Medical Technology (Biomedical Devices and Instrumentation)

1. Staffs and Students (April 2009)

Professor	Kohji MITSUBAYASHI	
Junior Associate Professor	Hiroyuki KUDO	
Assistant Professor	Takahiro ARAKAWA	
Assistant Professor	Daishi TAKAHASHI	
Lecturer (part-time)	Hitoshi MUGURUMA	
Engineer Official	Kumiko MIYAJIMA	
Research Stuff	Mika HAYASHI	
Graduate Student	Xin WANG,	Mingxing CHU,
	Tomoko GESSEI,	Elito KAZAWA,
	Munkhjargal MUNKHBAYAR,	Yuki SUZUKI,
	Kazutaka KITA,	Yuki MATSUURA

2. Education

We provide opportunity to study advanced biomedical devices and instrumentation. Students in our laboratory are working on the research projects as follows.

3. Research Subjects

1) Wearable chemical sensors for biomedical measurements

Flexible and biocompatible biosensors have been fabricated by using Soft-MEMS technology on functional polymer membrane, thus applying to non-invasive approaches of physical monitoring (i.e. transcutaneous gas monitoring and tear glucose measurement).

2) Biological odor measurement and smell communication

High selective gas-sensors - "Bio-sniffers" - have been constructed with biological recognition materials such as drugmetabolizing enzyme in human liver. Potential applications of the bio-sniffer and nose includes halitosis analysis, breath alcohol & aldehyde measurement, VOC sensing as environmental assessment, odorless chemical digital-code (watermark) system, smell informatics, etc.

- Ubiquitous monitoring of biological information by using IT devices Mobile human-monitoring system for vital signs has been constructed using cellular communication service and bodywired techniques.
- 4) Novel biological devices based on new driving principle with chemical energy

Bio-devices with high performance in electrical and mechanical properties have been investigated using functional biopolymer such as DNA, protein, lipid and sugar chain.

4. Publications

Original Article

- 1) Miyoshi Y, Miyajima K, Saito H, Kudo H, Takeuchi T, Karube I, Mitsubayashi K. Flexible humidity sensor in a sandwich configuration with a hydrophilic porous membrane. Sens Actuators B Chem 142(1): 28-32, 2009.
- 2) Kudo H, Sawai M, Wang X, Gessei T, Koshida T, Miyajima K, Saito H, Mitsubayashi K. A NADH-dependent fiberoptic biosensor for ethanol determination with a UV-LED excitation system. Sens Actuators B Chem 141(1): 20-25, 2009.
- 3) Chu MX, Kudo H, Shirai T, Miyajima K, Saito H, Morimoto N, Yano K, Iwasaki Y, Akiyoshi K, Mitsubayashi K. A soft and flexible biosensor using a phospholipid polymer for continuous glucose monitoring. Biomed Microdevices 11(4): 837-842, 2009.
- 4) Mitsubayashi K, Ohgoshi T, Okamoto T, Wakabayashi Y, Kozuka M, Miyajima K, Saito H, Kudo H. Tonometric biosensor with a differential pressure sensor for chemo-mechanical measurement of glucose. Biosens Bioelectron 24(5):1518-1521, 2009.
- 5) Gessei T, Sato H, Kazawa E, Kudo H, Saito H, Mitsubayashi K. Bio-sniffers for ethanol and acetaldehyde using carbon and Ag/AgCl coated electrodes. Microchim Acta 165(1-2):179–186, 2009.