Publications

2022

  • Protocol to analyze lipid asymmetry in the plasma membrane.
    Miyata Y, Segawa K.
    STAR Protoc. 2022 Dec 16; 3(4): 101870. doi: 10.1016/j.xpro.2022.101870.
  • STAR Protoc
  • Two types of type IV P-type ATPases independently re-establish the asymmetrical distribution of phosphatidylserine in plasma membranes.
    Miyata Y, Yamada K, Nagata S, Segawa K.
    J Biol Chem. 2022 Sep 23;298(11):102527.
  • J Biol Chem
  • Inefficient development of syncytiotrophoblasts in the Atp11a-deficient mouse placenta.
    Ochiai Y, Suzuki C, Segawa K, Uchiyama Y, Nagata S.
    Proc Natl Acad Sci U S A. 2022 May 3;119(18):e2200582119. doi: 10.1073/pnas.2200582119.
  • Requirement of Xk and Vps13a for the P2X7-mediated phospholipid scrambling and cell lysis in mouse T cells.
    Ryoden Y, Segawa K, Nagata S.
    Proc Natl Acad Sci U S A. 2022 Feb 15;119(7):e2119286119. doi: 10.1073/pnas.2119286119.

2021

  • A sublethal ATP11A mutation associated with neurological deterioration causes aberrant phosphatidylcholine flipping in plasma membranes.
    Segawa K, Kikuchi A, Noji T, Sugiura Y, Hiraga K, Suzuki C, Haginoya K, Kobayashi Y, Matsunaga M, Ochiai Y, Yamada K, Nishimura T, Iwasawa S, Shoji W, Sugihara F, Nishino K, Kosako H, Ikawa M, Uchiyama Y, Suematsu M, Ishikita H, Kure S, Nagata S.
    J Clin Invest. 2021 Sep 15;131(18):148005. doi: 10.1172/JCI148005.
  • Sensing and clearance of apoptotic cells.
    Nagata S, Segawa K.
    Curr Opin Immunol. 2021 Feb;68:1-8. doi: 10.1016/j.coi.2020.07.007.

2020

  • Transport Cycle of Plasma Membrane Flippase ATP11C by Cryo-EM.
    Nakanishi H, Nishizawa T, Segawa K, Nureki O, Fujiyoshi Y, Nagata S, Abe K.
    Cell Rep. 2020 Sep 29;32(13):108208. doi: 10.1016/j.celrep.2020.108208.
  • Crystal structure of a human plasma membrane phospholipid flippase.
    Nakanishi H, Irie K, Segawa K, Hasegawa K, Fujiyoshi Y, Nagata S, Abe K.
    J Biol Chem. 2020 Jul 24;295(30):10180-10194. doi: 10.1074/jbc.RA120.014144.
  • Functional Expression of the P2X7 ATP Receptor Requires Eros.
    Ryoden Y, Fujii T, Segawa K, Nagata S.
    J Immunol. 2020 Feb 1;204(3):559-568. doi: 10.4049/jimmunol.1900448.
  • Flippase and scramblase for phosphatidylserine exposure.
    Nagata S, Sakuragi T, Segawa K.
    Curr Opin Immunol. 2020 Feb;62:31-38. doi: 10.1016/j.coi.2019.11.009.

2019

  • Predominant localization of phosphatidylserine at the cytoplasmic leaflet of the ER, and its TMEM16K-dependent redistribution.
    Tsuji T, Cheng J, Tatematsu T, Ebata A, Kamikawa H, Fujita A, Gyobu S, Segawa K, Arai H, Taguchi T, Nagata S, Fujimoto T.
    Proc Natl Acad Sci U S A. 2019 Jul 2;116(27):13368-13373. doi: 10.1073/pnas.1822025116.
  • MERTK tyrosine kinase receptor together with TIM4 phosphatidylserine receptor mediates distinct signal transduction pathways for efferocytosis and cell proliferation.
    Nishi C, Yanagihashi Y, Segawa K, Nagata S.
    J Biol Chem. 2019 May 3;294(18):7221-7230. doi: 10.1074/jbc.RA118.006628.

2018

  • Phospholipid flippases enable precursor B cells to flee engulfment by macrophages.
    Segawa K, Yanagihashi Y, Yamada K, Suzuki C, Uchiyama Y, Nagata S.
    Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):12212-12217. doi: 10.1073/pnas.1814323115.
  • The CDC50A extracellular domain is required for forming a functional complex with and chaperoning phospholipid flippases to the plasma membrane.
    Segawa K, Kurata S, Nagata S.
    J Biol Chem. 2018 Feb 9;293(6):2172-2182. doi: 10.1074/jbc.RA117.000289.

2017

  • Mouse macrophages show different requirements for phosphatidylserine receptor Tim4 in efferocytosis.
    Yanagihashi Y, Segawa K, Maeda R, Nabeshima YI, Nagata S.
    Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):8800-8805. doi: 10.1073/pnas.1705365114.
  • Characterization of the scrambling domain of the TMEM16 family.
    Gyobu S, Ishihara K, Suzuki J, Segawa K, Nagata S.
    Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6274-6279. doi: 10.1073/pnas.1703391114.

2016

  • Phospholipid flippase activities and substrate specificities of human type IV P-type ATPases localized to the plasma membrane.
    Takatsu H, Tanaka G, Segawa K, Suzuki J, Nagata S, Nakayama K, Shin HW.
    J Biol Chem. 2016 Oct 7;291(41):21421. doi: 10.1074/jbc.A114.593012.
  • Human Type IV P-type ATPases That Work as Plasma Membrane Phospholipid Flippases and Their Regulation by Caspase and Calcium.
    Segawa K, Kurata S, Nagata S.
    J Biol Chem. 2016 Jan 8;291(2):762-72. doi: 10.1074/jbc.M115.690727.
  • Exposure of phosphatidylserine on the cell surface.
    Nagata S, Suzuki J, Segawa K, Fujii T.
    Cell Death Differ. 2016 Jun;23(6):952-61. doi: 10.1038/cdd.2016.7.

2015

  • An Apoptotic 'Eat Me' Signal: Phosphatidylserine Exposure.
    Segawa K, Nagata S.
    Trends Cell Biol. 2015 Nov;25(11):639-650. doi: 10.1016/j.tcb.2015.08.003.
  • Clearance of Apoptotic Cells and Pyrenocytes.
    Toda S, Nishi C, Yanagihashi Y, Segawa K, Nagata S.
    Curr Top Dev Biol. 2015;114:267-95. doi: 10.1016/bs.ctdb.2015.07.017.

2014

  • Flippases and scramblases in the plasma membrane.
    Segawa K, Suzuki J, Nagata S.
    Cell Cycle. 2014;13(19):2990-1. doi: 10.4161/15384101.2014.962865.
  • Phospholipid flippase activities and substrate specificities of human type IV P-type ATPases localized to the plasma membrane.
    Takatsu H, Tanaka G, Segawa K, Suzuki J, Nagata S, Nakayama K, Shin HW.
    J Biol Chem. 2014 Nov 28;289(48):33543-56. doi: 10.1074/jbc.M114.593012.
  • Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure.
    Segawa K, Kurata S, Yanagihashi Y, Brummelkamp TR, Matsuda F, Nagata S.
    Science. 2014 Jun 6;344(6188):1164-8. doi: 10.1126/science.1252809.
  • MerTK-mediated engulfment of pyrenocytes by central macrophages in erythroblastic islands.
    Toda S, Segawa K, Nagata S.
    Blood. 2014 Jun 19;123(25):3963-71. doi: 10.1182/blood-2014-01-547976.
  • Tim4- and MerTK-mediated engulfment of apoptotic cells by mouse resident peritoneal macrophages.
    Nishi C, Toda S, Segawa K, Nagata S.
    Mol Cell Biol. 2014 Apr;34(8):1512-20. doi: 10.1128/MCB.01394-13.

2012

  • Synergistic effect of Tim4 and MFG-E8 null mutations on the development of autoimmunity.
    Miyanishi M, Segawa K, Nagata S.
    Int Immunol. 2012 Sep;24(9):551-9. doi: 10.1093/intimm/dxs064.

2011

  • Constitutive exposure of phosphatidylserine on viable cells.
    Segawa K, Suzuki J, Nagata S.
    Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19246-51. doi: 10.1073/pnas.1114799108.

2009

  • Identification of a novel distal enhancer in human adiponectin gene.
    Segawa K, Matsuda M, Fukuhara A, Morita K, Okuno Y, Komuro R, Shimomura I.
    J Endocrinol. 2009 Jan;200(1):107-16. doi: 10.1677/JOE-08-0376.

2008

  • The -1535 promoter variant of the visfatin gene is associated with serum triglyceride and HDL-cholesterol levels in Japanese subjects.
    Tokunaga A, Miura A, Okauchi Y, Segawa K, Fukuhara A, Okita K, Takahashi M, Funahashi T, Miyagawa J, Shimomura I, Yamagata K.
    Endocr J. 2008 Mar;55(1):205-12. doi: 10.1507/endocrj.k07e-039.

2007

  • Nitric oxide dysregulates adipocytokine expression in 3T3-L1 adipocytes.
    Nozaki M, Fukuhara A, Segawa K, Okuno Y, Abe M, Hosogai N, Matsuda M, Komuro R, Shimomura I.
    Biochem Biophys Res Commun. 2007 Dec 7;364(1):33-9. doi: 10.1016/j.bbrc.2007.09.084.
  • Visfatin is released from 3T3-L1 adipocytes via a non-classical pathway.
    Tanaka M, Nozaki M, Fukuhara A, Segawa K, Aoki N, Matsuda M, Komuro R, Shimomura I.
    Biochem Biophys Res Commun. 2007 Jul 27;359(2):194-201. doi: 10.1016/j.bbrc.2007.05.096.
  • Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation.
    Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, Furukawa S, Tochino Y, Komuro R, Matsuda M, Shimomura I.
    Diabetes. 2007 Apr;56(4):901-11. doi: 10.2337/db06-0911.

2006

  • Visfatin in adipocytes is upregulated by hypoxia through HIF1alpha-dependent mechanism.
    Segawa K, Fukuhara A, Hosogai N, Morita K, Okuno Y, Tanaka M, Nakagawa Y, Kihara S, Funahashi T, Komuro R, Matsuda M, Shimomura I.
    Biochem Biophys Res Commun. 2006 Oct 27;349(3):875-82. doi: 10.1016/j.bbrc.2006.07.083.