

Ikuro Morita

1 .Topic in Research Achievements in the Year 2006

1. Cell Differentiation induced by connexins

We showed that Connexin43 (Cx43), a major gap junction protein, is crucial for cell differentiation in vitro. Cx43 short hairpin RNA (shRNA) dramatically inhibited cell differentiation. Conversely, Cx43 overexpression facilitated the differentiation of cells. Furthermore, Cx43, especially its C-terminal, regulated cell differentiation via the accumulation of cyclic adenosine monophosphate (cAMP).

2. A novel method of DDS using gap junction

We developed a new route for direct cytosolic delivery of hydrophilic drugs through gap junction channels (GJs) formed between liposomes containing connexins and intact cells in culture. Cx43-containing liposomes were prepared by using cell-free transcription/translation systems with plasmids encoding Cx43 in the presence of liposome. The expressed membrane protein, Cx43, was directly reconstituted to the liposome membrane upon in vitro synthesis, leading to pure membrane protein-containing liposomes. Transfer of the hydrophilic dye calcein between Cx43-expressing liposomes and cultured cells was observed when GJs were established. The transfer through heterotypic GJ between Cx43 and Cx32 was less functional than their homotypic pair. The system is useful as a tool in cell biology research and as a new drug carrier as cellular cytosolic delivery.

3. A novel angioplasty using printing technique

Mononuclear cells (MNC) were isolated from peripheral blood, and differentiated into two kinds of EPCs: early EPCs and late EPCs. These EPCs and Mature endothelial cells HUVECs were applied to our novel methods for measuring tube forming activity. Cells were cultured onto the fully patterned plates, and to form vascular tube, the plate was contacted with Matrigel. Late EPCs as well as HUVECs exhibited tube formation with similar morphology, whereas early EPCs failed to form any tubes. It is interesting that when early or late EPCs were cultured with the tube formed by HUVECs, HUVECs could be substituted by late EPCs, but not by early EPCs. However, sprouting of HUVEC was observed by the addition of early EPCs. In conclusion, early EPCs promote migration and proliferation of endothelial cells, whereas late EPCs constitute blood vessels. It suggests that circulating EPCs have different roles in neovascularization.

4. Mechanism for altered production of cytokines under hypoxia

Hypoxia is a microenvironmental pathophysiologic factor commonly associated with tissue inflammation. We found that hypoxic stress actively regulates cytokines' expression not only by activation of specific genes, but also by selective repression. In particular, we found an increase in IL-8, but decrease in MCP-1 mRNA and protein expression. Inconsistent with mRNA expression, in reporter gene assay both of the promoters were activated by hypoxia. This suggests the critical role of in vivo chromatin modification in the regulation of MCP-1 gene under hypoxia. NF- κ B was responsible for changes in both MCP-1 and IL-8 mRNA expressions by hypoxia. We found that in hypoxic cultures HDAC was the corepressor that converted NF- κ B activating signal into repressing towards MCP-1 gene expression. HDAC1 or HDAC3 to perform their inhibitory function. Cotreatment with IL-1 and hypoxia facilitated the association of p65/RelA and CBP to IL-8 promoter and increased histone H4 acetylation. Hypoxia repressed IL-1-stimulated MCP-1 expression by recruiting p65/RelA, HDAC3 and corepressor N-CoR, and deacetylation of histones H3 and H4. Therefore, hypoxic signal driven by NF- κ B can inhibit or induce gene expression depending on selective recruitment of corepressors or coactivators.

2 .Publications in the year 2006

1. ○Kakehi S, Nakahama K, Morita I, Expression and possible role of PVR/CD155/ Necl-5 in osteoclastogenesis. **Mol. Cell. Biochem.**, in press
2. ○Zhang D, Kaneda M, Nakahama K, Arii K, Morita I Connexin 43 expression promotes malignancy of HuH7 hepatocellular carcinoma cells via the inhibition of cell-cell communication. **Cancer Letters**, in press
3. Chen BK, Huang CC, Chang WC, Chen YJ, Kikkawa U, Nakahama KI, Morita I, Chang WC. PP2B-mediated Dephosphorylation of c-Jun C-Terminus Regulates Phorbol Ester-induced c-Jun/Sp1 Interaction in A431 Cell. **Mol Biol Cell**. 2007 Jan 10; [Epub ahead of print]
4. Xu JW, Morita I, Ikeda K, Miki T, Yamori Y. C-reactive protein suppresses insulin signaling in endothelial cells. ---Role of Syk tyrosine kinase **Mol Endocrinol**. 2006 Nov 9; [Epub ahead of print]
5. ○Yoshimura H, Nakahama K, Olga Safranova, Tanaka N, Muneta T, Morita I. Transforming Growth Factor- β Stimulates IL-1 β -induced Monocyte Chemoattractant Protein-1 Expression in Human Synovial Cells via ERK/AP-1 pathway. **Inflammation Res.**,;55(12):543-549. 2006
6. Ohno-Matsui K, Mori K, Ichinose S, Sato T, Wang J, Shimada N, Kojima A, Mochizuki M, Morita I. In vitro and in vivo characterization of iris pigment epithelial cells cultured on amniotic membranes. **Mol Vis**. 12:1022-1032, 2006
7. ○Kojima T, Nakahama K, Yamamoto K, Uematsu H, Morita I. Age- and cell cycle-dependent changes in EPC-1/PEDF promoter activity in human diploid fibroblast-like (HDF) cells. **Mol. Cell. Biochem.**,293(1-2):63-69., 2006
8. Hong J, Yokomakura A, Nakano Y, Ishihara K, Kaneda M, Onodera M, Nakahama K, Morita I, Niikura K, Ahn JW, Zee O, Ohuchi K. Inhibition of vacuolar-type (H $^{+}$)-ATPase by the cytostatic macrolide apicularen A and its role in apicularen A-induced apoptosis in RAW 264.7 cells. **FEBS Lett**. 580(11): 2723-2730. 2006
9. ○Nakatomi M, Morita I, Eto K, Ota MS Sonic hedgehog signaling is involved in tooth root development **J Dent Res**. 85(5):427-31.2006

2 .Abstracts in the year 2006

1. Pluemsampant S. Short Talk - CK2 is a Key Activator of HDAC in Hypoxia-associated Tumor. Scientific Session V. Transcriptional Basis of Metabolic Disease. Symposium on Biological Complexity. Salk Institute for Biological Studies. La Jolla, CA, USA, January 11-14, 2006
2. Safranova O, Pleumsampant S, Nakahama K and Morita I. The role of NF- κ B and transcriptional co-regulators in rearrangement of chemokine network in hypoxia-associated inflammation. Symposium on Biological complexity : Diseases of Transcription, Salk Institute, Nature and Fondation IPSEN, Salk Institute for Biological Studies. La Jolla, CA, USA, January 11-14, 2006
3. Safranova O, Pleumsampant S, Nakahama K, Morita I. Regulation of chemokine gene expression by hypoxia via cooperative activation of NF- κ B and HDAC. Keystone symposia (D3) "NF- κ B:20 years on the road from biochemistry to pathology". Banff, Alberta, Canada, March 23-28, 2006
4. Safranova O, Pleumsampant S, Nakahama K, Morita I. NF- κ B signaling activated by hypoxia differently mediates in vitro and in vivo gene targeting. Keystone symposia (D3) "NF- κ B:20 years on the road from biochemistry to pathology". Banff, Alberta, Canada, March 23-28, 2006
5. Nakatomi M. Sonic hedgehog signaling is involved in tooth root development. 3rd

Super student workshop. Tokyo Medical and Dental University 21st Century Molecular Destruction and Reconstruction of Tooth and Bone, Tokyo, Japan, March 24, 2006

6. Onodera M, Nakahama K, Sato T, Morita I. Effects of N-3 polyunsaturated fatty acids on the susceptibility to VEGF through downregulation of VEGFR-2 expression. 14th International Vascular Biology Meeting, The Netherlands, June 6-10, 2006
7. Kobayashi A, Kuwana R, Hattori H, Ota M, Takeda S, Morita I, Ichinose S. In vitro capillary engineering and angioplasty. 14th International Vascular Biology Meeting, The Netherlands, June 6-10, 2006
8. Kojima A, Nakahama K, Ohno-Matsui K, Mochizuki M, Morita I. Contribution of connexin 43 for the differentiation of primary cultured human retinal pigment epithelium cells. Development/Cell differentiation3: Neural, sensory and neural crest. 20th IUBMB International Congress of Biochemistry and Molecular Biology and 11th FAOBMB Congress. Kyoto, Japan, June 18-23, 2006
9. Mukai N, Kobayashi A, Kuwana R, Amagasa T, Morita I. Comparison of early with late endothelial progenitor cells in tube formation activity in vitro. The Nexus of Histochemistry and Molecular Genetics, The Seventh Joint Meeting of The Histochemical Society and The Japan Society of Histochemistry and Cytochemistry, Hawaii, August 23-27, 2006
10. Keneda M. Connexin-integrated liposomes: A novel tool for drug delivery unto mammalian cells and analysis of gap junction. Session 1. Super Students Symposium 1. Tokyo Medical and Dental University 21st Century Molecular Destruction and Reconstruction of Tooth and Bone, Tokyo, Japan, August 2 2006
11. Sireerat Pleumsampant. Hypoxia activated histone deacetylase through CK2-dependent mechanism. Session 2. Super Students Symposium 1. Tokyo Medical and Dental University 21st Century Molecular Destruction and Reconstruction of Tooth and Bone, Tokyo, Japan, August 2 2006