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We develop an efficient numerical approach for simulating the high-power dispersive readout in
circuit quantum electrodynamics. In the numerical simulations of the high-power readout, a large-
amplitude coherent state induced in a cavity is an obstacle because many Fock states are required to
describe such a state. We remove the large-amplitude coherent state from the numerical simulations
by simulating the dynamics in a frame where the amplitude of the coherent state is almost absent.
Using the developed method, we numerically simulate the high-power dispersive readout of the two-
level system and the transmon. Our proposed method succeeds in producing reasonable behaviors
of the high-power dispersive readout which can be deduced from the photon-number dependence of
the cavity frequency: The high-power dispersive readout works in the two-level-system case while
it does not work in the transmon case.

I. INTRODUCTION

Technologies in circuit quantum electrodynamics
(cQED) are rapidly developing [1–6] to realize fault-
tolerant quantum computers. Among these technologies,
readout techniques are vital since the final procedure of
quantum computations is always the readout of qubit
information. Moreover, the mid-circuit readout is also
essential to execute quantum error corrections [7–12]. A
fast and reliable readout method is a crucial building
block to improving the performance of quantum com-
puters.

Dispersive readout [13, 14] is a ubiquitous method in
cQED because this readout scheme is applicable to any
type of qubit. In the dispersive readout, the qubit-state-
dependent frequency shift of a cavity mode can be de-
tected from the reflection or transmission of coherent
light input [15]. With a naive thought, one can increase
the reflected or transmitted signal by using high-power-
input light and make the readout time shorter. How-
ever, the working principle of the dispersive readout is
based on the perturbative theory [13, 16] and the cav-
ity photon number can be regarded as the perturba-
tion parameter effectively. High-power light induces the
large cavity photon number, and the perturbation theory
would break down. Furthermore, the situation becomes
more complicated when the qubit is implemented with
the transmon [2, 3]. The transmon can be treated as
an anharmonic oscillator whose number of eigenstates is
not bounded. Within the eigenstates in the anharmonic
oscillator, only the lowest two states compose computa-
tional space. Previous studies [17–22] have reported that
input light can induce transitions to the outer space of
the computational basis. Consequently, back action from
high-power input is nontrivial in the dispersive readout.
Toward faster readout, it is necessary to analyze these
nontrivial effects.
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The high-power coherent light also makes the analysis
difficult. The analysis needs numerical treatment since
large cavity photon numbers spoil the perturbative treat-
ment, as already stated. In numerical approaches, large
amplitude coherent states induced by the high-power co-
herent light disrupt the numerical simulations because
many Fock states are required to describe such coherent
states. For instance, Shillito et al. [21] tackle this diffi-
culty by utilizing the processing unit designed for large-
scale dense linear-algebra operations [23].

In this paper, we propose another approach to deal
with the difficulty. We find a way to obtain the dis-
placement operator which can significantly reduce errors
coming from the truncation of bosonic degrees of free-
dom compared to previously adopted displacement op-
erators [19, 20, 24]. The obstruction for the numerical
simulations is the large amplitude coherent state in the
cavity, and the amplitude of the coherent state can be
displaced by the displacement operator. Since the dis-
placement operator is unitary, the displacement can be
regarded as the change of a frame. Consequently, one can
numerically simulate the high-power readout in a frame
where the amplitude of the coherent state is always zero.
Following this idea, we develop a method to simulate
the dispersive readout in such a frame. Using the de-
veloped method, we simulate the dispersive readout in
the two-level-system and the transmon cases. Compared
to the displacement operators adopted in previous stud-
ies [19, 20, 24], the developed displacement can simulate
the dispersive readout with less Fock states. The nu-
merical simulations also show that the dispersive readout
works even with high-power input in the two-level-system
case. On the contrary, the simulations suggest that the
high-power readout does not work in the transmon case.
This difference can be explained by the photon-number
dependencies of the cavity frequency in the two cases,
and producing the expected behaviors supports the ef-
fectiveness of the proposed method in the simulations of
the high-power readout.

The rest of the paper is organized as follows: In Sec. II,
we introduce the Hamiltonian and the time-dependent
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Qubit Cavity Waveguide

Input coherent light

FIG. 1. Schematic picture of system we consider in this study.
The system is composed of a qubit, a linear cavity, and a semi-
infinite waveguide. In this system, the dynamics induced by
a coherent input light is considered.

unitary transformation. The derivation of the proposed
method is also given in this section. In Sec. III, the results
of numerical simulations of high-power dispersive readout
in the two-level-system and transmon cases are presented.
The summary is given in Sec. IV.

II. EQUATION OF MOTION WITH
DISPLACEMENT

A. Transformation of Hamiltonian

We consider the dynamics under the Hamiltonian

Ĥ = Ĥq + Ĥg + h̄ωcĉ
†ĉ

+

∫ ∞

0

dk
(
h̄vkb̂†k b̂k + h̄ξk ĉ

†b̂k + h̄ξ∗k b̂
†
k ĉ
)
,

(1)

which is depicted in Fig. 1. Here, Ĥq denotes the Hamil-

tonian for a component acting as a qubit, Ĥg denotes the
interaction between the qubit component and a cavity, ωc

is the resonant frequency of the cavity, ĉ (ĉ†) denotes the
bosonic annihilation (creation) operator for the cavity, v
is the velocity of light in a semi-infinite one-dimensional

waveguide, b̂k (b̂†k) denotes the bosonic annihilation (cre-
ation) operator for a mode labeled by a wavenumber k
in the waveguide, and ξk is the coupling between the
cavity and the mode k. For the initial conditions, we as-
sume that the waveguide is not entangled with the other
components and that coherent light is injected. Conse-
quently, an initial state can be represented as

|ψ(0)⟩ = exp

[∫ ∞

0

dk(f(k)b̂†k − f∗(k)b̂k)

]
|ψini⟩qc |0⟩w ,

(2)

where f(k) is the amplitudes of the input coherent light
in the frequency representation, |ψini⟩qc is an initial state

of the qubit-cavity system, and |0⟩w denotes the vacuum

state of the waveguide. We also define the Hamiltonian
for the qubit and cavity components

Ĥqc = Ĥq + Ĥg + h̄ωcĉ
†ĉ. (3)

For labelling the eigenstates of Ĥqc, we consider the

product states of the eigenstates of Ĥq, |p⟩q, and the

Fock states |i⟩c of the cavity component which satisfies
ĉ†ĉ |i⟩c = i |i⟩c.

At initial, we label a state |p̃, 0̃⟩qc which has the largest

overlap with a product state |p⟩q |0⟩c. This initial la-

belling works in the dispersive regime |g/(ωc −ωq)| ≪ 1,
where ωq is the resonant frequency of the qubit compo-

nent. Starting from |p̃, 0̃⟩, states |p̃, ñ⟩ are labelled re-
cursively following the method introduced in Ref. [21]:

A state |p̃, ñ+ 1⟩ is characterized as a state which has
the largest overlap with the state ĉ† |p̃, ñ⟩. The eigenen-
ergy of the state |p̃, ñ⟩ is denoted by εp,n. The ground

and the first excited states of Ĥq are denoted by |g⟩q and

|e⟩q, respectively.
To numerically simulate the dynamics, one has to trun-

cate the infinite Hilbert space of bosonic degrees of free-
dom to some finite dimension. In the situation considered
in this paper, the input coherent light generates coherent
states to bosonic components. When the input light is
strong, the amplitudes of the generated coherent states
become large and the dimensions of the truncated local
Hilbert spaces should also be large enough to describe
these large-amplitude coherent states. Thus, more com-
putational resources are required for the simulation of
the dynamics as input coherent light is stronger.

An approach to reduce the required computational
resources is decreasing the amplitudes of the coherent
states by the displacement operator

D̂(∆) = exp(∆ĉ† −∆∗ĉ). (4)

We introduce the time-dependent unitary operator

Û(t) = D̂†(α(t)) exp

[∫ ∞

0

dk(−β(k, t)b̂†k + β∗(k, t)b̂k)

]
(5)

and the transformed state

|ψ(t)⟩U = Û(t) |ψ(t)⟩ . (6)

By setting β(k, 0) = f(k), the initial state of the waveg-
uide becomes the vacuum state in this frame. The time
evolution of the transformed state |ψ(t)⟩U is governed by
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the transformed time-dependent Hamiltonian

ĤU (t) = Û(t)ĤÛ†(t) + ih̄

(
dÛ(t)

dt

)
Û†(t)

= Ĥq + D̂†(α(t))ĤgD̂(α(t)) + h̄ωcĉ
†ĉ

+

∫ ∞

0

dk
(
h̄vkb̂†k b̂k + h̄ξk ĉ

†b̂k + h̄ξ∗k b̂
†
k ĉ
)

+ h̄

[
ĉ†
(
−idα(t)

dt
+ ωcα(t) +

∫ ∞

0

dkξkβ(k, t)

)
+H.c.

]
+ h̄

∫ ∞

0

dk

[
b̂†k

(
−i∂β(k, t)

∂t
+ vkβ(k, t) + ξ∗kα(t)

)
+H.c.

]
+ C,

(7)

where C denotes c-numbers which are irrelevant to the
dynamics and we drop it. In the transformed frame, the
expectation value of an operator Ô in the original frame
can be expressed as

⟨ψ(t)|Ô|ψ(t)⟩ = U ⟨ψ(t)|Û(t)ÔÛ†(t)|ψ(t)⟩U . (8)

We introduce the notation ⟨Ô(t)⟩U = U ⟨ψ(t)|Ô|ψ(t)⟩U
for later use.

The displacement β(k, t) is chosen so that the condi-
tion

−i∂β(k, t)
∂t

+ vkβ(k, t) + ξ∗kα(t) = 0 (9)

is fulfilled. By solving this linear differential equation
with the initial condition β(k, 0) = f(k), one can obtain

β(k, t) = f(k)e−ivkt − iξ∗k

∫ t

0

dτα(τ)e−ivk(t−τ). (10)

Here, we introduce a classical field

E(t) =
∫ ∞

0

dkξkf(k)e
−ivkt (11)

which corresponds to an external field a cavity feels and
the memory function

K(t) =

∫ ∞

0

dk|ξk|2e−ivkt. (12)

With the introduced quantities, the transformed Hamil-
tonian can be expressed as

ĤU (t) = Ĥq + D̂†(α(t))ĤgD̂(α(t)) + h̄ωcĉ
†ĉ

+

∫ ∞

0

dk
(
h̄vkb̂†k b̂k + h̄ξk ĉ

†b̂k + h̄ξ∗k b̂
†
k ĉ
)

+ h̄
[
ĉ†
(
−idα(t)

dt
+ ωcα(t) + E(t)− i

∫ t

0

dτK(t− τ)α(τ)

)
+H.c.

]
.

(13)

At this point, we introduce two approximations: the
extension of the lower limit of the integral for k in
Eq. (13) from 0 to −∞ and ignoring the k–dependence

of ξk, i.e., ξk is set to
√
κv/(2π). Here, κ represents the

decay rate of the cavity. Under these approximations,
the memory function K(t) is approximated to the delta
function, i.e.,

K(t) ≃ κv

2π

∫ ∞

−∞
dke−ivkt (14)

= κδ(t) (15)

and ∫ t

0

dτK(t− τ)α(τ) ≃ κ

∫ t

0

dτα(τ)δ(t− τ) (16)

=
κ

2
α(t). (17)

In other words, the introduced approximations are equiv-
alent to assuming the Markovian dynamics.

The coefficient of the operator ĉ† in Eq. (13) can be
removed by choosing α(t) as the solution of the linear
differential equation

dα(t)

dt
= −iωcα(t)− iE(t)− κ

2
α(t) (18)

with an initial condition α(0) = 0, and some previous
studies have adopted similar choices [19, 20, 24]. The
solution of this initial value problem is denoted by P(t).
For instance, the displacement P(t) for the monochro-
matic field E(t) = Ee−iωdt is given as

P(t) =
iE
{

κ
2 + i(ωd − ωc)

}
κ2

4 + (ωd − ωc)2
(e−(iωc+κ/2)t − e−iωdt).

(19)

With the choice, the direct driving of the cavity by the
field E(t) is eliminated from the Hamiltonian,

ĤU (t) = Ĥq + D̂†(P(t))ĤgD̂(P(t)) + h̄ωcĉ
†ĉ

+

∫ ∞

0

dk
(
h̄vkb̂†k b̂k + h̄ξk ĉ

†b̂k + h̄ξ∗k b̂
†
k ĉ
)
.

(20)

However, the transformed qubit-cavity interaction
D̂†(P(t))ĤgD̂(P(t)) can induce a coherent state to the
cavity and such coherent states are not taken into con-
siderations in the displacement P(t).

B. Equation of motion

To eliminate a coherent state generated in the cav-
ity from numerical simulations, we derive the Heisenberg
equation of motion for an operator acting on the qubit-
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cavity system ŝ(t)[25],

d

dt
ŝ(t) =

i

h̄
[Ĥq(t) + D̂†(α(t))Ĥg(t)D̂(α(t)), ŝ(t)]

+ iωc[ĉ
†(t)ĉ(t), ŝ(t)]

+ i

√
κv

2π

(
[ĉ†(t), ŝ(t)]

∫ ∞

−∞
dkb̂k(t) +

∫ ∞

−∞
dkb̂†k(t)[ĉ(t), ŝ(t)]

)
+ i[ĉ†(t), ŝ(t)]

(
−idα(t)

dt
+ ωcα(t) + E(t)− i

κ

2
α(t)

)
+ i[ĉ(t), ŝ(t)]

(
i
dα∗(t)

dt
+ ωcα

∗(t) + E∗(t) + i
κ

2
α∗(t)

)
.

(21)

Since the equation of motion for the operator b̂k(t) is
given as

d

dt
b̂k(t) = −ivkb̂k(t)− i

√
κv

2π
ĉ(t), (22)

b̂k(t) is obtained as

b̂k(t) = b̂k(0)e
−ivkt − i

√
κv

2π

∫ t

0

dτ ĉ(τ)eivk(τ−t). (23)

Consequently, one can evaluate the integral

1√
2π

∫ ∞

−∞
dkb̂k(t) =

1√
2π

∫ ∞

−∞
dkb̂k(0)e

−ivkt − i

√
κv

2π

∫ ∞

−∞
dk

∫ t

0

dτ ĉ(τ)eivk(τ−t)

=
1√
2π

∫ ∞

−∞
dkb̂k(0)e

−ivkt − i

√
κ

v

∫ t

0

dτ ĉ(τ)δ(τ − t)

=
1√
2π

∫ ∞

−∞
dkb̂k(0)e

−ivkt − i

2

√
κ

v
ĉ(t). (24)

It should be noted that the first term is the Fourier trans-
form of the operator b̂k(0). Since the waveguide is a vac-
uum at the initial time in the frame we consider, this

term vanishes when one evaluates expectation values in
the transformed frame. Therefore, the equation of mo-
tion for the expectation value ⟨ŝ(t)⟩U is given as

d

dt
⟨ŝ(t)⟩U =

i

h̄
⟨[Ĥq(t) + D̂†(α(t))Ĥg(t)D̂(α(t)), ŝ(t)]⟩U + iωc ⟨[ĉ†(t)ĉ(t), ŝ(t)]⟩U +

κ

2

(
⟨[ĉ†(t), ŝ(t)]ĉ(t)⟩U − ⟨ĉ†(t)[ĉ(t), ŝ(t)]⟩U

)
+ i ⟨[ĉ†(t), ŝ(t)]⟩U

(
−idα(t)

dt
+ ωcα(t) + E(t)− i

κ

2
α(t)

)
+ i ⟨[ĉ(t), ŝ(t)]⟩U

(
i
dα∗(t)

dt
+ ωcα

∗(t) + E∗(t) + i
κ

2
α∗(t)

)
.

(25)

From this equation of motion, we determine α(t) to
fulfill the condition d

dt ⟨ĉ(t)⟩U = 0. By substituting ĉ(t)
for ŝ(t), the equation of motion for ⟨ĉ(t)⟩U is given as

d

dt
⟨ĉ(t)⟩U =

i

h̄
⟨[D̂†(α(t))Ĥg(t)D̂(α(t)), ĉ(t)]⟩U

−
(
iωc +

κ

2

)
(⟨ĉ(t)⟩U + α(t))− iE(t)

− dα(t)

dt
.

(26)

Therefore, the amplitude of the coherent state in the cav-
ity remains its initial value by choosing α(t) to satisfy the

condition

dα(t)

dt
=
i

h̄
⟨[D̂†(α(t))Ĥg(t)D̂(α(t)), ĉ(t)]⟩U

−
(
iωc +

κ

2

)
(⟨ĉ(t)⟩U + α(t))− iE(t).

(27)

We note that an initial value ⟨ĉ(0)⟩U can be always set
to zero by choosing suitable α(0). Consequently, one can
simulate the dynamics in the frame where the amplitude
of the coherent state ⟨ĉ(t)⟩U is always zero. Since the
condition (27) contains time-dependent expectation val-
ues, one has to solve Eqs. (25) and (27) simultaneously.
With the condition (27), the equation of motion (25) is
rewritten as
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d

dt
⟨ŝ(t)⟩U =

i

h̄
⟨[Ĥq(t) + D̂†(α(t))Ĥg(t)D̂(α(t)), ŝ(t)]⟩U + iωc ⟨[ĉ†(t)ĉ(t), ŝ(t)]⟩U

+
κ

2

(
⟨[ĉ†(t), ŝ(t)]ĉ(t)⟩U − ⟨ĉ†(t)[ĉ(t), ŝ(t)]⟩U

)
+ ⟨[ĉ†(t), ŝ(t)]⟩U

{
i

h̄
⟨[D̂†(α(t))Ĥg(t)D̂(α(t)), ĉ(t)]⟩U −

(
iωc +

κ

2

)
⟨ĉ(t)⟩U

}
− ⟨[ĉ(t), ŝ(t)]⟩U

{
i

h̄
⟨[D̂†(α(t))Ĥg(t)D̂(α(t)), ĉ†(t)]⟩U +

(
iωc −

κ

2

)
⟨ĉ†(t)⟩U

}
.

(28)

In this form, Eqs. (27) and (28) can be regarded as si-
multaneous ordinary differential equations. It should be
noted that the equation of motion (28) becomes nonlinear
by introducing the condition (27). As far as we investi-
gate, an explicit method like the Runge-Kutta method
is sufficient to numerically integrate the equations and
thus the nonlinearity does not introduce a significant ex-
tra cost. The displacement α(t) determined from these
simultaneous differential equations is denoted by Q(t).
In specific, we numerically obtain the dynamics of the

expectation values of operators ŝ = |m⟩q |i⟩c ⟨n|q ⟨j|c in

the transformed frame. Here, |m⟩q and |n⟩q are the ba-

sis states of the qubit component, and |i⟩c and |j⟩c are
the Fock states of the cavity. For the numerical solver
of the simultaneous differential equations, we adopt the
Dormand-Prince method [26], which is the fifth-order
Runge-Kutta method with an adaptive step size.

III. APPLICATION TO DISPERSIVE
READOUT

A. Two-level system

We first demonstrate the performance of our proposed
scheme in the two-level-system case, i.e.,

Ĥq =
h̄ωq

2
Ẑ (29)

and

Ĥg = h̄gX̂(ĉ† + ĉ). (30)

Here, X̂ and Ẑ are the Pauli-X and Z operators act-
ing onto the two-level system, respectively, and g de-
notes the coupling between the two-level system and
the cavity. In this section, ωq/ωc and g/ωc is set to
0.75 and 3.0 × 10−2, respectively. In the parameter re-
gion |g

√
⟨ĉ†ĉ⟩/(ωc − ωq)| ≪ 1 where the perturbative

treatment can be justified, the cavity frequency behaves
as ωc − χẐ. Here χ is the dispersive shift given by
g2/(ωc − ωq) [13, 27]. The decay rate of the cavity κ
is set to 2χ. The highest Fock state of the cavity used in
numerical simulations is denoted by |Nmax⟩.

FIG. 2. Time evolution of the cavity photon number under
a monochromatic drive Ee−iωct. The displacement P(t) is
determined by the condition (18), and Q(t) is determined by
our proposed condition (27). Nmax is the maximum occupa-
tion number of the cavity we set in the simulations. Initially,
|ψini⟩qc is set to |g̃, 0̃⟩. The parameters used in the simula-

tion are (ωq/ωc, g/ωc, κ/ωc, E/ωc) = (0.75, 3.0 × 10−2, 7.2 ×
10−3, 1.0× 10−2).

To show that our proposed displacement Q(t) can de-
scribe the dynamics with less Nmax compared to the case
with P(t), we evaluate the time evolution of the cav-
ity photon number ⟨ĉ†ĉ⟩ with the monochromatic input
field E(t) = Ee−iωct. Figure 2 represents the time evolu-
tion of the cavity photon number under the monochro-
matic drive. The amplitude of the input field E is set
to 1.0× 10−2ωc which induces the cavity photon number
⟨ĉ†(t)ĉ(t)⟩ ∼ 10 in this setting. An initial state |ψini⟩qc
is set to |g̃, 0̃⟩. With the displacement P(t), the cavity
photon number calculated with Nmax = 5 is considerably
different from that obtained with Nmax = 20 for κt >∼ 5.0.
Setting the highest occupation number to 5 is insufficient
for this dynamics with P(t). In contrast, the calculation
with the displacement Q(t) and Nmax = 5 gives almost
the identical cavity photon numbers to those obtained
with P(t) and Nmax = 20. It should be noted that the
dynamics with Q(t) can correctly describe the dynamics
where the cavity photon number exceeds the highest oc-
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FIG. 3. Time evolution of the absolute amplitude of the co-
herent state generated in the cavity in the transformed frame.
The displacement α(t) is set to Q(t). The parameters and the
initial state are the same with those in Fig. 2.

cupation number Nmax. These results demonstrate the
advantage of our proposed displacement Q(t) over the
displacement P(t).

We design Q(t) to eliminate ⟨ĉ(t)⟩U from numerical
simulations. Figure 3 shows the time evolution of the
absolute value of ⟨ĉ(t)⟩U in the same dynamics presented
in Fig. 2. With Nmax = 5, the absolute values of ⟨ĉ(t)⟩U
are on the order of 10−5. Although the displacementQ(t)
works as expected, small but finite values remain. Since
these values decrease with increasing Nmax up to 20, the
small discrepancies from zero would be the results of the
truncation of infinite Hilbert space. From the observa-
tion, one can use |⟨ĉ(t)⟩U | as a measure of the numerical
error due to finite Nmax.

When the drive frequency is tuned to the bare cavity
frequency ωc, the sign of detuning between the drive fre-
quency and the shifted cavity frequency depends on the
qubit state. The expectation value of one quadrature of
a field inside the cavity (the real amplitude ⟨ĉ†(t) + ĉ(t)⟩
in this setting) in the frame rotating at the drive fre-
quency inherits this sign dependence. In the dispersive
readout, the qubit state can be judged from the sign of
the quadrature which can be detected with homodyne
detection [13, 15]. Figure 4 represents the cavity pho-
ton numbers and the real amplitudes of the cavity ob-
tained by the numerical simulations with the displace-
ment Q(t). We consider three cases: The cavity photon
number is much smaller than the critical photon number
nc = (ωq − ωc)

2
/4g2 ≃ 17.36 (E/ωc = 6.0× 10−3), com-

parable to nc (E/ωc = 2.5×10−2), and much larger than
nc (E/ωc = 7.0 × 10−2). The perturbative treatment is
not applicable when the cavity photon number is compa-
rable to or larger than nc. Nevertheless, the sign of the
real amplitude depends on initial states in all cases. The
dispersive readout works with ⟨ĉ†ĉ⟩ /nc ∼ O(10) in the
two-level system. This behavior can be understood from

the photon-number dependence of the cavity frequency
which is given by εp,n+1 − εp,n. As shown in Fig. 5 , the
sign of detuning between the drive frequency ωc and the
shifted cavity frequency does not change even in the high
occupancy region. The working principle of the disper-
sive readout still holds.

B. Transmon

Next, we apply our proposed scheme to the transmon
case [2, 27, 28], i.e.,

Ĥq = 4EC

∞∑
n=−∞

(n−Ng)
2 |n⟩q ⟨n|q

− EJ

2

∞∑
n=−∞

(|n⟩q ⟨n+ 1|q + |n+ 1⟩q ⟨n|q)
(31)

and

Ĥg = ih̄g(ĉ† − ĉ)

∞∑
n=−∞

(n−Ng) |n⟩q ⟨n|q . (32)

Here, EC is the charging energy, |n⟩q denotes the
charge basis, Ng is the offset charge, and EJ is the
Josephson energy. In numerical simulations, we use
(EC/h̄ωc, EJ/h̄ωc, g/ωc, Ng) = (5.0 × 10−2, 1.6, 3.0 ×
10−2, 0.0) so that the energy difference between |g⟩q and

|e⟩q is close to that of the two-level-system case. For

the charge basis, we consider states from |−10⟩ to |10⟩.
Thus, the dimension of the local Hilbert space for the
transmon component is truncated to 21. The low-lying
eigenstates of Ĥq can be correctly described within the
limited Hilbert space. Specifically, the occupations of
|−10⟩ and |10⟩ in the eighth excited state are only on
the order of 10−12. Under these settings, the obtained
energy difference between |g⟩q and |e⟩q is approximately

0.7462h̄ωc. The energy difference between |e⟩q and |f⟩q
is approximately 0.6867h̄ωc, where |f⟩q is the second ex-

cited state of Ĥq. Consequently, the anharmonicity of
this transmon is estimated to be −5.95× 10−2h̄ωc.
We evaluate the renormalized cavity frequency and the

dispersive shift before the simulation of dynamics. For
the evaluation, we put the energy difference εg,1 − εg,0
(εe,1 − εe,0) as h̄ω′

c + h̄χ (h̄ω′
c − h̄χ). By numerically

diagonalizing Ĥqc with the above parameters, this proce-
dure gives the estimations ω′

c/ωc ≃ 1.001975 and χ/ωc ≃
8.096×10−4. These values are of the same order of mag-
nitude with the expressions given by the perturbation
theory [2, 27]

ω′
c,p − ωc =

g2

ωc − ωq + EC/h̄

= 3.0× 10−3ωc

(33)
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(a) (b) (c)

(d) (e) (f)

FIG. 4. (a),(d) Time evolution of the cavity photon number for different input-field amplitudes. Here, nc is the critical photon
number given by (ωq − ωc)

2/4g2. The resonant frequency ωq and the coupling g are the same as those in Fig. 2. (b), (e)
Time evolution of the real part of the cavity amplitude in the rotating frame at the drive frequency starting. (c), (f) Time
evolution of the absolute amplitude of the coherent state in the transformed frame. Initial states are (a-c) |g̃, 0̃⟩ and (d-f) |ẽ, 0̃⟩.
The highest occupation number Nmax is set to 30 in the cases with E/ωc = 7.0 × 10−3 and 2.5 × 10−2. For the cases with
E/ωc = 6.0× 10−2, we set Nmax to 50.

and

χp =
g2EC/h̄

(ωc − ωq)(ωc − ωq + EC/h̄)

= 6.0× 10−4ωc,

(34)

Here, ω′
c,p and χp are the renormalized cavity frequency

and the dispersive shift given by the perturbation theory,
respectively. Hence, one can adopt the critical photon
number based on the perturbation theory [27]

nc =
1

3

(
|ωc − ωq + EC/h̄|2

4g2
− 1

)
= 8.0

(35)

since only its order of magnitude is relevant. The decay
rate of the cavity κ is set to 2χ in the following simula-
tions.

To determine the drive frequency ωd, we investigate
the photon-number dependence of the cavity frequency
εp,n+1− εp,n which is represented in Fig. 6. The photon-
number dependence in the transmon case is complicated
compared with the two-level-system case, and the change

of the detuning sign is inevitable with increasing the cav-
ity photon number. From this photon-number depen-
dence, we set the drive frequency ωd to 1.0015ωc. With
the choice, the detuning sign is preserved up to around
n/nc ∼ 20.

The advantage of the proposed displacement Q(t) can
be confirmed in the transmon case as well. Figure 7
gives the comparison between the displacements P(t)
and Q(t). Like the two-level-system case, the simula-
tion with the displacementQ(t) requires less cavity states
compared to the case with the displacement P(t) in the
transmon case.

Figure 8 shows the time evolution of the cavity photon
numbers and the real amplitudes of the cavity obtained
by the numerical simulations with the displacement Q(t)
in the transmon case. Like the two-level-system case, we
consider the three cases: The cavity photon number is
much less than nc (E/ωc = 1.4 × 10−3 and 2.0 × 10−3),
comparable to nc (E/ωc = 6.0×10−3 and 7.0×10−3), and
much larger than nc (E/ωc = 1.5×10−2 and 2.4×10−2).
For the cases where the cavity photon number is much
less than and comparable to nc, the signs of the real
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FIG. 5. Photon-number dependence of the cavity frequency
in the two-level-system case. The resonant frequency ωq and
the coupling g are the same as those in Fig. 2.

FIG. 6. Photon-number dependence of the cavity fre-
quency in the transmon case. For parameters, we
use (EC/h̄ωc, EJ/h̄ωc, g/ωc, Ng) = (5.0 × 10−2, 1.6, 3.0 ×
10−2, 0.0).

amplitudes reflect whether the initial states are |g̃, 0̃⟩
or |ẽ, 0̃⟩. However, in the case where the cavity pho-
ton number is much larger than nc, the real amplitude
changes its sign around κt ∼ 3 when the initial state is
|g̃, 0̃⟩. The readout based on the sign of the real am-
plitude does not work in this case. The cavity photon
number is ⟨ĉ†(t)ĉ(t)⟩ /nc ∼ 20 around κt ∼ 3 as shown
in Fig. 8(a). Therefore, the observed break down of the
readout scheme in the numerical simulation is consistent
with the estimation from the photon-number dependence
of the cavity frequency in Fig. 6. This consistency sup-
ports the availability of the proposed method in the nu-
merical simulations of high-power readout.

The leakage from the computational space during the
readout is an important phenomenon when the qubit

FIG. 7. Time evolution of the cavity photon num-
ber of the cavity under a monochromatic drive
Ee−iωdt in the transmon case. Initially, |ψini⟩qc is

set to |g̃, 0̃⟩. The parameters used in the simula-
tion are (EC/h̄ωc, EJ/h̄ωc, g/ωc, κ/ωc, Ng, ωd/ωc) =
(5.0 × 10−2, 1.6, 3.0 × 10−2, 1.619 × 10−3, 0.0, 1.0015).
The amplitude of input field E is set to 3.0× 10−3ωc.

component has more than two levels. To see the leak-
age in the dynamics simulated in Fig. 8, we introduce
the transmon occupation operator

N̂t =
∑
l=1

l |l⟩q ⟨l|q , (36)

and evaluate the transmon occupation number ⟨N̂t⟩ [21].
Here, |l⟩q is the l–th excited state of the transmon Hamil-

tonian (31). The transmon occupation number gradually
increases in the labelled eigenstates |p̃, ñ⟩ with n. Conse-
quently, noticeably higher transmon occupation number
compared to that from the labelled eigenstates can be
treated as the sign of the leakage.

Figure 9 represents the parametric plot of the trans-
mon occupation number versus the cavity photon number
during the readout dynamics shown in Fig. 8. The figure
also gives the transmon occupation number as a function
of the cavity photon number in the labeled eigenstates for
comparison. For the most part of the dynamics, the para-
metric plot shows good agreement with the transmon oc-
cupation number obtained from the labelled eigenstates.
In contrast, the dynamics starting from |g̃, 0̃⟩ state with
E/ωc = 7.0 × 10−3 and 1.5 × 10−2 clearly show higher
transmon occupation numbers compared to that of the
labeled eigenstates. This behavior can be considered as
the sign of the leakage.

The leakage in the case with E/ωc = 7.0 × 10−3 is
triggered by the resonance between |g̃, ñ⟩ and the higher
excited state around n/nc ∼ 4. Figure 10 gives the para-
metric plots of the transmon occupation number versus
the cavity photon number with some input-field ampli-
tudes close to E/ωc = 7.0 × 10−3. The bump around
⟨ĉ†ĉ⟩ /nc ∼ 4 in the transmon occupation number of
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(a)

(d) (e)

(b) (c)

(f)

FIG. 8. (a),(d) Time evolution of the cavity photon number for different input-field amplitudes in the transmon cases. (b),(e)
Time evolution of the real part of the cavity amplitude in the rotating frame at the drive frequency. (c), (f) Time evolution
of the absolute amplitude of the coherent state in the transformed frame starting. Initial states are (a-c) |g̃, 0̃⟩ and (d-f) |ẽ, 0̃⟩.
The parameters of the system are the same with those in Fig. 7. The highest occupation number Nmax is set to 20 in the cases
with E/ωc = 1.4 × 10−2 and 2.0 × 10−2, 30 in the case with E/ωc = 6.0 × 10−3, 60 in the case with E/ωc = 7.0 × 10−3, and
100 in the cases with E/ωc = 1.5× 10−2 and 2.4× 10−2.

the labeled eigenstates comes from the resonance with
the higher excited state (the fifth excited state of the
transmon Hamiltonian). When the cavity photon num-
ber stays near the resonant point, the transmon occupa-
tion number differs from that of the labeled eigenstates
as shown in the case with E/ωc = 7.0 × 10−3. On the
other hand, the case with the larger input-field ampli-
tude E/ωc = 8.0 × 10−3 does not show the noticeable
difference because the resonant point is quickly passed
in this case. Consequently, the leakage in the case with
E/ωc = 7.0× 10−3 can be considered as the result from
the resonance. Similar dynamics has been observed in
Ref. [21]. The proposed method can describe the leakage
dynamics during the readout.

IV. SUMMARY

In this study, we developed an efficient approach to
numerically simulate dynamics with a high-power input
field. Our proposed scheme is based on eliminating large-
amplitude coherent states from the simulation by the
time-dependent displacement operation. The displace-

ment introduced in this study outperforms that designed
to eliminate the direct driving of a cavity in the sense
that the dynamics can be reproduced in smaller Hilbert
space.

We also applied our proposed scheme for the simula-
tions of the dispersive readout in the two-level-system
and transmon cases. The proposed scheme enables one
to access the dispersive readout where the cavity photon
number is much larger than the critical photon number
with moderate numerical resources. The obtained nu-
merical results showed that the readout works in the two-
level-system case even though the cavity photon number
considerably exceeds the critical photon number. In con-
trast, the dispersive readout fails in the transmon case
when the cavity photon number is much larger than the
critical photon number. This failure can be explained by
the photon-number dependence of the cavity frequency,
and the numerical results reproduced the the estimation
obtained from the cavity frequency. The numerical sim-
ulations also succeeded in describing leakage dynamics.

Although only the two cases, namely the two-level sys-
tem and transmon, were considered in this study, our
proposed displacement can be applied to other devices
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(a)

(b)

FIG. 9. Parametric plot of the transmon occupation number
versus the cavity photon number during the dynamics shown
in Fig. 8. Initial states are (a)|g̃, 0̃⟩ and (b) |ẽ, 0̃⟩. Red dotted
lines represent the transmon occupation numbers as a func-
tion of the cavity photon number obtained from the labeled
eigenstates |g̃, ñ⟩ and |ẽ, ñ⟩.

as long as their Hamiltonian representations are avail-
able. For input fields, we considered only the monochro-
matic light. The proposed scheme can treat other input
fields, e.g., bichromatic light or short pulses. Our pro-
posed scheme has a potential impact on evaluating the
performance of newly designed quantum devices and op-
timizing of the shape of input pulses.
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