

Johji Inazawa

1 .Topic in Research Achievements in the Year 2006

In order to identify novel disease-associated genes, we performed genomic and epigenomic analyses in various types of cancers including oral cell carcinoma (OSCC) and soft tissue tumors as well as congenital genomic disorders. In the course of a program to screen 39 OSCC cell lines for genomic copy-number aberrations in a genome-wide manner using our in-house array-based comparative genomic hybridization (array-CGH), we identified some of candidate genes located in homozygous deletions or gene amplifications, and performed the detailed analysis of these cancer-related genes now (**unpublished data**). On the other hands, we identified a homozygous loss of *protocadherin 20* (*PCDH20*, 13q21.2) in the study of non-small-cell lung cancer (NSCLC) cell lines for genomic copy number aberrations using in-house array-CGH analysis (1/20, 5%). *PCDH20* mRNA was not expressed in the majority of NSCLC cell lines without a homozygous deletion of this gene (10/19, 52.6%). In primary NSCLC cases, the methylated *PCDH20* promoter was frequently observed (32/59, 54.2%), and seemed to be associated with a shorter overall survival ($P = 0.0140$ and 0.0211 in all and stage I tumors, respectively). In addition, restoration of *PCDH20* expression in NSCLC cells reduced cell numbers in colony formation and anchorage-independent assays. These results suggest that epigenetic silencing by hypermethylation of the CpG-rich promoter region of *PCDH20* leads to loss of *PCDH20* function, which may be a factor in the carcinogenesis of NSCLC (*Cancer Res.*, 66, 4617-4626, 2006). Previously, we have reported frequent silencing of the expression of *low-density lipoprotein receptor-related protein 1B* (*LRP1B*) by genetic and epigenetic mechanisms in esophageal squamous cell carcinoma (*Cancer Res.*, 64: 3741-3747, 2004). We examined intragenic homozygous deletions, expression levels, and methylation status in the CpG island of *LRP1B* in OSCC, and demonstrated that frequent inactivation of *LRP1B* mainly occurs via epigenetic mechanisms in cell lines and primary cases of OSCC (*Cancer Sci.*, 97: 1070-1074, 2006). Moreover, we analyzed 14 OSCC cell lines as well as 108 primary OSCC tumors with regard to the frequency of mutations within hotspot regions and the changes in the genomic copy-number of *PIK3CA*. *PIK3CA* missense mutations in exons 9 and 20 were identified in 21.4% (3/14) of OSCC cell lines and 7.4% (8/108) of OSCC cases by genomic DNA sequencing. A significant correlation between somatic mutations of *PIK3CA* and disease stage was observed: the frequency of mutations was higher in stage IV (16.1%, 5/31) than in a subset of early stages (stage I-III) (3.9%, 3/77; $P = 0.042$). In contrast, the amplification of *PIK3CA* was observed at a similar frequency among all stages. AKT was highly phosphorylated in OSCC cell lines with *PIK3CA* mutations compared with those without mutations, despite the amplification. The results suggest that somatic mutations of the *PIK3CA* gene are likely to occur late in the development of OSCC, and play a crucial role through the PI3K-AKT signaling pathway in cancer progression (*Cancer Sci.*, 97: 1351-1358, 2006).

2 .Publications in the year 2006

1. Maekawa T, Shinagawa T, Sano Y, Sakuma T, Nomura S, Nagasaki K, Miki Y, Saito-Ohara F, Inazawa J, Kohno T, Yokota J, Ishii S: Reduced Levels of ATF-2 Predispose Mice to Mammary Tumors. *Mol Cell Biol*. 2006(in press)
2. ○Saigusa K, Imoto I, Tanikawa C, Aoyagi M, Ohno K, Nakamura Y, Inazawa J: RGC32, a novel p53-inducible gene, is located on centrosomes during mitosis and results in G2/M arrest. *Oncogene* 2006(in press)

3. o Yu W, Imoto I, Inoue J, Onda M, Emi M, Inazawa J: A novel amplification target, DUSP26, promotes anaplastic thyroid cancer cell growth by inhibiting p38 MAPK activity. *Oncogene* 2006(in press)
4. o Kozaki K, Imoto I, Pimkhaokham A, Hasegawa S, Tsuda H, Omura K, Inazawa J: PIK3CA mutation is an oncogenic aberration at advanced stages of oral squamous cell carcinoma. *Cancer Sci.* 97(12):1351-8, 2006
5. o Takada H, Imoto I, Tsuda H, Nakanishi Y, Sakakura C, Mitsufuji S, Hirohashi S, Inazawa J: Genomic loss and epigenetic silencing of very low density lipoprotein receptor involved in gastric carcinogenesis. *Oncogene* 25(49):6554-62, 2006
6. Suzuki T, Delgado-Escueta AV, Alonso ME, Morita R, Okamura N, Sugimoto Y, Bai D, Medina MT, Bailey JN, Rasmussen A, Ramos Peek J, Cordova S, Rubio-Donnadieu F, Ochoa A, Jara-Prado A, Inazawa J, Yamakawa K: Mutation analyses of genes on 6p12-p11 in patients with juvenile myoclonic epilepsy. *Neurosci Lett.* 405(1-2):126-31, 2006
7. o Nakagawa T, Pimkhaokham, A, Suzuki E, Omura K, Inazawa J, Imoto I: Genetic or epigenetic silencing of low density lipoprotein receptor-related protein 1B expression in oral squamous cell carcinoma. *Cancer Sci.* 97(10):1070-4, 2006
8. o Imoto I, Izumi H, Yokoi S, Hosoda H, Shibata T, Hosoda F, Ohki M, Hirohashi S, Inazawa J: Frequent silencing of the candidate tumor suppressor PCDH20 by epigenetic mechanism in non-small-cell lung cancers. *Cancer Res.* 66(9):4617-26, 2006
9. Kumada K, Yao R, Kawaguchi T, Karasawa M, Hoshikawa Y, Ichikawa K, Sugitani Y, Imoto I, Inazawa J, Sugawara M, Yanagida M, Noda T: The selective continued linkage of centromeres from mitosis to interphase in the absence of mammalian separase. *J Cell Biol.* 172(6):835-46, 2006
10. Nishioka K, Hayashi S, Farrer MJ, Singleton AB, Yoshino H, Imai H, Kitami T, Sato K, Kuroda R, Tomiyama H, Mizoguchi K, Murata M, Toda T, Imoto I, Inazawa J, Mizuno Y, Hattori N: Clinical heterogeneity of alpha-synuclein gene duplication in Parkinson's disease. *Ann Neurol.* 59(2):298-309, 2006
11. Nakada S, Katsuki Y, Imoto I, Yokoyama T, Nagasawa M, Inazawa J, Mizutani S: Early G2/M checkpoint failure as a molecular mechanism underlying etoposide-induced chromosomal aberrations. *J Clin Invest.* 116(8):80-9, 2006

3. Abstracts in the year 2006

1. Nakagawa T, Yokoi S, Inoue J, Atiphan Pimkhaokham, Suzuki E, Kamata N, Omura K, Imoto I, Inazawa J: Detection of altered DNA methylation patterns in oral cancer. 97th annual meeting of American Association for Cancer Research 2006(Washington D.C. USA) 2/April/2006
2. Inoue J, Misawa A, Sugino Y, Hosoi H, Sugimoto T, Hosoda F, Ohki M, Issei Imoto I, Inazawa J: Methylation-associated silencing of NR1I2 in advanced-type neuroblastomas, identified by BAC array-based methylated CpG island amplification (BAMCA). 97th annual meeting of American Association for Cancer Research 2006(Washington D.C. USA) 2/April/2006
3. Imoto I, Izumi H, Takada H, Tanaka K, Inoue J, Yokoi S, Hosoda H, Shibata T, Sunamori M, Hosoda F, Ohki M, Hirohashi S, Inazawa J: Frequent Silencing of the Candidate Tumor-suppressor PCDH20 by Epigenetic Mechanism in Non-Small Cell Lung Cancers. 97th annual meeting of American Association for Cancer Research 2006(Washington D.C. USA) 2/April/2006
4. Sugino Y, Inoue J, Misawa A, Hosoi H, Sugimoto T, Imoto I, Inazawa J: Methylation-associated gene silencing of *prostaglandin D2 receptor (PTGDR)* and *prostaglandin E receptor 2 (PTGER2)* in advanced-type neuroblastomas, identified

by bacterial artificial chromosome array-based methylated CpG island amplification (BAMCA). 97th annual meeting of American Association for Cancer Research 2006(Washington D.C. USA) 2/April/2006

- 5. Yokoi S, Inoue J, Imoto I, Inazawa J: Identification of novel E2F1 target genes detected on a BAC-array platform. 97th annual meeting of American Association for Cancer Research 2006(Washington D.C. USA) 2/April/2006
- 6. Tanaka K, Imoto I, Inoue J, Tsuda H, Suzuki E, Shimada Y, Kawano T, Iwai T, Inazawa J: Methylation-associated silencing of a candidate tumor suppression gene, *TSEC1*, in esophageal squamous-cell carcinoma, identified by bacterial artificial chromosome array-based methylated CpG island amplification (BAMCA). 97th annual meeting of American Association for Cancer Research 2006 示説 (Washington D.C. USA) 2/April/2006
- 7. Kozaki K, Suzuki E, Pimkhaokham A, Imoto I, Inazawa J: *PIK3CA* mutations in oral squamous cell carcinoma. 97th annual meeting of American Association for Cancer Research 2006(Washington D.C. USA) 4/April/2006
- 8. Takada T, Tanaka K, Inoue J, Yokoi S, Hosoda H, Shibata T, Sunamori M, Hosoda F, Ohki M, Hirohashi S, Inazawa J: Frequent silencing of the candidate tumor-suppressor *PCDH20* by epigenetic mechanism in non-small cell lung cancers. 97th annual meeting of American Association for Cancer Research 2006(Washington D.C. USA) 4/April/2006
- 9. Shibata T, Kokubu A, Hosoda F, Matsuno Y, Tsuchiya R, Kanai Y, Inazawa J, Hirohashi S: Genetic classification of lung adenocarcinoma based on array-based comparative genomic hybridization analysis. 97th annual meeting of American Association for Cancer Research 2006(Washington D.C. USA) 4/April/2006
- 10. Hayashi S, Honda S, Imoto I, Inazawa J: Exploring cryptic genomic aberrations responsible for multiple congenital anomaly with mental retardation using in-house CGH-arrays. 56th Annual Meeting of the American Society of Human Genetics(New Orleans, Louisiana) 10/October/2006
- 11. Chiyonobu T, Hayashi S, Morimoto M, Miyanomae Y, Nishimura A, Nishimoto A, Ito C, Imoto I, Sugimoto T, Jia Z, Inazawa J, Toda T: Partial tandem duplication of *GRIA3* in a male with mental retardation. 56th Annual Meeting of the American Society of Human Genetics (New Orleans, Louisiana) 12/October/2006
- 12. Inazawa J: Cancer genomic and epigenomic analyses on a BAC-array platform. 7th AACR/JCA Joint International Conference (Hawaii, USA) 22/January/2007