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We propose a new method for labeling the eigenstates of qubit-cavity systems based on the
continuity of the qubit occupancy. The labeled eigenstates give a rough estimate of the evolution
of a quantum state under cavity driving. The photon-number dependence of the resonant cavity
frequency can be estimated from the labeled eigenenergies, and resonances to higher excited qubit
states are visible in the dependence. Our proposed method can be applied to a broader situation
compared to an existing method. With the proposed method, we investigate the offset-charge
dependence of the resonances to higher excited states that can induce leakage effects from the
computational basis. The results imply that the leakage can occur with only around ten photons.

I. INTRODUCTION

A system composed of a qubit and a cavity is one of the
fundamental setups to study the quantum light-matter
interaction, as demonstrated in the seminal Jaynes-
Cummings model [1]. Moreover, the system is an essen-
tial building block for superconducting quantum compu-
tation since the readout of the qubit state can be per-
formed with the setup by the dispersive readout [2–4].
The dispersive readout is a ubiquitous method in the
sense that this readout scheme can be applied to any
type of qubit. The importance of qubit-cavity systems is
still growing with the development of quantum informa-
tion technologies.

The qubit used in the superconducting circuits has
some complexities that are absent in the Jaynes-
Cummings model. The number of states in the qubit is
unbounded in general [5–16]. The fluctuation of charged
impurities causes the temporal variation of qubit fre-
quency and leads to the decoherence of the qubit [6,
12, 17]. The counter-rotating terms neglected so of-
ten [1, 18] can induce the transition to a higher excited
qubit state [19]. These complexities should be consid-
ered when one studies qubit-cavity systems for practical
applications.

Besides, the dispersive readout inherits these complex-
ities. The working principle of the dispersive readout
is a qubit-state-dependent frequency shift to the cav-
ity [2, 4, 12, 20]. Higher excited qubit states also affect
the frequency shift, and the weight of such excited states
depends on the cavity photon number. Consequently,
the cavity resonant frequency also depends on the cav-
ity photon number [21–23]. It is required to evaluate the
photon-number dependence of the cavity frequency, espe-
cially for operating the readout with high photon num-
bers. The transition to a higher excited state leads to
the leakage of a quantum state from the computational
space [19, 23–25]. Thus, it is also necessary to estimate
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locations where such transitions occur.

In this paper, we propose a new approach to label the
eigenstates of qubit-cavity systems, which can be applied
to a broader situation compared to an existing method.
The photon-number dependence of the cavity frequency
can be estimated by labeling the eigenstates with a qubit
state and a photon number. A resonance to a higher
excited state, which can lead to the transition to the
excited state, is visible in the photon-number dependence
of the cavity frequency [21, 22].

There already exist some approaches to label the eigen-
states [21, 26–28]. Floquet modes in driven systems are
labeled [28] as well as the eigenstates of undriven sys-
tems. Some of these approaches utilize the conservation
of the total number of excitations [26, 27] and cannot be
applied to situations where the counter-rotating terms
are not negligible. For the method applicable to systems
with counter-rotating terms [21], we find instances where
the existing method gives discontinuous photon-number
dependence of qubit occupancy. In such instances, the
obtained labeling follows a resonant transition, and one
cannot estimate the cavity frequency for a case where
the transition is avoided by quickly passing the resonant
point. Thus, we develop and propose a new approach
that estimates continuous dependence even in such cases.
Comparing the photon-number dependence obtained by
the existing and the proposed approaches to the evolu-
tion under strong photon driving enough to avoid the
resonant transition, we observe that the evolution of the
qubit occupancy roughly follows the photon-number de-
pendence given by the proposed method.

With the proposed method, we also investigate the
offset-charge dependence of resonances to higher qubit
excited states in the transmon-cavity system. Contri-
butions from charged impurities are encapsulated in the
offset charge. We observe that the locations of the res-
onances strongly depend on the offset charge and that
only around ten photons can induce a transition leading
to leakage from the computational space.

The rest of the paper is organized as follows: In
Sect. II, we introduce labeling methods used in this pa-
per. The proposed approach is given in this section. In
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Sect. III, we compare the existing and the proposed la-
beling methods. The behavior of the proposed method
can be controlled by the energy window. We discuss how
the choice of the energy window affects the labeling in
Sect. IV. In Sect. V, the offset-charge dependence of res-
onances to higher excited qubit states is investigated with
the proposed method. The summary is given in Sect. VI.

II. LABELING METHODS

The purpose of this paper is to propose a new method
to label the eigenstates of qubit-cavity systems. The
Hamiltonian of the qubit-cavity system is given by

Ĥ =

∞∑
i=0

h̄ωi |i⟩q ⟨i|q + h̄ωcĉ
†ĉ+ Ĥint. (1)

Here, |i⟩q is the i–th excited eigenstate of the qubit whose

eigenenergy is h̄ωi (|0⟩q corresponds to the ground state),

ωc is the resonant frequency of the cavity, ĉ (ĉ†) denotes
the bosonic annihilation (creation) operator for the cav-

ity, and Ĥint denotes the interaction between the qubit
and the cavity. The ground (first excited) state of the
qubit |0⟩q (|1⟩q) is also denoted by |g⟩q (|e⟩q). We assume
the validity of the perturbative treatment of the interac-
tion term Ĥint for |g⟩q ⊗ |0⟩c (|e⟩q ⊗ |0⟩c) so that one

can uniquely find the state |g, 0⟩ (|e, 0⟩) from the eigen-

states of Ĥ which has the largest overlap with |g⟩q ⊗ |0⟩c
(|e⟩q ⊗ |0⟩c). Here, |i⟩c is the Fock state of the cavity

which satisfies ĉ†ĉ |i⟩c = i |i⟩c.
We discuss how to find a labeled state for a qubit state

|p⟩q and a Fock state |n⟩c, |p, n⟩, from the eigenstates

of Ĥ. Starting from an initial state |p, 0⟩, the system
is expected to follow the labeled states |p, n⟩ under adi-
abatic injection of photons into the cavity [21, 22, 26].
The eigenenergy of the labeled eigenstate |p, n⟩ is denoted
by εp,n. With the labeled eigenenergies, one can regard
(εp,n+1 − εp,n)/h̄ as the effective cavity frequency when
the qubit is initially |p⟩q and the cavity photon number
is n. The photon-number dependence of the cavity fre-
quency is useful information for designing the parameters
of the dispersive readout [21, 22]. Besides, a resonance
to a higher excited qubit state becomes visible in the
photon-number dependence of the cavity frequency.

The simplest approach to find the labeled state |p, n⟩
is the overlap approach: an eigenstate which has the
largest overlap with a product state |p⟩q ⊗ |n⟩c is |p, n⟩.
This method does not work in a large n region, as
we will present in Sect. III. The failure of the over-
lap approach means that |p, n⟩ cannot be represented as√
1− |ϵ|2 |p⟩q ⊗ |n⟩c + ϵ |ϕ⟩ for the large n region, where

ϵ is some small constant and |ϕ⟩ is a state orthogonal to
|p⟩q ⊗ |n⟩c.

When the Hamiltonian Ĥ preserves the total excitation
number, i.e., [Ĥ, N̂q+ĉ

†ĉ] = 0, the method based on block

diagonal structure is available [26, 27]. Here, N̂q is the
qubit occupation number operator defined by

N̂q =

∞∑
i=1

i |i⟩q ⟨i|q . (2)

In such cases, the Hamiltonian has a block diagonal
structure with respect to the total number of excitations
⟨N̂q + ĉ†ĉ⟩. When the eigenstate |λ⟩ belongs to the block
corresponds to the total excitation number M and the
cavity photon number ⟨λ|ĉ†ĉ|λ⟩ is close to n, |λ⟩ should
be |M − n, n⟩. This method cannot be applied when Ĥ
does not preserve the total excitation number, and the
resonance resulting from non-preserving terms has been
reported in superconducting qubit systems [19]. Thus, a
method applicable to non-preserving systems is preferred.
A recursive approach proposed in Ref. [21] can be ap-

plied to non-preserving systems. Starting from |p, 0⟩
which can be obtained by the overlap approach, a state
|p, n⟩ is obtained from |p, n− 1⟩ recursively. In the recur-
sive approach, a state ĉ† |p, n− 1⟩ is used as a candidate
for the next labeled state |p, n⟩. Therefore, |p, n⟩ is de-
termined as an eigenstate which has the largest overlap
with the state ĉ† |p, n− 1⟩. This labeling method is used
to analyze the readout dynamics of the transmon qubit
with high-power input light, and the effective cavity fre-
quency obtained by this method reflects the resonance
coming from non-preserving terms [21, 22].
The recursive approach has shown good performance

in the previous studies [21, 22]. However, we find in-
stances where the recursive approach gives the discontin-
uous dependence of physical quantities on photon num-
ber n. Consequently, we propose an approach that esti-
mates the continuous dependence of physical quantities
even in the case where the recursive approach does not.
The proposed method also determines the labeled state

recursively. From the eigenenergy εp,n−1, one estimates
a candidate for eigenenergy of |p, n⟩ as

ε′p,n = εp,n−1 + (εp,n−1 − εp,n−2) (3)

for n ≥ 2 and

ε′p,1 = εp,0 + h̄ωc (4)

for n = 1. The quantity εp,n−1 − εp,n−2 corresponds to
the effective energy shift induced by adding a single pho-
ton. Next, one selects every eigenstate whose eigenenergy
ε satisfies |ε− ε′p,n| ≤ δ/2, where δ is the energy window.
The parameter δ should be large enough to detect sharp
peaks coming from resonances and small enough not to
include unnecessary states. If no eigenstate is found
within the energy window, one selects the two eigenstates
closest to the candidate. For the selected eigenstates, one
evaluates the expectation values of N̂q. The next labeled
state |p, n⟩ is determined as the state with the closest ex-

pectation value to ⟨p, n− 1|N̂q|p, n− 1⟩. In determining
|p̄, 1̄⟩, the overlap approach is also available. In short, the
proposed method selects the state that makes the change
of qubit occupancy as small as possible.
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FIG. 1. (Color online) Photon-number dependence of the
cavity frequencies in the transmon-cavity system obtained
by the three labeling methods. The recursive calcula-
tions start from |g, 0⟩. For the system parameters, we
use (EC/h̄ωc, EJ/h̄ωc, g/ωc, Ng) = (5.0 × 10−2, 1.6, 2.5 ×
10−2, 0.0). The energy window δ is set to 1.0 × 10−2h̄ωc for
the proposed method.

III. COMPARISON OF LABELING METHODS

In this section, we compare three labeling methods pre-
sented in Sect. II, i.e., the overlap, the recursive [21], and
the proposed methods. In the comparison, we choose
the transmon as the qubit whose Hamiltonian is given
by [5, 10–12]

Ĥq =4ECN̂
2
t − EJ

2

∞∑
n=−∞

(|n⟩t ⟨n+ 1|t + |n+ 1⟩t ⟨n|t) .

(5)

Here, EC is the charging energy, N̂t is the transmon
charge operator, |n⟩t denotes the charge basis for the
transmon, and EJ is the Josephson energy. The trans-
mon charge operator is given by

N̂t =

∞∑
n=−∞

(n−Ng) |n⟩t ⟨n|t , (6)

where Ng is the offset charge. By diagonalizing Ĥq (with
a truncated finite basis), one can obtain the eigenstates
|i⟩q and the eigenvalues h̄ωi of the qubit. The transmon
and the cavity are assumed to be capacitively coupled,
i.e.,

Ĥint = ih̄gN̂t(ĉ
† − ĉ). (7)

Here, g is the coupling between the transmon and the
cavity. For numerical computations, one has to truncate
an infinite basis to some finite basis. Hereafter, we con-
sider states from |−10⟩t to |10⟩t for the charge basis of the
transmon and the Fock state of the cavity up to |350⟩c
unless otherwise specified.

Figure 1 gives the photon-number dependence of the
cavity frequencies obtained by the three labeling meth-
ods. The recursive calculations start from |g, 0⟩. We

use (EC/h̄ωc, EJ/h̄ωc, g/ωc, Ng) = (5.0× 10−2, 1.6, 2.5×
10−2, 0.0) for the system parameters. With the param-
eters, the occupations of |10⟩t and |−10⟩t in the qubit
eigenstate |10⟩q are only on the order of 10−10. The

qubit eigenstates energetically lower than |10⟩q are lit-
tle affected by the truncation of the charge basis. The
energy window is set to δ = 1.0×10−2h̄ωc. The three la-
beling methods result in the same labeling up to n ∼ 150.
The sharp peak around n ∼ 50 comes from the resonance
with the higher excited qubit states. The transition to
higher excited state occurs when the cavity photon num-
ber stays near the resonant peak. However, such tran-
sition can be avoided by quickly passing the resonant
point [21, 22]. Around n ∼ 150, the frequency given by
the overlap method gives a discontinuous jump. After the
discontinuous jump, the cavity frequency obtained by the
overlap method shows non-smooth dependence. The ob-
servation of unphysical non-smooth behavior means that
the overlap method fails to trace the labeled states |g, n⟩,
and the failure implies that the labeled states |g, n⟩ are
not close to |g⟩q ⊗ |n⟩c for n >∼ 150.
The other two methods give different cavity frequen-

cies after n ∼ 180. The cavity frequency given by the
recursive method shows a sudden drop around n ∼ 180,
while that estimated by the proposed method indicates
the presence of the resonance at the point. This ob-
servation suggests that the recursive method follows a
resonant transition, while the proposed method passes
through the transition. Next, we try to confirm that the
proposed method can actually avoid the resonant transi-
tions by comparing the qubit occupation numbers ⟨N̂q⟩ of
the labeled states and that evolved under cavity driving.
To obtain the evolution of the qubit occupation num-

ber, we numerically simulate the Hamiltonian dynamics

d

dt
|ψ(t)⟩ = − i

h̄
Ĥdyn(t) |ψ(t)⟩ (8)

under the Hamiltonian

Ĥdyn(t) = Ĥ + h̄E(e−iωdtĉ† + eiωdtĉ) (9)

with the initial state |ψ(0)⟩ = |g, 0⟩. Here, E is the ampli-
tude of the driving field, and ωd is the drive frequency. To
reduce the number of the Fock states of the cavity used
in numerical simulations, we apply the time-dependent
unitary transformation

Û(t) = exp
[
−α(t)ĉ† + α∗(t)ĉ

]
(10)

to |ψ(t)⟩. The displacement parameter α(t) is determined
by the differential equation

dα(t)

dt
= −i

[
ωc(α(t) + ⟨ĉ(t)⟩U ) + ig ⟨N̂tr(t)⟩U + Ee−iωdt

]
,

(11)

where ⟨Â(t)⟩U stands for ⟨ψ(t)|Û†(t)ÂÛ(t)|ψ(t)⟩ [22].
For the numerical simulation of the dynamics in this sec-
tion, we use the Fock state of the cavity up to |150⟩c, and
the drive frequency is set to ωd/ωc = 1.0015.
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FIG. 2. (Color online) Photon-number dependence of the
qubit occupation number in the transmon-cavity system ob-
tained by the two labeling methods (recursive and proposed)
and the evolution under cavity driving. The recursive calcu-
lations start from |g, 0⟩. An initial state for the dynamics is
also set to |g, 0⟩. The parameters of the system are the same
as those in Fig. 1. The amplitude of the driving field E is set
to 5.0×10−3ωc, and the drive frequency ωd is set to 1.0015ωc.

Figure 2 gives the photon-number dependence of the
qubit occupation number obtained by the recursive and
the proposed methods. We also plot the trajectory
in the ⟨N̂q⟩-⟨ĉ†ĉ⟩ plane under the cavity driving with
E/ωc = 5.0× 10−3in Fig. 2. The amplitude of the drive
field E is determined strong enough not to be affected by
resonances from higher excited states. The qubit occu-
pation numbers obtained from the two labeling methods
show different behaviors for n >∼ 180, and their behaviors
are very similar to those in the cavity frequency shown
in Fig. 1. The recursive method gives discontinuous in-
crease of the qubit occupation number at n ∼ 180. On
the contrary, that obtained by the proposed method ex-
hibits a sharp peak at the point.

Under cavity driving, the evolution of the qubit
occupation number roughly follows the photon-number
dependence obtained by the proposed method apart
from the resonant peaks. Therefore, we conclude
that the proposed method can pass through the
resonant transition and be applied to a broader
situation compared to the recursive method. We
present another numerical example with parameters
(EC/h̄ωc, EJ/h̄ωc, g/ωc, Ng, δ/h̄ωc, E/ωc, ωd/ωc) =
(5.0 × 10−2, 2.0, 1.0 × 10−2, 0.1, 1.0 × 10−2, 5.0 ×
10−3, 1.0002) starting from the excited state |ē, 0̄⟩. For
this case with a finite charge offset, the same conclusion
is obtained as summarized in Fig. 3. The recursive
method follows a resonant transition, while the proposed
method avoids the transition. The proposed method can
access the effective cavity frequency when the system
passes through the resonant transition by sufficiently
strong driving.

(a)

(b)

FIG. 3. (Color online) Photon-number dependence of (a)
the cavity frequency and (b) the qubit occupation number
in the transmon-cavity system obtained by the two label-
ing methods. For the qubit occupation number, the evo-
lution under cavity driving is also plotted. The recursive
calculations start from |e, 0⟩. An initial state for the dy-
namics is also set to |e, 0⟩. For the calculation, we use
(EC/h̄ωc, EJ/h̄ωc, g/ωc, Ng, δ/h̄ωc, E/ωc, ωd/ωc) = (5.0 ×
10−2, 2.0, 1.0× 10−2, 0.1, 1.0× 10−2, 5.0× 10−3, 1.0002).

IV. ENERGY-WINDOW DEPENDENCE

Compared to the recursive approach, our proposed
method introduces an additional parameter, the energy
window δ. This parameter should be large enough to
include the eigenenergy affected by a higher excited
state within the energy window and small enough to ex-
clude eigenstates whose qubit occupancies are acciden-
tally close to the target value. The additional parame-
ter can adjust the behavior of the labeling method, and
thus the proposed method acquires adaptability. In this
section, we discuss how the energy window δ affects the
labeling.

To discuss the effects of the energy window, we
observe the photon-number dependence of the effec-
tive cavity frequency and the qubit occupancy given
by the proposed labeling method with different en-
ergy windows, as shown in Fig. 4. We use the sys-
tem parameters (EC/h̄ωc, EJ/h̄ωc, g/ωc, Ng) = (5.0 ×
10−2, 1.6, 2.5 × 10−2, 0.1) and three distinct energy win-
dows 1.0× 10−2h̄ωc, 1.5× 10−2h̄ωc, and 2.0× 10−2h̄ωc.
For the largest energy window 2.0 × 10−2h̄ωc, the effec-
tive cavity frequency shows a discontinuous jump, and
this jump suggests that the selected energy window is
so large that a highly excited qubit state is included in
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(a)

(b)

FIG. 4. (Color online) Photon-number dependence of (a)
the cavity frequency and (b) the qubit occupation num-
ber in the transmon-cavity system obtained by the pro-
posed labeling methods with different energy windows δ.
For the qubit occupation number, the evolution under cav-
ity driving is also plotted. The results obtained by the re-
cursive labeling method are plotted for comparison. The
labeling method starts from |g, 0⟩. An initial state for
the dynamics is also set to |g, 0⟩. For the calculation,
we use (EC/h̄ωc, EJ/h̄ωc, g/ωc, Ng, E/ωc, ωd/ωc) = (5.0 ×
10−2, 1.6, 2.5× 10−2, 0.1, 1.0× 10−2, 1.001).

the energy window. The labeling with this energy win-
dow is very close to the labeling by the recursive method.
The recursive method can detect the resonance around
n ∼ 40, while it cannot detect those around n ∼ 110 and
n ∼ 130. For the other two energy windows, a discontin-
uous behavior is not visible in the cavity frequency and
the qubit occupancy except for resonant peaks.

By recalling the results presented in Sect. III, a res-
onant peak of the cavity frequency is replaced with a
sudden drop in a labeling following the resonant transi-
tion. Based on this empirical rule, the labeling with the
energy window δ = 1.5 × 10−2h̄ωc should be appropri-
ate to evaluate the effective cavity frequency with avoid-
ing resonant peaks. This expectation can be verified by
comparing the trajectory obtained by the dynamics un-
der cavity driving. The red-dotted line in Fig. 4(b) is

the trajectory in the ⟨N̂q⟩-⟨ĉ†ĉ⟩ plane under the cavity
driving with E/ωc = 1.0 × 10−2 and ωd/ωc = 1.001.
We use the Fock state of the cavity up to |500⟩c for the
numerical simulation of the dynamics. The trajectory
obtained by the dynamics follows the photon number de-
pendence of the qubit occupancy with the energy window
δ/h̄ωc = 1.5 × 10−2. The dynamics ensure that the la-
beling with δ/h̄ωc = 1.5 × 10−2 is appropriate to avoid
resonant transitions. This rough matching with the dy-
namics also implies that a drop of the cavity frequency
around n ∼ 240 will not be replaced with a resonant

peak.
When two labelings with energy windows δ1 and δ2

show different behaviors at a resonant point, the level re-
pulsion between resonant states can be bounded by using
the parameters δ1 and δ2. The two labelings with energy
windows δ1 and δ2 are supposed to give the same label up
to the photon number n − 1. Then, the next eigenener-
gies εp,n are assumed to be different in the two labelings,
and we represent them as Er+(−)∆/2 for δ1(δ2). Here,
Er is the resonant energy and ∆ is the level repulsion
emerged from the interaction between resonant states.
We choose the energy window for the larger eigenen-
ergy as δ1. Consequently, the level repulsion is positive,
∆ > 0. In such situations, the energy window conditions
|εp,n − ε′p,n| ≤ δ/2 for the two labelings can be rewritten
as

2(ε′p,n − Er)− δ1 ≤ ∆ ≤ 2(ε′p,n − Er) + δ1 (12)

−2(ε′p,n − Er)− δ2 ≤ ∆ ≤ −2(ε′p,n − Er) + δ2. (13)

We note that a candidate for eigenenergy ε′p,n is the same
for the two labelings up to n. Since ∆ is positive, the
inequality −2(ε′p,n − Er) < δ1 is satisfied from Eq. (12).
With the inequality and Eq. (13), one can bound the level
repulsion ∆ as

0 < ∆ < δ1 + δ2. (14)

Especially when the parameters δ1 and δ2 have the same
order of magnitude δ1 ∼ δ2 ∼ δ, the bound for the repul-
sion is given as

0 < ∆ <∼ 2δ. (15)

Thus, the energy window parameter δ roughly bounds
the allowable size of level repulsions that the proposed
labeling method can follow. To change labeling behaviors
at a resonant point, the parameter δ should be varied by
the same magnitude as ∆.
Through the example presented in this section, one

can find the importance of using some energy windows
and comparing those results. When a sudden change in
the cavity frequency is replaced with a peak in another
labeling, the labeling with the sudden change would fol-
low a resonant transition. This empirical rule is useful
for choosing an appropriate energy window to avoid res-
onant transitions without accessing dynamics. For the
numerically expensive but definite confirmation, one can
compare the results of labeling to those obtained from
dynamics.

V. OFFSET-CHARGE DEPENDENCE OF
RESONANCE

As we have already observed, the indication of the res-
onance to higher excited states can be seen in the photon-
number dependence of the cavity frequency obtained by
the labeling methods. Such resonance can lead to leakage
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from the computational space [19, 21, 23]. The identifi-
cation of its location would be an essential in designing
the superconducting qubits. Since the labeling method
proposed in this study can be applied to a broader situa-
tion compared to the previous method [21], the proposed
method is appropriate for the identification.

In this section, we concentrate our attention on the
offset-charge Ng dependence of the resonant points. The
offset charge contains contributions from charge impuri-
ties. One of the important characteristics of the trans-
mon superconducting qubit is robustness of its resonant
frequency to the offset-charge noise. In other words, the
energy difference between the first excited and the ground
states has little dependence on the offset charge in the
transmon regime EJ/EC ≫ 1. It should be noted that
the eigenenergies of higher excited states depend on the
offset charge [12]. The presence of the chaotic layer in
the spectrum of a driven transmon introduces the offset-
charge dependence to the dynamics of low-lying qubit
states indeed [29]. Consequently, the locations of reso-
nances to the higher excited states are expected to de-
pend on the offset-charge noise.

Because of the infinite sum in the charge operator de-
fined in Eq. (6), the operators before and after the shift
of the offset charge by unity, Ng → Ng + 1, are unitarily
equivalent, i.e.,

V̂ †
shift

{ ∞∑
n=−∞

[n− (Ng + 1)] |n⟩t ⟨n|t

}
V̂shift

=

∞∑
n=−∞

(n−Ng) |n⟩t ⟨n|t

(16)

with the unitary transformation V̂shift =
∑

|n⟩t ⟨n− 1|t.
The unitary transformation V̂shift does not change
the Josephson energy term (EJ/2)

∑
(|n⟩t ⟨n+ 1|t +

|n+ 1⟩t ⟨n|t). Thus, the spectrum of the transmon-cavity
system is invariant under the shift. Besides, the infinite-
ness of the summation leads to another symmetry of the
charge operator: The operator with the sign inverted off-
set charge is unitary equivalent to the original operator
with the negative sign, i.e.,

V̂ †
invert

{ ∞∑
n=−∞

(n+Ng) |n⟩t ⟨n|t

}
V̂invert

= −
∞∑

n=−∞
(n−Ng) |n⟩t ⟨n|t

(17)

with the unitary transformation V̂invert =
∑

|n⟩t ⟨−n|t.
The unitary transformation V̂invert does not change the
Josephson energy term either. Since the negative sign can
be absorbed into the definition of the cavity annihilation
and creation operators, the spectrum of the transmon-
cavity system is invariant under the sign inversion of the
offset charge. From the periodicity and the symmetry, it
is enough to investigate the region 0 ≤ Ng ≤ 0.5 for the
identification.

(a)

(b)

FIG. 5. (Color online) Photon-number dependence of the
cavity frequency with the offset charges from 0 to 0.5 for
(a) the ground-state ladder |g, n⟩ and (b) the excited-state
ladder |e, n⟩. We use (EC/h̄ωc, EJ/h̄ωc, g/ωc) = (5.0 ×
10−2, 1.6, 2.5 × 10−2) for the system parameters. For the
cases Ng = 0.1 in the ground-state ladder and Ng = 0.3
in the excited-state ladder, the energy window δ is set to
1.5×10−2h̄ωc. For the other cases, we set δ to 1.0×10−2h̄ωc.

Figure 5 shows the photon-number dependence of the
cavity frequency with the offset charges from 0 to 0.5 for
the ground- (excited-)state ladder |g, n⟩ (|e, n⟩). For the
ground-state ladder |g, n⟩, the cavity frequencies for the
different offset charges do not show visible difference up
to n ∼ 150 apart from the resonant peaks. The little
dependence on the offset charge implies that the weights
of higher transmon excited states in the labeled states
|g, n⟩ are small for n <∼ 150 (apart from the resonant
point). The location of the resonant point strongly de-
pends on the offset charge, as expected. The resonant
point can fluctuate between n ∼ 15 and n ∼ 130 without
controlling the offset charge. Therefore, a transition to
a higher excited state may take place with a relatively
small photon number n ∼ O(10).
For the excited-state ladder |e, n⟩, the cavity frequen-

cies show visible difference for n >∼ 20. This implies that
the weights of higher transmon excited states are not
negligible in this region. For the case with Ng = 0.5,
the resonant peak is located around n ∼ 10. Conse-
quently, a transition to a higher excited state may take
place with a relatively small photon number also in the
case of the labeled states |e, n⟩. In this way, the photon-
number dependence of the cavity frequency obtained by
the labeling method provides the information on photon
number where the transitions leading to leakage from the
computational space can occur.
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VI. SUMMARY

In this paper, we proposed a new method to label the
eigenstates of a qubit-cavity system based on the conti-
nuity of qubit occupancy. Starting from the eigenstate
without photon occupation, the system is expected to
follow the labeled states under adiabatic injection of pho-
tons into the cavity. Besides, the effective resonant fre-
quency of the cavity with photon occupation can be esti-
mated from the eigenenergies of the labeled states. Our
proposed method finds candidates for the next labeled
state based on their eigenenergies. Then, one selects the
next labeled state that makes the change of the qubit
occupancy as small as possible. Comparing the obtained
photon-number dependence of the cavity frequency and
the evolution under cavity driving, we confirmed that our
proposed scheme can be applied to a broader situation
compared to the previous approach [21] in the sense that
our proposed scheme can access a case where a system
passes through resonant transitions that the previous ap-
proach cannot avoid.

With the proposed method, we investigated the
offset-charge dependence of the cavity frequency in the
transmon-cavity system. In the system we studied, the
location of the resonance fluctuates depending on the off-

set charge. Even though the qubit resonant frequency of
the transmon is robust to the charge noises, the resonance
to higher excited states is not. Without controlling the
offset charge, it is possible to encounter a resonance to
higher excited states with a relatively small photon num-
ber n ∼ 10.

The photon-number dependence of the cavity fre-
quency and the location of the resonance to higher ex-
cited states are essential information for designing super-
conducting qubits. Our proposed method is applicable to
other superconducting qubits such as the fluxonium [13]
or qubits with d–wave superconductors [15, 16]. Their ro-
bustness to the charge noise, including effects from higher
excited states, can be evaluated with a labeling method.
A stable labeling method is essential in assessing the ro-
bustness of existing or new high-performance supercon-
ducting qubits.
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