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Abstract
One of the key technologies in recent quantum devices is the tunable coupling between quantum
elements such as qubits, cavities, and waveguides. In this work, we propose a cavity-waveguide
tunable coupler realized in a semi-infinite waveguide equipped with a tunable stub. The working
principle of the present device is the shift of the node position of the cavity mode induced by the
tunable boundary condition at the stub end, and the advantage of the present device is an
extremely wide tunability of the cavity-waveguide coupling. When the node position is adjusted to
the branch point of the waveguide, the cavity mode becomes decoupled from the waveguide modes
in principle. At the same time, owing to the galvanic connection, the present device readily achieves
an ultrastrong cavity-waveguide coupling, where the cavity decay rate reaches the order of a
gigahertz, comparable to the cavity resonance frequency.

1. Introduction

Regardless of their physical implementation, cavity quantum electrodynamics (QED) systems are commonly
characterized by only a few parameters, such as the resonance frequencies of the atom and the cavity
(ωa, ωc), their mutual coupling rate (g), and their decay rates (γ, κ) [1, 2]. One of the appeals of cavity QED
systems lies in their high designability. We can artificially set the cavity-related parameters (ωc, g, and κ)
through the design of the cavity. In solid-state cavity QED systems using artificial atoms, the atom frequency
ωa also becomes a designable parameter and an unprecedentedly strong atom-cavity coupling g becomes in
reach [3, 4].

Cavity QED systems acquire further flexibility by the possibility of in-situ tuning of system parameters
through the external fields. In circuit QED, a superconducting quantum interference device (SQUID) is used
as a tunable element through the magnetic flux threading the loop [5]. For example, by replacing a Josephson
junction composing a qubit with a SQUID, in-situ tuning of the qubit frequency becomes possible [6–8].
Such a frequency-tunable qubit is applicable to a tunable coupler between two qubits [9], which is
indispensable to achieve a high two-qubit gate fidelity. Tunable couplers now play an essential role in
constructing various quantum devices. Besides the qubit–qubit coupling [9–15], tunable coupling has been
developed in the cavity–cavity coupling [16–18], the qubit-waveguide coupling [19–22], and the
cavity-waveguide coupling [23–27].

In this study, we propose a cavity-waveguide tunable coupler whose working principle differs
fundamentally from the conventional tunable couplers. The proposed setup is a semi-infinite transmission
line equipped with a tunable stub [figure 1(a)], where the two finite ports (one infinite port) function as a
cavity (waveguide). The cavity-waveguide coupling is tuned through the shift of the node position of the
cavity mode. The cavity mode becomes completely decoupled from the waveguide modes in principle when
its node position is adjusted to the branch point of the waveguide. In contrast, due to the galvanic
connection, the cavity-waveguide coupling readily reaches the ultrastrong coupling regime, where the cavity
decay rate amounts to the order of gigahertz, comparable to the resonance frequency.

The rest of this paper is organized as follows. In section 2, we present the setup investigated in this work,
namely, a semi-infinite waveguide equipped with a tunable stub. In section 3, we analyze the continuous

© 2025 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/adc1fb
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/adc1fb&domain=pdf&date_stamp=2025-3-31
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9754-4463
mailto:kazuki.koshino@osamember.org


New J. Phys. 27 (2025) 043001 K Koshino

Figure 1. (a) Schematic of the investigated setup. The external magnetic flux threading the SQUID loop,Φex = (h̄/2e)ϕex, is
controlled by a DC current near the loop. (b) Coordinate system employed in this work.

Table 1. List of parameters. Cs and Es are the values for the two identical Josephson junctions forming the SQUID.

v (microwave velocity) 108ms−1

Z (characteristic impedance) 50Ω
L2 (length of Port 2) 2.5mm
L3 (length of Port 3) 4.5mm
Cs (capacitance) 100 fF
(2e/h̄)Es (critical current) 5µA

eigenmodes of this waveguide. We observe the existence of a discrete cavity mode, which is decoupled from
the propagating modes in the semi-infinite part of this waveguide, under a proper boundary condition at the
stub end. In section 4, we analyze the microwave response of the cavity mode to the stationary field input
from the semi-infinite part. We focus on the phase shift of the input field upon reflection and the photon
energy stored in the cavity. From the results of microwave response, we determine in section 5 the resonance
frequency and the linewidth of the cavity. We observe that the linewidth is extremely sensitive to the
boundary condition at the stub end and therefore that the cavity-waveguide coupling is widely tunable from
the complete decoupling to the ultrastrong coupling of the order of gigahertz. We summarize this work in
section 7.

2. Setup

In this study, we investigate a waveguide composed of three ports with the same properties (characteristic
impedance Z and microwave phase velocity v), as illustrated schematically in figure 1(a). Port 1 is
semi-infinite, whereas Ports 2 and 3 have finite lengths of L2 and L3, respectively. Port 2 is terminated by an
infinitesimal capacitance to the ground and the boundary condition there is open for the voltage. Port 3 is
terminated by a SQUID so as to enable in-situ tuning of the boundary condition by the external magnetic
flux threading the loop. Setting the origin at the waveguide branch, we take a coordinate system depicted in
figure 1(b). For concreteness, we employ the parameter values listed in table 1.

3. Eigenmodes

In this section, we investigate the eigenmodes of this waveguide. As a variable to describe the microwave
propagating in this waveguide, we employ the flux (time-integrated voltage) defined by ϕ(r, t) =

´ t

dt ′V(r, t ′). Considering the semi-infinite nature of this waveguide, its eigenmodes are labelled by a
continuous frequency ω(> 0). The eigenmode function at frequency ω is written, denoting its amplitude in

Port j(= 1,2,3) by α( j)
ω and the phase of the standing wave in Port 1 by θω , as

ϕω (r) =


ϕ
(1)
ω (r1) = α

(1)
ω cos(ωr1/v+ θω) (Port 1)

ϕ
(2)
ω (r2) = α

(2)
ω cos [ω (r2 − L2)/v] (Port 2)

ϕ
(3)
ω (r3) = α

(3)
ω cos

[
ω
(
r3 − Leff3,ω

)
/v
]

(Port 3)

, (1)
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Figure 2. Eigenmode having a node at the waveguide branch. (a) Eigenmode with vanishing amplitude in Port 3. Its
eigenfrequency is denoted by ω2. (b) Eigenmode with vanishing amplitude in Port 2. Its eigenfrequency is denoted by ω3.
(c) Tuning of ω3 through the boundary condition.Φex is the magnetic flux threading the SQUID loop andΦ0(= h/2e) is the flux
quantum. Thin line plots ω2, which is fixed at 2π× 10GHz. (d) Cavity mode, the amplitude of which vanishes in Port 1. This
mode appears under a specific boundary condition, where ω3 = ω2. Note that the frequency of this mode is determined solely by
the length of Port 2 [equation (6)].

where Leff3,ω is the effective length of Port 3, which is tunable through the magnetic flux threading the SQUID

(see appendix A). θω and the ratio of {α(1)
ω , α(2)

ω , α(3)
ω } are determined by the following boundary conditions

at the waveguide branch (see appendix B),

ϕ(1)
ω (0) = ϕ(2)

ω (0) = ϕ(3)
ω (0) , (2)

dϕ(1)
ω

dr1
(0)+

dϕ(2)
ω

dr2
(0)+

dϕ(3)
ω

dr3
(0) = 0. (3)

Equations (2) and (3) respectively represent the uniqueness of the voltage and the Kirchhoff ’s current law.
From equations (1)–(3), we have

α(1)
ω cosθω = α(2)

ω cos(L2ω/v) = α(3)
ω cos

(
Leff3,ωω/v

)
, (4)

α(1)
ω sinθω = α(2)

ω sin(L2ω/v)+α(3)
ω sin

(
Leff3,ωω/v

)
. (5)

3.1. Special eigenmodes

First, we consider the eigenmodes whose amplitudes vanish in Port 3. Putting α(3)
ω = 0 in equation (4), we

observe that the eigenfrequencies of such modes satisfy cos(ωL2/v) = 0. Hereafter, we focus on the lowest
eigenmode satisfying this condition. We define the frequency ω2 by

ω2L2/v= π/2. (6)

At this frequency, we can confirm that α(1)
ω2 = α

(2)
ω2 , α

(3)
ω2 = 0, and θω2 = π/2. The spatial profile of this mode

is schematically illustrated in figure 2(a). Similarly, we consider the lowest eigenmode whose amplitude
vanishes in Port 2. The eigenfrequency ω3 of this mode is determined by

ω3L
eff
3,ω3

/v= π/2. (7)

Regarding this mode, we have α(1)
ω3 = α

(3)
ω3 , α

(2)
ω3 = 0, and θω3 = π/2. The spatial profile of this mode is

schematically illustrated in figure 2(b).
Note that ω2 is a fixed value (ω2/2π = 10GHz) determined solely by L2, whereas ω3 is a tunable value

through the boundary condition of Port 3 at the SQUID. In figure 2(c), we show the dependence of ω3 on the
boundary condition under the parameter values in table 1. In the following part of this paper, we express the
boundary condition at the end of Port 3 by the value of ω3. For L3 = 4.5 mm, ω3/2π is tunable within the
range from 4.567GHz to 10.945GHz.

3
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3.2. Cavity mode
Next, we consider the eigenmodes whose amplitudes vanish in Port 1. For these modes, the field amplitude is
localized in a finite region, Ports 2 and 3. We refer to such localized modes as the cavity modes in this study.

Putting α(1)
ω = 0 in equation (4), we immediately have cos(ωL2/v) = 0 and cos(ωLeff3,ω/v) = 0. This implies

that such eigenmodes that are completely localized in a finite domain can exist under a specific boundary
condition at the SQUID.

Regarding the lowest cavity mode, the condition for the existence of a completely localized mode is the
exact tuning of ω3 to ω2. Its mode function is written as

ϕcav (r) = ϕ0 ×


0 (Port 1)

− sin(ω2r2/v) (Port 2)

sin(ω2r3/v) (Port 3)

, (8)

where ϕ0 is a constant. The spatial profile of this mode is schematically illustrated in figure 2(d).
When ω3 is exactly tuned to ω2, the cavity mode is completely decoupled from the propagating modes in

Port 1. In other words, the external decay rate κ of the cavity mode to the waveguide modes is zero in this
case. In contrast, when ω3 is detuned slightly from ω2, the cavity mode is weakly coupled from the
propagating modes in Port 1, and κ takes a nonzero value. Then, the cavity mode becomes spectroscopically
visible by the input microwave applied from Port 1, as we discuss in section 4.

3.3. General eigenmode
For a general frequency [cos(ωL2/v) ̸= 0 and cos(ωLeff3,ω/v) ̸= 0], the eigenmode amplitudes do not vanish in

all three ports. From equations (4) and (5), θω , α
(2)
ω /α

(1)
ω and α

(3)
ω /α

(1)
ω are determined by the following

equations,

tanθω = tan(ωL2/v)+ tan
(
ωLeff3,ω/v

)
, (9)

α
(2)
ω

α
(1)
ω

=
cosθω

cos(ωL2/v)
, (10)

α
(3)
ω

α
(1)
ω

=
cosθω

cos
(
ωLeff3,ω/v

) . (11)

4. Spectroscopy of cavity mode

4.1. Phase shift upon reflection
Under a general boundary condition at the SQUID (where ω3 ̸= ω2), the cavity mode (Ports 2 and 3) is
coupled to the waveguide modes (Port 1) and responds to a microwave signal input through Port 1. In this
subsection, we investigate the phase shift upon reflection of a stationary input field. From the eigenmode
function in Port 1 [equation (1)], this phase shift is identified as 2θω , where θω is determined by
equation (9). This is plotted against the input frequency ω in figure 3(a) for two different boundary
conditions at the SQUID. We observe an abrupt increase of the phase shift by 2π around a certain frequency
ωc and within a certain bandwidth κ. This fact supports that Ports 2 and 3 function as an effective cavity
mode with the central frequency ωc and the linewidth κ. We also observe that ωc and κ are sensitive to the
boundary condition, as we will discuss in detail in section 5.

4.2. Cavity photon energy
In this subsection, we investigate the photon energy stored in the cavity mode. We consider a stationary field
at frequency ω whose waveform is given by ϕ(r, t) = ϕω(r)cos(ωt), where ϕω(r) is the eigenmode function at
frequency ω [equation (1)]. The energy density Ẽ per unit length of the waveguide is written as

Ẽ=
C̃

2

(
∂ϕ

∂t

)2

+
1

2L̃

(
∂ϕ

∂r

)2

, (12)

where C̃ and L̃ respectively denote the capacitance and inductance per unit length, which are related to the
microwave velocity v and the characteristic impedance Z of this waveguide by C̃= 1/(vZ) and L̃= Z/v.
Integrating the energy density Ẽ in the cavity part (Ports 2 and 3), the time-averaged photon energy E stored
in the cavity is given by

E=
ω2

4vZ

[(
α(2)
ω

)2
L2 +

(
α(3)
ω

)2
L3

]
. (13)

4
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Figure 3. Spectroscopy of cavity mode. (a) Phase shift of the input field from Port 1 upon reflection and (b) cavity photon energy
normalized by the input power, plotted against the input frequency ω. The boundary condition at the SQUID is set so that
ω3/2π = 9.6 GHz (blue dotted) and 9.9GHz (red solid).

Regarding the input field propagating in Port 1, it is identified from equation (1) as (α(1)
ω /2)× cos(ωr1/v

+ωt+ θω). Therefore, the time-averaged power P(= vẼ) of the input field is given by P= ω2(α
(1)
ω )2/8Z. The

cavity photon energy normalized by the input power is given by

E/P=
2

v

[(
α(2)
ω /α(1)

ω

)2
L2 +

(
α(3)
ω /α(1)

ω

)2
L3

]
, (14)

which depends only on the input frequency ω and is insensitive to the field strength. In figure 3(b), we plot
E/P evaluated by equation (14) against the input frequency ω. We observe a sharp peak around a certain
frequency ωc. This fact also supports that Ports 2 and 3 function as an effective cavity mode.

On the other hand, the standard quantum-optics theory predicts that, for a cavity with the central
frequency ωc and the linewidth κ, E/P has a Lorentzian shape as given by

E/P=
κ

(ω−ωc)
2
+κ2/4

. (15)

We can confirm that the lineshape of E/P is a Lorentzian in agreement with equation (15).

5. Tuning of cavity parameters

5.1. Determination of cavity parameters
We can identify the resonance frequency ωc and the linewidth κ of the cavity mode from the phase shift of a
stationary input field upon reflection [figure 3(a)]. ωc is identified as the frequency at which the phase shift
becomes zero, whereas κ is identified as the difference in frequencies at which the phase shift becomes±π/2.
Alternatively, we can determine ωc and κ from the cavity photon energy normalized by the input power
[figure 3(b)]. ωc and κ are identified as the peak position and the linewidth of the Lorentzian, respectively.
The resonance frequency ωc and the linewidth κ thus determined are respectively plotted in figures 4(a) and
(b), varying the boundary condition. We observe that the above two methods yield almost identical results.

5.2. Dependence of cavity parameters on boundary condition
As we observe in figure 4(a), the resonance frequency ωc lies between ω2 and ω3 and exhibits an almost linear
dependence on ω3. In contrast, as we observe in figure 4(b), the linewidth κ depends drastically on the
boundary condition. In particular, when ω3 is tuned exactly to ω2, the linewidth κ vanishes in principle. In
this case, the cavity mode extending in Ports 2 and 3 has a node at the waveguide branch [figure 2(d)] and
becomes completely decoupled from the propagating modes in Port 1. If the boundary condition is slightly
varied from this state, the node position is shifted from the waveguide branch and coupling to the
propagating modes in Port 1 is recovered.

When the detuning between ω3 and ω2 is large, in clear contrast with the case of small detuning, the
cavity-waveguide coupling κ readily reaches the order of a gigahertz. The coupling is maximized when ω3 is
most detuned from ω2, where κ/2π reaches 1.25GHz as we observe in figure 4(b). Such a large coupling is
available because our setup contains no circuit element such as a capacitance that clearly divides the cavity
and the waveguide and sets the upper limit on their coupling. Thus, the present device is equipped with an
extremely wide tunability of the cavity-waveguide coupling.

5
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Figure 4. Dependences of (a) central frequency ωc and (b) linewidth κ of the cavity mode, on the boundary condition at the
SQUID. Red solid (blue dotted) lines plot the values estimated from the phase shift upon reflection (the cavity photon energy). In
(a), ω2 (fixed at 2π× 10 GHz) and ω3 are also plotted by thin lines for reference.

Figure 5. Critical photon number for the lowest cavity mode at 10GHz. Note that tuning of ω3/2π to 10GHz is impossible under
any boundary condition at the SQUID for L3 > 4.93 mm.

5.3. Critical photon number
Since the present setup contains a Josephson junction at the end of Port 3, the cavity mode is expected to be
nonlinear to some extent. The critical photon number is defined as the photon number above which the
nonlinearity of this cavity gradually becomes apparent.

In this work, in derivation of the boundary condition at the SQUID (see appendix A), we employ a linear
approximation [sin(2eϕ/h̄)≈ 2eϕ/h̄] to the flux field at the SQUID position. This requires that the flux
there is sufficiently smaller than the magnetic flux quantum (h̄/2e) and sets a critical photon number Ncrit to
the cavity. Considering the flux at the SQUID position [r3 = L3 in equation (8)], the condition for the
linearization is written as

|ϕ0 sin [πL3/(2L2)]|≲ h̄/2e. (16)

On the other hand, integrating equation (12) in Ports 2 and 3 and using N= E/(h̄ω2), the cavity photon
number N is given by

N=
π (1+ L3/L2)ϕ2

0

4h̄Z
. (17)

From equations (16) and (17), the critical photon number is estimated to be

Ncrit ∼
πh̄(1+ L3/L2)

16e2Z sin2 (πL3/2L2)
. (18)

In figure 5, we plot the critical photon number of the lowest cavity mode, varying the length L3 of Port 3.
The cavity mode amplitude at the SQUID position is proportional to sin(ω2L3/v) [equation (8)] and
becomes smaller as L3 approaches to 5mm (= π v/ω2). As a result, the critical photon number increases in
this limit. However, note that we cannot tune ω3 to ω2 for L3 > 4.93mm, as we observe in figure 2(c).

6
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6. Discussion

We compare the performance metrics of the recent cavity-waveguide tunable couplers based on the DC
SQUIDs [23–26] and the present one. In all these devices, the cavity-waveguide couplings are controlled
through the DC currents near the SQUIDs. Therefore, the switching times of these devices are expected to be
of the same order, a few nanoseconds [23]. The Josephson junctions forming the SQUIDs are the principal
loss origin in these devices and determine the intrinsic cavity decay rates κi/2π. These rates for the existent
devices are around ten kilohertz [23, 26] and the proposed device would have a similar value. Regarding the
range of the external cavity decay rates κe/2π, the maximal values for the existent devices are around a few
ten megahertz [23, 26], whereas that for the present device is expected to reach the gigahertz order as we
observe in figure 4(b). The minimum external decay rates are by far lower than the intrinsic decay rates for
the existent devices, and the same is expected also for the present device.

In contrast with the conventional cavity-waveguide systems coupled by capacitors or inductors, in the
present galvanically-connected setup, the cavity (ports 2 and 3) and the waveguide (port 1) are strongly
coupled by default. They become decoupled under a specific boundary condition at the SQUID, where ω3 is
set close to ω2. As we observe in figure 4(b), the cavity linewidth is highly sensitive to ω3 (and accordingly to
the external flux threading the SQUID) around ω3 ≈ ω2. This implies that the precise SQUID tuning is
required not to achieve the ultrastrong cavity-waveguide coupling but to eliminate the coupling.

The present setup supports multiple cavity modes. As we discussed in section 3.1, their eigenfrequencies
are given by ω = ( 12 + n)π v

L2
(n= 0,1, · · · ), which are the solutions of cos(ωL2/v) = 0. Since the mode

separation is sufficiently large (20GHz for L2 = 2.5mm), the existence of other cavity modes are negligible
when investigating a certain cavity mode.

As an application of the present device, we discuss the conversion of a continuous wave to a ultrashort
pulse. For this purpose, we capacitively couple another waveguide at the end of Port 2 as an input port of the
continuous wave. The coupling strength is chosen so that the photon escape rate κe2 from Port 2 to this
waveguide becomes identical to the intrinsic loss rate κi of the cavity mode. At the storage stage, we turn off
the coupling between the cavity mode and Port 1 (κe1 = 0) and apply a continuous wave resonant to the
cavity with a photon rate of |Ein|2. Then, due to the critical coupling (κe2 = κi), the average photon number
stored in the cavity mode reaches |Ein|2/κi in the stationary state. At the emission stage, we turn on the
cavity-Port 1 coupling (κe1/2π ∼ 1GHz) and emit the stored photons to Port 1 as a short pulse. Since the
output pulse length is of the order of 1/κe1, the output photon rate |Eout|2 is estimated by
|Eout|2/κe1 ∼ |Ein|2/κi. Therefore, the instantaneous gain |Eout|2/|Ein|2 is roughly given by κe1/κi. For
κe1/2π = 1GHz and κi/2π = 10 kHz, the instantaneous gain reaches 50 dB. The upper bound of the input
photon power is determined by the condition that the stationary cavity photon number is below the critical
photon number [equation (18)], which is rewritten as |Ei|2 ≲ κiNcrit. When the input field frequency is
10GHz, the upper bound of the input power is−127 (−113) dBm for L3 = 4.5 (4.9)mm.

7. Summary

In this study, we theoretically propose a galvanically connected cavity-waveguide tunable coupler. The
investigated setup is a waveguide composed of three ports with the same property: one port is semi-infinite,
whereas the other two ports have finite lengths. One of the finite ports is terminated by a SQUID and
functions as a tunable stub. We analyzed the microwave response of this waveguide using its continuous
eigenmodes and observed that this setup functions as a tunable cavity-waveguide coupler under an adequate
choice of the lengths of the finite ports. The working principle of this tunable coupler is the shift of the node
position of the cavity mode with respect to the waveguide branch. Due to the galvanic connection, this device
is equipped with a very wide tunability of the cavity-waveguide coupling strength, which is applicable to the
generation of an ultrashort microwave pulse for example.
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Appendix A. Boundary condition at SQUID

As the SQUID terminating Port 3, we consider the one composed of two identical Josephson junctions (each
having capacitance Cs and Josephson energy Es) forming a loop. We denote the external magnetic flux
threading the loop by (h̄/2e)ϕex. Then, after linearization [sin(2eϕ/h̄)≈ 2eϕ/h̄], the boundary condition at
the SQUID position is written as [19]

C̃s
∂2ϕ

∂t2
=−

(
2e

h̄

)2

Ẽs (ϕex)ϕ− 1

L̃

∂ϕ

∂r
, (A1)

where C̃s = 2Cs, Ẽs(ϕex) = 2Es|cos(ϕex/2)|, and L̃(= Z/v) is the inductance of the waveguide per unit length.

Putting ϕ(r, t) = ϕ
(3)
ω (r3)e−iωt in equation (A1), where ϕ(3)

ω (r3) is given by equation (1), we obtain

tan
[
ω
(
Leff3,ω − L3

)
/v
]
= 2ZCsω− 8e2ZEs

h̄2ω
|cos(ϕex/2) |. (A2)

This is an equation to determine Leff3,ω for a given frequency ω.
Putting ω = ω3 in equation (A2) and using equation (7), we obtain

cot(ω3L3/v) = 2ZCsω3 −
8e2ZEs

h̄2ω3
|cos(ϕex/2) |. (A3)

This is an equation to determine ω3. The numerical solution of this equation is shown in figure 2(c) in the
main text.

Appendix B. Boundary condition at waveguide branch

Here, we derive the boundary condition at a waveguide branch from the circuit model having three ports A,
B, and C (figure B1). The classical Lagrangian describing this circuit is given by

L=
∆C

2
ϕ̇2
0 −

1

2∆L

[
(ϕ0 −ϕa1)

2
+(ϕ0 −ϕb1)

2
+(ϕ0 −ϕc1)

2
]

+
∆C

2

[
ϕ̇2
a1 + ϕ̇2

b1 + ϕ̇2
c1

]
− 1

2∆L

[
(ϕa1 −ϕa2)

2
+(ϕb1 −ϕb2)

2
+(ϕc1 −ϕc2)

2
]

+ · · · . (B1)

From this Lagrangian, we can derive the equation of motion for the flux ϕ0 at the branch point,

∆Cϕ̈0 = [(ϕa1 −ϕ0)+ (ϕb1 −ϕ0)+ (ϕc1 −ϕ0)]/∆L. (B2)

We here switch to the continuous description of the flux field, namely, ϕaj(t) = ϕa( j∆r, t), where∆r is the
infinitesimal distance between the nodes. ϕb(rb, t) and ϕc(rc, t) are introduced similarly. Since the flux ϕ0 is
common to the three semi-infinite waveguides, we immediately have

ϕa (0, t) = ϕb (0, t) = ϕc (0, t) . (B3)

With the continuous description, equation (B2) is rewritten as

∆C
∂2ϕa

∂t2
(0, t) =

1

L̃

[
∂ϕa

∂ra
(0, t)+

∂ϕb

∂rb
(0, t)+

∂ϕc

∂rc
(0, t)

]
, (B4)

where L̃=∆L/∆r is the inductance per unit length. Since the left-hand side of equation (B4) is proportional
to∆C and is therefore infinitesimal, we obtain

∂ϕa

∂ra
(0, t)+

∂ϕb

∂rb
(0, t)+

∂ϕc

∂rc
(0, t) = 0. (B5)

Equations (B3) and (B5) are the boundary conditions at the waveguide branch.
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Figure B1. Circuit diagram of a waveguide branch. All capacitors (inductors) have infinitesimal capacitance∆C (inductance∆L).
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