antibody Interactions in Serum Environments. Molecules 22, E1619
  3.  Yogo, R., Yanaka, S., Yagi, H., Martel, A., Porcar, L., Ueki, Y., Inoue, R., Sato, N., Sugiyama, M., and Kato, K. (2007) Characterization of conformational deformation-coupled interaction between immunoglobulin G1 Fc glycoprotein and a low-affinity Fcγ receptor by deuteration-assisted small-angle neutron scattering. Biochem Biophys Rep 16, 1-4
  4. Yagi, H., Tateno, H., Hayashi, K., Hayashi, T., Takahashi, K., Hirabayashi, J., Kato, K., and Tsuboi, M. (2017) Lectin microarray analysis of isolated polysaccharides from Sasa veitchii. Biosci Biotechnol Biochem 81, 1687-1689
  5. 矢木宏和、加藤晃一 (2017) NMRを利用して糖タンパク質糖鎖の構造動態と相互作用を観る. 医学のあゆみ 262, 467-473

森和俊(京都大学)

  1. Ishikawa, T., Kashima, M., Nagano, A. J., Ishikawa-Fujiwara, T., Kamei, Y., Todo, T. and Mori, K. (2017) Unfolded Protein Response Transducer IRE1-mediated Signaling Independent of XBP1 mRNA Splicing Is Not Required for Growth and Development of Medaka Fish. eLife, 6, e26845.

細谷孝充(東京医科歯科大学)

  1. Nishiyama, Y., Hazama, Y., Yoshida, S., and Hosoya, T. (2017) Synthesis of Unsymmetrical Tertiary Phosphine Oxides via Sequential Substitution Reaction of Phosphonic Acid Dithioesters with Grignard Reagents. Org. Lett. 19, 3899-3902 

尾野雅哉(国立がん研究センター研究所)

  1. Kagami, Y., Ono, M., and Yoshida, K. (2017) Plk1 phosphorylation of CAP-H2 triggers chromosome condensation by condensin II at the early phase of mitosis. Sci Rep 7, 5583
  2. 尾野雅哉 (2017) パラフィン包埋標本を用いたプロテオーム解析. 病理と臨床. 35(7), 622-627

金川基(神戸大学)

  1. Kamizaki, K., Doi, R., Hayashi, M., Saji, T., Kanagawa, M., Toda, T., Fukada, SI., Ho, HH., Greenberg, ME., Endo, M., Minami, Y. (2017) The Ror1 receptor tyrosine kinase plays a critical role in regulating satellite cell proliferation during regeneration of injured muscle. J. Biol. Chem.in press (jbc.M117.785709. doi:10.1074/jbc.M117.785709)