top > Div. of Medical Devices > Dept. of Bioelectronics
An interdisciplinary area is explored and developed by integrating materials science and biological science. Novel biocompatible materials and functional bio-devices are developed for regenerative medicine, cell therapy, minimum-invasive surgery and clinical diagnostics. In the group of Yuji Miyahara, direct interaction between biomolecules and carriers in semiconductor materials has recently been investigated. For this purpose, an insulated gate field effect transistor (IGFET) has been used in combination with functional membranes. The FET is one of the most important and fundamental devices in the integrated circuit. In the case of FET type biochemical sensors, species to be detected and its selectivity can be determined by the materials coated on the surface of the gate insulator. Ion sensors, biosensors and oxygen sensor have been developed using polymer membranes, immobilized enzyme membranes and a solid electrolyte thin film, respectively. Recently, we have been investigating electrostatic detection of bio-molecular recognition using a biologically coupled field effect transistor (bio-FET). The principle of bio-FET is based on potentiometric detection of charge density change which is induced at a gate insulator/solution interface by specific bio-molecular recognition. In this scheme, the charge density change is directly transduced into electrical signal by the field effect. Based on this principle, various types of bio-FETs have been developed for detection of biomolecules. Research activities on biotransistors in our group can be categorized into the following research topics.
Books and Review Papers