東京医科歯科大学 難治疾患研究所 機能分子病態学分野

研究成果:原著論文

氏名の左に「*」を付してあるのが、その論文の責任著者(Corresponding author)です。

  1. Cui, M., Yamano, K., Yamamoto, K., Yamamoto-Imoto, H., Minami, S., Yamamoto, T., Matsui, S., Kaminishi, T., Shima, T., Ogura, M., Tsuchiya, M., Nishino, K., Layden, B., Kato, H., Ogawa, H., Oki, S., Okada, Y., Isaka, Y., Kosako, H., Matsuda, N., Yoshimori, T., and *Nakamura S.
    HKDC1, a target of TFEB, is essential to maintain both mitochondrial and lysosomal homeostasis, preventing cellular senescence.
    Proc. Natl. Acad. Sci. USA, 121(2): e2306454120 (2024).
  2. Akabane, S., Watanabe, K., Kosako, H., Yamashita, SI., Nishino, K., Kato, M., Sekine, S., Kanki, T., Matsuda, N., Endo, T., and *Oka, T.
    TIM23 facilitates PINK1 activation by safeguarding against OMA1-mediated degradation in damaged mitochondria.
    Cell Rep. 42(5):112454 (2023).
  3. Hayashida, R., Kikuchi, R., Imai, K., Kojima, W., Yamada, T., Iijima, M., Sesaki, H., Tanaka, K., *Matsuda, N., *Yamano, K.
    Elucidation of ubiquitin-conjugating enzymes that interact with RBR-type ubiquitin ligases using a liquid-liquid phase separation-based method.
    Journal of Biological Chemistry, 299(2):102822 (2023).
  4. Queliconi, BB., Kojima, W., Kimura, M., Imai, K., Udagawa, C., Motono, C., Hirokawa, T., Tashiro, S., Caaveiro, JMM., Tsumoto, K., Yamano, K., Tanaka, K., and *Matsuda, N.
    Unfolding is the driving force for mitochondrial import and degradation of the Parkinson's disease-related protein DJ-1.
    J. Cell Science, 134(22):jcs258653 (2021).
  5. *Yoshida Y, Asahina M, Murakami A, Kawawaki J, Yoshida M, Fujinawa R, Iwai K, Tozawa R, Matsuda N, *Tanaka K, and *Suzuki T.
    Loss of peptide:N-glycanase causes proteasome dysfunction mediated by a sugar-recognizing ubiquitin ligase.
    Proc. Natl. Acad. Sci. USA, 118 (27) e2102902118 (2021)
  6. Baba, T., Tanimura, S., Yamaguchi, A., Horikawa, K., Yokozeki, M., Hachiya, S., Iemura, S-I., Natsume, T., Matsuda, N., and *Takeda, K.
    Cleaved PGAM5 dephosphorylates nuclear serine/arginine-rich proteins during mitophagy.
    BBA Mol. Cell Res., 1868(7):119045. (2021)
  7. Kojima W, *Yamano K, Kosako H, Imai K, Kikuchi R, Tanaka K, Matsuda N.
    Mammalian BCAS3 and C16orf70 associate with the phagophore assembly site in response to selective and non-selective autophagy.
    Autophagy, 17,2011-2036. (2021)
  8. *Yamano K, Kikuchi R, Kojima W, Hayashida R, Koyano F, Kawawaki J, Shoda T, Demizu Y, Naito M, Tanaka K, and *Matsuda N.
    Critical Role of Mitochondrial Ubiquitination and the OPTN-ATG9A Axis in Mitophagy.
    J. Cell Biol., 219: e201912144 (2020), doi: 10.1083/jcb.201912144.
    Selected by Year in Cell Biology Collection 2020
  9. Koyano F, Yamano K, Kosako H, Tanaka K, and *Matsuda N.
    Parkin recruitment to impaired mitochondria and unspecified ubiquitylation are facilitated by MITOL.
    J. Biol. Chem., 294, 10300-10314 (2019), doi: 10.1074/jbc.RA118.006302.
  10. Koyano F, Yamano K, Kosako H, Kimura Y, Kimura M, Fujiki Y, Tanaka K, and *Matsuda N.
    Parkin-mediated ubiquitylation redistributes MITOL/March5 from mitochondria to peroxisomes.
    EMBO Rep., 20:e47728 (2019), doi: 10.15252/embr.201947728.
  11. Yoshida Y, Saeki Y, Tsuchiya H, and *Tanaka K.
    Detection of ubiquitination activity and identification of ubiquitinated substrates using TR-TUBE.
    Methods in Enzymology, 618:135-147 (2019)
  12. Yamaguchi A, Ishikawa H, Furuoka M, Yokozeki M, Matsuda N, Tanimura S, and *Takeda K.
    Cleaved PGAM5 is released from mitochondria depending on proteasome-dependent rupture of the outer mitochondrial membrane during mitophagy.
    Journal of Biochemistry, 165(1):19-25 (2019)
  13. Tashiro S, Caaveiro JMM, Nakakido M, Tanabe A, Nagatoishi S, Tamura Y, Matsuda N, Liu D, Hoang QQ, and *Tsumoto K.
    Discovery and Optimization of Inhibitors of the Parkinson's Disease Associated Protein DJ-1.
    ACS Chem Biol., 13(9):2783-2793 (2018)
  14. *Yamano K, Wang C, Sarraf SA, Münch C, Kikuchi R, Noda NN, Hizukuri Y, Kanemaki MT, Harper W, Tanaka K, *Matsuda N, and *Youle RJ.
    Endosomal Rab cycles regulate Parkin-mediated mitophagy.
    Elife, (2018) 7:e31326 (32 page), doi: 10.7554/eLife.31326.
  15. Okatsu K, Sato Y, Yamano K, Matsuda N, Negishi L, Takahashi A, Yamagata A, Goto-Ito S, Mishima M, Ito Y, Oka T, Tanaka K, and *Fukai S.
    Structural insights into ubiquitin phosphorylation by PINK1.
    Scientific Reports, 8(1):10382 (2018)
  16. *Matsuda N, Kimura M, Queliconi BB, Kojima W, Mishima M, Takagi K, Koyano F, Yamano K, Mizushima T, Ito Y, and *Tanaka K.
    Parkinson's disease-related DJ-1 functions in thiol quality control against aldehyde attack in vitro.
    Scientific Reports, 7(1):12816 (2017)
  17. Sato Y, Okatsu K, Saeki Y, Yamano K, Matsuda N, Kaiho A, Yamagata A, Goto-Ito S, Ishikawa M, Hashimoto Y, Tanaka K, and *Fukai S.
    Structural basis for specific cleavage of Lys6-linked polyubiquitin chains by USP30.
    Nat. Struct. Mol. Biol. 24, 911-919 (2017) doi: 10.1038/nsmb.3469.
  18. Izumikawa K, Nobe Y, Yoshikawa H, Ishikawa H, Miura Y, Nakayama H, Nonaka T, Hasegawa M, Egawa N, Inoue H, Nishikawa K, Yamano K, Simpson RJ, Taoka M, Yamauchi Y, Isobe T, and *Takahashi N.
    TDP-43 stabilises the processing intermediates of mitochondrial transcripts.
    Sci Rep. 7:7709 (2017) doi: 10.1038/s41598-017-06953-y.
  19. *Yoshida Y, Yasuda S, Fujita T, Hamasaki M, Murakami A, Kawawaki J, Iwai K, Saeki Y, Yoshimori T, Matsuda N, and *Tanaka K.
    Ubiquitination of exposed glycoproteins by SCFFBXO27 directs damaged lysosomes for autophagy.
    Proc. Natl. Acad. Sci. USA 114(32): 8574-8579 (2017)
  20. Nishio K, Yoshida Y, Tanaka K, and *Mizushima T.
    Structural analysis of a function-associated loop mutant of the substrate-recognition domain of Fbs1 ubiquitin ligase.
    Acta Crystallogr F Struct Biol Commun. 72(Pt 8) 619-626 (2016)
  21. Akabane S, Matsuzaki K, Yamashita S-I, Arai K, Okatsu K, Kanki T, Matsuda N, and *Oka T.
    Constitutive activation of PINK1 leads to proteasome-mediated and non-apoptotic cell death independently of mitochondrial autophagy.
    J. Biol. Chem. 291(31): 16162-74 (2016)
  22. Kojima W, Kujuro Y, Okatsu K, Queliconi BB, Koyano F, Kimura M, Yamano K, Tanaka K, and * Matsuda N.
    Unexpected mitochondrial matrix localization of Parkinson's disease-related DJ-1 mutants but not wild type DJ-1.
    Genes to Cells 21(7):772-88 (2016)
  23. Kumanomidou T, Nishio K, Takagi K, Nakagawa T, Suzuki A, Yamane T, Tokunaga F, Iwai K, Murakami A, *Yoshida Y, Tanaka K, and *Mizushima T.
    The structural differences between a glycoprotein specific F-box protein Fbs1 and its homologous protein FBG3.
    PlosOne 10(10) e0140366 (2015)
  24. * Yamano K, Queliconi BB, Koyano F, Saeki Y, Hirokawa T, Tanaka K, and Matsuda N.
    Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation.
    J Biol Chem. 290: 25199-211 (2015)
  25. Okatsu K, Koyano F, Kimura M, Kosako H, Saeki Y, *Tanaka K, and * Matsuda N.
    Phosphorylated ubiquitin chain is the genuine Parkin receptor.
    J. Cell Biol. 209: 111-128 (2015).
  26. Okatsu K, Kimura M, Oka T, *Tanaka K, and * Matsuda N.
    Unconventional PINK1 localization to the outer membrane of depolarized mitochondria drives Parkin recruitment.
    J. Cell Sci. 128: 964-978 (2015).
  27. Koyano F, Okatsu K, Kosako H, Tamura Y, Go, E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon E-A, Trempe J-F, Saeki Y, *Tanaka K, and * Matsuda N.
    Ubiquitin is phosphorylated by PINK1 to activate Parkin.
    Nature 510: 162–166 (2014)
  28. Okatsu K, Uno M, Koyano F, Go E, Kimura M, Oka T, *Tanaka K, and * Matsuda N.
    A dyadic PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment.
    J. Biol. Chem. 288: 36372-36384. (2013)
  29. *Kimura Y, Fukushi J, Hori S, Matsuda N, Okatsu K, Kakiyama Y, Kawawaki J, Kakizuka A, and Tanaka K.
    Different dynamic movements of wild-type and pathogenic VCPs and their cofactors to damaged mitochondria in a Parkin-mediated mitochondrial quality control system.
    Genes to Cells 18: 1131-43 (2013)
  30. Iguchi, M, Kujuro Y, Okatsu K, Koyano F, Kimura M, Suzuki N, Uchiyama S, *Tanaka K, and * Matsuda N.
    Parkin catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation.
    J. Biol. Chem. 288: 22019-22032 (2013)
  31. Koyano F, Okatsu K, Ishigaki S, Fujioka Y, Kimura M, Sobue G, *Tanaka K, and * Matsuda N.
    The principal PINK1 and Parkin cellular events triggered in response to dissipation of mitochondrial membrane potential occur in primary neurons.
    Genes to Cells 18: 672-681 (2013)
  32. Okatsu K, Iemura S-I, Koyano F, Go E, Kimura M, Natsume T, *Tanaka K, and * Matsuda N.
    Mitochondrial hexokinase HKI is a novel substrate of the Parkin ubiquitin ligase.
    Biochem Biophys Res Commun. 428: 197-202 (2012)
  33. Okatsu K, Oka T, Iguchi M, Imamura K, Kosako H, Tani N, Kimura M, Go E, Koyano F, Funayama M, Shiba-Fukushima K, Sato S, Shimizu H, Fukunaga Y, Taniguchi H, Komatsu M, Hattori N, Mihara K, Tanaka K, and * Matsuda N.
    PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria.
    Nat. Commun. 3: 1016 (10 pages), (2012)
  34. Chew, K#, Matsuda, N#, (# equally contributed) Saisho K, Lim G, Chai C, Tan HM, Tanaka K. and *Lim K-L.
    Parkin mediates apparent E2-independent monoubiquitination in vitro and contains an intrinsic activity that catalyzes polyubiquitination.
    PLoS One, 6(5): e19720, (2011)
  35. * Matsuda N Sato S, Shiba K, Okatsu K, Saisho K, Gautier C.A, Sou YS, Saiki S, Kawajiri S, Sato F, Kimura M, Komatsu M, Hattori N, and *Tanaka K.
    PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy.
    J Cell Biol. 189: 211-221 (2010)
  36. Okatsu K, Saisho K, Shimanuki M, Nakada K, Shitara H, Sou YS, Kimura M, Sato S, Hattori N, Komatsu M, Tanaka K, and * Matsuda N.
    p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria.
    Gene Cells 15: 887-900 (2010)