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We investigate the stimulated emission of superradiant atoms coupled to a waveguide induced by a coherent-
state photon pulse. We provide an analytical result when a short π pulse is incident, which shows that the
atoms emit photons coherently into the output pulse, which remains a coherent state in the short pulse limit.
An incident pulse is amplified in phase-preserving manner, where noise is added almost entirely in the phase
direction in phase space. This property improves the ratio of intensity signal to noise after the amplification
for sufficiently short pulses. This is a unique feature different from general phase-preserving linear amplifiers,
where the signal-to-noise ratio deteriorates in the amplification process. We also discuss the dependence of the
photon-emission probability on pulse parameters, such as the pulse area and the duration.

I. INTRODUCTION

Collective effects via the interaction between quantum
emitters and reservoirs have attracted much attention as a con-
sequence of quantum mechanics over the years and are now
an indispensable part of modern technology. Especially, ex-
tensive efforts have been made to understand collective dy-
namics of atoms and traveling photons, which leads to novel
opportunities for quantum networks and quantum information
processing [1–3]. The recent excitement of the field is due
largely to the remarkable progress of the waveguide quantum
electrodynamics (wQED) technology [4–7]; it enables atoms
couple directly to a waveguide, which differs strongly from
the cavity-QED approaches of confining photons in all spatial
directions.

Traveling photons and the radiation field from atoms cou-
pling to a waveguide interfere with high coherence owing
to the characteristic configuration of waveguides, namely the
one-dimensional single-pass structure. This advantage has
allowed experiments to observe fundamental optics of emit-
ters [8, 9], which is also applied to optical devices [10–12].
In the last several years, the controllable coupling of multiple
atoms to a waveguide has also been realized with diverse plat-
forms based on superconductors [13], solid state defects [14],
and cold atoms [15, 16]. In this novel experimental field, col-
lective dynamics such as super- and sub-radiance has been ob-
served [17, 18]. On the other hand, in spite of the significant
theoretical progress that began with Dicke’s proposal of super-
radiance [19], we are still far from a complete understanding
of the collective dynamics.

In this paper, we investigate the stimulated emission of a
cluster of excited atoms coupled to a waveguide. Stimulated
emission, widely known as the chief mechanism underlying
lasers and masers [20–23], is a paradigm of the collective ef-
fect which essentially reflects the indistinguishability of pho-
tons and multiphoton interference [24, 25]. In wQED systems,
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several studies have investigated the stimulated emission in-
duced by a single-photon or Fock-state pulse [26–28]. We
consider the case that a coherent-state photon pulse is inci-
dent. The stimulated emission induced by a coherent-state
pulse is of fundamental interest from the perspective of how
photons can be coherently added to a quantum field via its in-
teraction with an atomic system [29, 30]. More generally, it
has the potential to be exploited not only for the coherent con-
trol of quantum emitters by pulses (or work extraction from
a quantum system in a different context [31]) but also vice-
versa, i.e., the passive control of bosonic states through its
interaction with quantum matter.

We analyze the system dynamics when a short π pulse is
incident, which shows that the atoms emit photons coherently
into the waveguide, and discuss the output photon-pulse state.
We also characterize our system as an amplifier: the coherent-
state pulse is amplified in phase-preserving manner, and the
ratio of intensity signal to noise improve after the amplifica-
tion for sufficiently short pulses, although the signal gain is
small. This is a unique feature different from general phase-
preserving linear amplifiers [32].

II. FORMULATION

A. Hamiltonian and initial state

We consider an infinitely long waveguide that couples with
N identical two-level atoms (transition frequency ωa, radia-
tive decay rate γ into the waveguide) at the same position
(r = 0), as illustrated in Fig. 1(a). In such a situation, the
atoms interact with the input pulse in a collective fashion;
that is, superradiance is expected to occur. The superradi-
ant condition that multiple atoms homogeneously couple to a
waveguide in a range sufficiently shorter than the wavelengths
of waveguide modes can be implemented using circuit-QED
systems [33–35].

Denoting the lowering operator of jth atom by σj and the
annihilation operator of a waveguide photon propagating for-
ward (backward) with wavenumber k (> 0) by ak (bk), the
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FIG. 1. Schematic of an infinite waveguide coupled to N two-level
atoms. Photons propagate forward (a-port) or backward (b-port)
along the waveguide. (a) Initial state: all atoms are excited and a
coherent-state pulse |

√
Nin⟩ propagating forward is input. (b) Final

state: under some conditions (see text), all atoms coherently emit
photons into the incident pulse, resulting in a grown coherent state,
|
√
Nin +N⟩.

Hamiltonian of the overall system is given by

H = ωaJz +

∫ ∞

−∞
dk

[
ka†kak + i

√
γ

4π
(J+ak − a†kJ−)

]
+

∫ ∞

−∞
dk

[
kb†kbk + i

√
γ

4π
(J+bk − b†kJ−)

]
,

(1)

where J± and Jz are the collective spin operators of
the N atoms defined as J− =

∑
j σj , J+ = J†

−, and
Jz =

∑
j σ

†
jσj −N/2. Note the following two points: (i) We

assume a linear dispersion ωk = vk (group velocity v) for the
waveguide photons and set v = 1. (ii) We extended the lower
limit of the k-integral in Eq. (1) from 0 to −∞. This intro-
duces photons with negative energies, but they are irrelevant
in this model due to large detuning from the atoms.

Initially (t = 0), we assume that all the atoms are in the ex-
cited state, and a coherent-state pulse propagating forward is
incident to the excited atoms (Fig. 1(a)). We denote the ampli-
tude of the pulse at the atomic position by Ein(t). The initial
state of the total system is then written as

|ψ(0)⟩ =W exp

(∫ 0

−∞
drEin(−r)ã†r

) N∏
j=1

σ†
j |vac⟩, (2)

where |vac⟩ is the ground state of the overall sys-
tem, and the normalization constant is given by W =

exp(− 1
2

∫ 0

−∞ dr|Ein(−r)|2). The real-space representation
ãr of the waveguide operator is defined as the Fourier trans-
form of ak by ãr(t) ≡ 1√

2π

∫
dkake

ikr.

B. Heisenberg equations

According to the Hamiltonian (1), the Heisenberg equations
of the collective spin operators are given by

d

dt
J− = − (iωa + γ) J− + γJ−Jz

−
√
2γJz[ain(t) + bin(t)], (3)

d

dt
Jz = −γJ+J− +

√
γ

2
[a†in(t) + b†in(t)]J−

+

√
γ

2
J+[ain(t) + bin(t)], (4)

where the input and output field operators are defined by
ain(t) = ã−0(t) and aout(t) = ã+0(t). b̃r(t), bin(t), and
bout(t) are defined similarly. These input and output opera-
tors satisfy the following input-output relations:

aout(t) = ain(t)−
√
γ

2
J−, (5)

bout(t) = bin(t)−
√
γ

2
J−. (6)

We denote the expectation value of an operator ô(t) by
⟨ô(t)⟩ = ⟨ψ(0)|ô(t)|ψ(0)⟩. ¿From Eqs. (2), (3), and (4), we
obtain

d

dt
⟨J−⟩ = − (iωa + γ) ⟨J−⟩+ γ⟨J−Jz⟩ −

√
2γEin(t)⟨Jz⟩,

(7)

d

dt
⟨Jz⟩ = −γ⟨J+J−⟩+

√
γ

2
E∗

in(t)⟨J−⟩+
√
γ

2
Ein(t)⟨J+⟩,

(8)

with the initial conditions ⟨J−⟩ = 0 and ⟨Jz⟩ = N/2. In de-
riving above equations, we used ain(t)|ψ(0)⟩ = Ein(t)|ψ(0)⟩
and bin(t)|ψ(0)⟩ = 0.

C. Forward/backward photon-emission probabilities

The mean number of input photons is given by Nin =∫∞
0
dt⟨a†inain⟩. The mean number of output photons in the

forward direction and its coherent component are respectively
given by Na =

∫∞
0
dt⟨a†outaout⟩ and Nac =

∫∞
0
dt|⟨aout⟩|2.

Nb and Nbc are defined similarly. ¿From these quantities, we
define the forward/backward photon-emission probabilities:

Pa = (Na −Nin)/N, (9)
Pac = (Nac −Nin)/N, (10)
Pb = Nb/N. (11)

Note that Pa and Pac may take negative values when the out-
put photon number in the forward direction is decreased in
comparison with the input photon number, as we will see in
Fig. 3.
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III. RESULTS AND DISCUSSION

A. Nearly complete stimulated emission for an short π-pulse

First, we consider the case in which a rectangular π pulse
is input. Ein(t) is given by

Ein(t) =

{
Ω√
2γ
e−i(ωat−θ) (0 ≤ t ≤ tp)

0 (otherwise)
, (12)

where Ω is the Rabi frequency and θ is the phase of input
pulse. ¿From the condition that the pulse area (defined byA =√
2γ

∣∣∫ dtEin(t)e
iωat

∣∣) is equal to π, Ω and tp are related by
Ωtp = π. The mean number of input photons is given by

Nin = πΩ/(2γ) = π2/(2γtp). (13)

In particular, we focus on the case of a short π pulse satisfy-
ing tp ≪ γ−1 (namely, γ ≪ Ω). In that case, we can neglect
damping of atoms during the π-pulse duration. Then, Eqs. (7)
and (8) reduce to d

dt ⟨J−⟩ = −iωa⟨J−⟩ − Ωe−i(ωat−θ)⟨Jz⟩
and d

dt ⟨Jz⟩ =
Ω
2 [e

i(ωat−θ)⟨J−⟩+c.c.], respectively. With the
initial conditions of ⟨Jz(0)⟩ = N/2 and ⟨J−(0)⟩ = 0, these
differential equations are solved as

⟨J−⟩ =

{
−N

2 sin(Ωt)e−i(ωat−θ) (0 ≤ t ≤ π/Ω)

0 (otherwise)
, (14)

⟨Jz⟩ =

{
N
2 cos(Ωt) (0 ≤ t ≤ π/Ω)

0 (otherwise)
. (15)

¿From the above solutions, we can evaluate the mean number
of output photons, Na, Nac, Nb, and Nbc. For example, the
amplitude of the output photons in the forward direction is
derivable from the input-output relation (5) as

⟨aout(t)⟩ ={[
Ω√
γ +N

√
γ
8 sin(Ωt)

]
e−i(ωat−θ) (0 ≤ t ≤ π/Ω)

0 (otherwise)
.

(16)

By integrating the squared amplitude, Nac is given by

Nac = Nin +N +O(γ/Ω), (17)

where O(γ/Ω) represents a small quantity of the order of
γ/Ω, which vanishes in the short π-pulse limit. Following
the similar arguments, we confirm that

Na = Nac = Nin +N +O(γ/Ω), (18)
Nb = Nbc = O(γ/Ω). (19)

Namely, Pa = Pac = 1 and Pb = Pbc = 0 in the short pulse
limit. The fact that Pa = 1 and Pb = 0 implies that all N
atoms emit photons to the forward direction, stimulated by the
input π pulse. Note that the non-conservation of the total pho-

ton number for Eqs. (18) and (19), i.e., Na +Nb ̸= Nin +N ,
is due to the short pulse approximation in deriving Eqs. (14)
and (15); the original Heisenberg equations (7) and (8) con-
serve the total photon number (see Appendix A).

Since the number of photons emitted by the atoms has no
fluctuations, one might expect that the output pulse would be
in a N-photon added coherent state (N-PACS) [40, 41], de-
fined by (a†)n|α⟩ (|α⟩ denotes a coherent state and normal-
ization constant is omitted), a state which exhibits several
non-classical characteristics [40, 41]; however, the fact that
Na = Nac implies that the output pulse is, rather, in a coher-
ent state with an increased mean photon number, |

√
Nin +N⟩

(Fig. 1(b)). As shown in Appendix B, the number of coherent
photons, |⟨a⟩|2, is substantially different between the ampli-
fied coherent state and the N-PACS. It is known that the single
PACS (N = 1) can be generated via the stimulated emission
in an optical parametric amplifier (OPA) [30].

Stimulated emission by propagating field is highly sensitive
to the pulse area of the input field. For example, if the input
pulse is a short 2π-pulse, it re-excites all N atoms and trans-
mits without the growth of the photon number. The radiative
decay of the atoms (superradiance) occur afterwards, emit-
ting incoherent photons in both directions with equal prob-
ability. In that case, one has Na = Nin +N/2, Nac = Nin,
Nb = N/2, and Nbc = 0.

B. Numerical simulation beyond the short pulse limit

Next, we rigorously simulate the dynamics of the atoms ac-
cording to the Hamiltonian (1) and investigate the stimulated
emission more quantitatively beyond the short pulse limit. See
Appendix C 1 for details on calculating the Heisenberg equa-
tions (7) and (8). Note that the Hamiltonian of Eq. (1) con-
serves the total angular momentum J2 = J2

x +J
2
y +J

2
z of the

collective atom operator, and the state vector of atoms evolve
within the Hilbert space of a fixed azimuthal quantum num-
ber, l = N/2. Besides a rectangular pulse, we also consider a
sine pulse for comparison, which is given by

Ein(t) =

{
ES sin

(
πt
tp

)
e−i(ωat−θ) (0 ≤ t ≤ tp)

0 (otherwise)
, (20)

where ES = π2

2tp
√
2γ

for the π-pulse case. The mean input
photon number is given by Nin = π4/(16γtp). Figure 2 plots
the shapes of the output pulses in a-port and b-port. We con-
firm that, regardless of the input pulse shape, ⟨a†outaout⟩ and
|⟨aout⟩|2 are mostly overlapping, and they are much larger
than ⟨b†outbout⟩. This agrees with our previous observation
that most atoms emit photons coherently into the forward di-
rection when the input pulse length is much shorter than the
lifetime of atoms (tp ≪ γ−1). For a rectangular input pulse,
reflecting the discontinuity of the pulse at t = 0 and tp, the
shapes of the input and output pulses are substantially de-
formed. In contrast, for a sine input pulse, the input pulse
is amplified by the excited atoms without substantial defor-
mation of the pulse shape.
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(dotted), ⟨a†
outaout⟩ (solid), |⟨aout⟩|2 (dashed), and ⟨b†outbout⟩

(dashed-dotted). Note that the solid and dashed curves are almost
overlapping in the sine-pulse case. The system parameters are set
to tp = 0.2γ−1, and N = 10. The photon numbers included in the
pulses are (Nin, Na, Nac, Nb) = (24.66, 32.77, 31.95, 1.87) (rect-
angular pulse) and (30.44, 38.72, 37.69, 1.70) (sine pulse).

Figure 3(a) plots the photon emission probabilities as a
functions of the π-pulse length tp. In the short π-pulse region
(tp <∼ 0.1γ−1), the atoms emit photons mostly in the a-port
as a coherent component (Pa = Pac ≈ 1) in agreement with
our preceding observation. By comparing results for N = 10
and 20 (solid and dotted lines in Fig. 3(a)), we can also con-
firm that Pa and Pac are decreased for larger atom number N .
This is explained as follows. For larger N , the radiative decay
of atoms becomes faster due to the superradiance. Therefore,
a shorter π pulse is required to induce complete stimulated
emission.

As the pulse length increases, the output probability into
b-port increases due to the coherent reflection of input pho-
tons: In the long π-pulse region (tp ≫ γ−1), the ra-
diative decay of the atoms is almost unaffected by the in-
put pulse. Near the initial moment (t <∼ γ−1), the atoms
quickly emit incoherent photons into the a- and b-ports with
equal probabilities (superradiance). Most of the input pho-
tons arrive afterwards and are reflected coherently by the
atoms, which are now completely deexcited [8]. Therefore,
Na = N/2, Nac = 0, Nb = N/2 +Nin, and Nbc = Nin.
For the rectangular pulse case where Nin = π2/(2γtp), we
have Pa = 1/2− π2/2Nγtp, Pb = 1/2 + π2/2Nγtp, and
Pac = −π2/2Nγtp. We have confirmed that these are in good
agreement with Fig. 3(a).

In Fig. 3(b), the coherent-emission probability Pac is shown
as a function of the input pulse areaA, fixing the mean photon
number of the input pulse Nin. For a pulse including suf-
ficient photons, Pac takes a maximum value close to unity
around A = π. Pac decreases for smaller Nin. This is be-
cause, for a fixed pulse area, the pulse length becomes longer
for smaller Nin (tp = A/(2γNin) in the rectangular case),
which causes the increase of incoherent photons due to spon-
taneous emission during the pulse duration. We observe in
Fig. 3(b) that there is little difference between the rectangular
and sine pulses. Thus, the difference of the pulse shape is not
essential for the stimulated emission.

70_area_N10_mpn500_sh1.dat

pulse area

70_area_N10_mpn100_sh1.dat

70_area_N10_mpn50_sh1.dat

𝑃 a
c

𝛾𝑡p

o
u
tp

u
t 

p
ro

b
a
b

ili
ty

70_probs_N10_sh1.dat

70_probs_N20_sh1.dat

70_probs_N10_sh1.dat

70_probs_N20_sh1.dat

(a)

(b)

𝑃a

𝑃b

𝑃ac

70_area_N10_mpn500_sh2.dat

70_area_N10_mpn100_sh2.dat

70_area_N10_mpn50_sh2.dat

70_probs_N10_sh2.dat

70_probs_N20_sh2.dat

70_probs_N10_sh2.dat

70_probs_N20_sh2.dat

𝛾𝑡p

𝜋/2 𝜋 3𝜋/2 2𝜋0

𝑁in = 500

𝑁in = 100

𝑁in = 50

rectangular sine

rectangular sine

𝑃a

𝑃b

𝑃ac

pulse area

𝜋/2 𝜋 3𝜋/2 2𝜋0

𝑁in = 500

𝑁in = 100

𝑁in = 50

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

FIG. 3. Photon emission probabilities for rectangular and sine input
pulses. (a) Probabilities of photons being output into the a(b)-port
Pa(Pb) and the coherent-emission probability Pac as a function of
the π-pulse length tp. Solid and dashed curves are the probabili-
ties for N = 10 and N = 20, respectively. (b) Coherent-emission
probability as a function of the area of an input pulse A for the atom
number of N = 10.

C. Properties as amplifier

Finally, we characterize the stimulated emission as an am-
plification process. We define the input and output pulse mode
operators by

cin(out) =

∫ ∞

0

dtf∗in(out)(t)ain(out)(t), (21)

where fin(t) (fout(t)) is the mode function of the input (out-
put) pulse. In order that cj (j = in, out) satisfies the commu-
tation relation [cj , c

†
j ] = 1 for a discrete boson, fj(t) is nor-

malized as
∫∞
0
dt|fj(t)|2 = 1. We choose the output mode

function to be identical with the input one. For a rectangular
pulse case for example, they are given by

fin(t) = fout(t) =

{√
1/tp e

−iωat (0 < t < tp)

0 (otherwise)
. (22)

Regarding the input pulse, we can readily check the follow-
ing coherent-state property, ⟨c†in

α
cβin⟩ = ⟨cin⟩∗α⟨cin⟩β , where

⟨cin⟩ =
√
Nine

iθ.
We define the quadrature components by Xout =

(coute
−iθ + c†oute

iθ)/2 and Yout = (coute
−iθ − c†oute

iθ)/2i
(Fig. 4(a)). Their fluctuations are given by (∆Xout)

2 =

(1 + 2⟨c†out, cout⟩ + ⟨cout, cout⟩e−2iθ + ⟨c†out, c
†
out⟩e2iθ)/4

and (∆Yout)
2 = (1 + 2⟨c†out, cout⟩ − ⟨cout, cout⟩e−2iθ −
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⟨c†out, c
†
out⟩e2iθ)/4, where ⟨Â, B̂⟩ ≡ ⟨ÂB̂⟩ − ⟨Â⟩⟨B̂⟩ (see

Appendix C 2 for details on calculating the quadrature fluc-
tuations). We regard complex amplitudes, ⟨cin⟩ and ⟨cout⟩, as
the signal and define G ≡ ⟨cout⟩2/⟨cin⟩2 as the signal gain.
We can readily check that ⟨cin⟩e−iθ and ⟨cout⟩e−iθ are both
real quantities, and consequently G reduces to a real quantity
in our definition. At the same time, we can confirm that the
signal gain G is insensitive to the phase θ of the input pulse,
in contrast with the phase-sensitive amplification such as the
parametric amplification.

Figure 4(b) shows the dependence of the signal gain on the
input π-pulse length tp. As we observed earlier, in the short
pulse limit, all atoms coherently emit photons into the incident
pulse, i.e., ⟨cout⟩ =

√
Nin +N eiθ when ⟨cin⟩ =

√
Nin e

iθ.
However, as the input photon number Nin increases for a
shorter π pulse (for example, see Eq. (13)), the gain defined
here decreases and approaches unity as G = 1 + 2Nγtp/π

2.
Regardless of the pulse shape, the gain takes the maximum
value around tp ≈ 0.3/γ and drops sharply for tp >∼ 1/γ. The
loss of signal magnitude is due to the coherent reflection of the
input pulse [8].

Figure 4(c) shows the dependence of the quadrature fluc-
tuations on the input π-pulse length tp. A remarkable point
here is that, in the short pulse region satisfying γtp <∼ 0.1,
almost no noise is added to the X quadrature, although the
signal is amplified (G > 1). Within the linear amplification
framework, it has been known that the amplification must
add noise as (∆v̂out)

2 = Gv(∆v̂in)
2 + (∆F̂ )2 (Gv is the

gain with regards to a mode v̂ and ∆F̂ is noise caused by
internal modes of an amplifier) [32]. Therefore, signal-to-
noise ratio, which we define here by ⟨v̂⟩2/(∆v̂)2, deteri-
orates in an amplification process as ⟨v̂out⟩2/(∆v̂out)2 =

Gv⟨v̂in⟩2/[Gv(∆v̂in)
2 + (∆F̂ )2] < ⟨v̂in⟩2/(∆v̂in)2, where

we assumed ⟨F̂ ⟩ = 0. In contrast, in our study, the signal-
to-noise ratio of the output, ⟨cout⟩2/(∆cout)2, is improved
compared to that of the input in the short-pulse region, as
shown in Fig. 4(d) [42]. In the Y quadrature (phase direction),
on the other hand, the stimulated emission adds substantial
noise as illustrated in Fig 4(a). These properties would enable
the control of excitation number of bosonic states in quan-
tum information processing, in the phase preserving manner
and with minimal change in the photon-number fluctuation. It
would be advantageous in some bosonic-encoding schemes,
such as logical qubits with the rotation-symmetric bosonic
states or the superposition of coherent states [43] with differ-
ent phases [44, 45].

IV. SUMMARY

In summary, we have investigated the stimulated emission
of superradiant atoms coupled to a waveguide induced by a
coherent-state pulse. We have shown that a short π pulse
induces the coherent photon emission of the atoms into the
output pulse, which remains a coherent state in the short
pulse limit, not a non-classical state, such as PACS. The
pulse amplification in our system is phase-preserving, where
noise is added almost entirely in the phase direction in phase

space. This property improves the signal-to-noise ratio af-
ter the amplification for sufficiently short pulses. We note
that the amplification process in the present system would
not be very useful for the same purposes as the traditional
phase-preserving linear amplifiers, because of its small gain.
Nevertheless, our study would be helpful for building the
quantum network and provides insights into the fundamen-
tal physics based on the interaction between a quantum field
and an atomic system, which may lead to passive control of
bosonic states through its interaction with quantum matter in
quantum processing.
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Appendix A: Conservation of total photon number

We can verify the conservation of the total photon number
before and after the atom-pulse interaction as follows.

Na +Nb =

∫ ∞

0

dt⟨a†out(t)aout(t)⟩+
∫ ∞

0

dt⟨b†out(t)bout(t)⟩

=

∫ ∞

0

dt⟨a†in(t)ain(t)⟩+
∫ ∞

0

dt⟨b†in(t)bin(t)⟩

+ γ

∫ ∞

0

dt⟨J+J−⟩

−
√
γ

2

∫ ∞

0

dt [E∗
in(t)⟨J−⟩+ Ein(t)⟨J+⟩]

= Nin −
∫ ∞

0

dt

[
d

dt
⟨Jz⟩

]
= Nin + ⟨Jz(0)⟩ − ⟨Jz(∞)⟩
= Nin +N. (A1)

Appendix B: Coherence of photon added state

Here we show the discrepancy between the coherent pho-
ton numbers |⟨a⟩|2 in the coherent state with increased pho-
ton number |

√
Nin +N⟩ and in the N -PACS defined as∣∣√Nin, N

〉
≡ (a†)

N√
⟨√Nin|aN (a†)N |√Nin⟩

∣∣√Nin

〉
. The coher-

ence of N -PACS is given by

〈√
Nin, N

∣∣∣ a ∣∣∣√Nin, N
〉
=

〈√
Nin

∣∣ aN+1
(
a†
)N ∣∣√Nin

〉〈√
Nin

∣∣ aN (a†)N
∣∣√Nin

〉 .

(B1)
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FIG. 4. (a) Definition of the quadrature axes and illustration of the amplification process of a coherent-state pulse in phase space. (b) Signal
gain defined as G ≡ ⟨cout⟩2/⟨cin⟩2 as a function of the pulse length of rectangular and sine π pulses. (c) Quadrature fluctuations in the output
pulse for the same input as (b). (d) Rate of change in the ratio of the intensity signal to noise before and after the amplification process, defined
by RSN ≡ [⟨cout⟩2/(∆cout)

2]/[⟨cin⟩2/(∆cin)
2] = G/[4(∆Xout)

2], for the same input parameters as in (b) and (c). In (b)-(d), we set the
atom number N = 10, and the results are rotationally symmetric in phase space, i.e., independent of the angle θ in (a).

50_pacs_N15_alp1.dat

50_pacs_N15_alp10.dat

𝑁𝑁

𝑁in + 𝑁

ቚ𝑁in, 𝑁 𝑎 ቚ 𝑁in , 𝑁
2

ቚ𝑁in, 𝑁 𝑎 ቚ 𝑁in , 𝑁
2

𝑁in + 𝑁

𝑁in = 100 𝑁in = 2500

FIG. 5. Coherent photon numbers of the output pulse in our sys-
tem with N atoms (circles) and N -photon added state (squares) as a
function of N .

The numerator in Eq. (B1) is calculated as〈√
Nin

∣∣∣ aN+1
(
a†
)N ∣∣∣√Nin

〉
=

〈
0
∣∣∣D†

(√
Nin

)
aN+1

(
a†
)N

D
(√

Nin

)∣∣∣ 0〉
=

〈
0

∣∣∣∣(a+√
Nin

)N+1 (
a† +

√
Nin

)N
∣∣∣∣ 0〉

= α

N∑
M=0

AN+1,MN
2(N−M)
in , (B2)

whereAN,M = N !(N−1)!
M !(N−M)!(N−M−1)! (M = 0, 1, · · · , N − 1).

The denominator is similarly calculated from〈√
Nin

∣∣ aN (a†)N
∣∣√Nin

〉
=

∑N
M=0BN,MN

2(N−M)
in ,

where BN,M = (N !)2

M !{(N−M)!}2 (M = 0, 1, · · · , N).

Figure 5 plots the coherent photon number in the N -PACS
calculated from Eq. (B1) with the coherent photon number in
|
√
Nin +N⟩, namely Nin +N . It can be seen from the figure

that the coherent photon number in the N -PACS is lager than
Nin+N by ∼ N , regardless of incident photon number. From
this fact, it is obvious that the amplified (output) state in our
study and N -PACS are in different states.

Appendix C: Time evolution of correlation functions

1. 1-point function

To simulate the dynamics of the collective atomic
spin, we introduce the Hilbert space spanned by
|m⟩ ≡ |J = N

2 , Jz = m− N
2 ⟩, where m (= 0, 1, · · · , N )

denotes the number of excited atoms. This Hilbert space
is enough to represent the wQED system considered in the
paper, because the total angular momentum of the collective
atomic spin is conserved. In this Hilbert space, the operators
are expanded as

J− =

N∑
m=1

√
m(N −m+ 1)τm−1,m, (C1)

J+J− =

N∑
m=1

m(N −m+ 1)τm,m, (C2)

Jz =

N∑
m=0

(m−N/2)τm,m, (C3)

where τm,m′ is defined as τm,m′ ≡ |m⟩⟨m′|. Using the above
equations, we derive the equations of motion for the 1-point
function ⟨τm,m′⟩:

d

dt
smm′ =

∑
k,k′

Dmm′,kk′skk′ , (C4)

where smm′ ≡ ⟨τm,m′⟩ei(m′−m)ωpt and the input pulse is
assumed as the form Ein(t) = E(t)e−iωpt. Dmm′,kk′ is
non-zero only for several values of k, k′: Dmm′,mm′ =

i(ωa − ωp)(m−m′)− γm(N−m+1)
2 − γm′(N−m′+1)

2 ,
Dmm′,(m+1)(m′+1) = γ

√
(m+ 1)(m′ + 1)(N −m)(N −m′),

Dmm′,(m−1)m′ = i
√
γ/2E∗(t)

√
m(N −m+ 1),

Dmm′,m(m′+1) = −i
√
γ/2E∗(t)

√
(m′ + 1)(N −m′),

Dmm′,(m+1)m′ = i
√
γ/2E(t)

√
(m+ 1)(N −m), and

Dmm′,m(m′−1) = −i
√
γ/2E(t)

√
m′(N −m′ + 1). The
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expectation values of the system operators are calculated
using smm′ .

2. 2-point function and fluctuation in an output photon pulse

Each term in the quadrature fluctuations, (∆Xout)
2 and

(∆Yout)
2, is calculated by

⟨c†out, cout⟩ =
∫∫

dt1dt2fout(t1)f
∗
out(t2)⟨J+(t1), J−(t2)⟩,

(C5)

⟨cout, cout⟩ =
∫∫

dt1dt2f
∗
out(t1)f

∗
out(t2)⟨J−(t1), J−(t2)⟩,

(C6)

⟨c†out, c
†
out⟩ =

∫∫
dt1dt2fout(t1)fout(t2)⟨J+(t1), J+(t2)⟩.

(C7)

Here, in deriving the above formula, we used the input-output
relation (5). ¿From Eq. (C1), we have

⟨J+(t1), J−(t2)⟩ =
∑
m,l

√
ml(N −m+ 1)(N − l + 1)

× ⟨τm,(m−1)(t1), τ(l−1),l(t2)⟩, (C8)

⟨J−(t1), J−(t2)⟩ =
∑
m,l

√
ml(N −m+ 1)(N − l + 1)

× ⟨τ(m−1),m(t1), τ(l−1),l(t2)⟩, (C9)

⟨J+(t1), J+(t2)⟩ =
∑
m,l

√
ml(N −m+ 1)(N − l + 1)

× ⟨τm,(m−1)(t1), τl,(l−1)(t2)⟩. (C10)

⟨τm,m′(t1), τl,l′(t2)⟩ in the above equations are calculated by
the 1-point correlation function ⟨τm,m′⟩ and the 2-point cor-
relation function ⟨τm,m′(t1)τl,l′(t2)⟩, which evolves as

d

dt2
s
(2)
mm′,ll′ =

∑
k,k′

Dmm′,kk′(t = t2)s
(2)
kk′,ll′ , (C11)

where s(2)mm′,ll′(t2, t1) ≡ ⟨τl,l′(t1)τm,m′(t2)⟩eiωp[(l
′−l)t1+(m′−m)t2].

The initial condition at t2 = t1 is

s
(2)
mm′,ll′(t1, t1) = δl′mslm′(t1). (C12)

Appendix D: Insights from a single-mode approach

1. From traveling to standing waves

It is possible to gain some insight into the most notable fea-
tures of this amplification process from a single-mode treat-
ment, along the lines of the one adopted for the Jaynes-
Cummings model in Refs. [46] and [47]. Note first that the
field in the waveguide can be written in terms of standing in-
stead of traveling waves, with modes described by operators

dk = (ak+bk)/
√
2 and ek = (ak−bk)/

√
2 (see, for example,

Section III of [48]). An atom at r = 0 is maximally coupled
to the d modes, as Eq. (1) of the paper shows, (since they all
have a maximum at that location), and not coupled at all to
the e modes, so that part of the field will not evolve. Since the
transformation between the two sets of modes is essentially
that of a beamsplitter, which combines coherent states in the
same way as they do classical fields, it follows that, if the d
field remains approximately in a coherent state after the inter-
action, its changes will just be passed to the transmitted field
afterwards:

|α⟩a|0⟩b = |α/
√
2⟩d|α/

√
2⟩e

→ |β⟩d|α/
√
2⟩e = |β/

√
2 + α/2⟩a|β/

√
2− α/2⟩b. (D1)

Suppose the standing-wave d field, with amplitude α/
√
2, has

one photon added, as well as a small phase change ϕ. Its am-
plitude will then be β =

√
α2/2 + 1 eiϕ ≃ α/

√
2+1/

√
2α+

iαϕ/
√
2. When this is rewritten in terms of the traveling

modes a and b, as in Eq. (D1), the original mode a has an
amplitude α+1/2α+ iαϕ/2. This means that the added pho-
ton is (with high probability) in the output field in the forward
direction, since (α + 1/2α)2 ≃ α2 + 1, whereas the phase
shift is only half of the one calculated for the standing-wave
mode.

In the following we adopt a single-mode approach to es-
timate these changes in the field phase and amplitude. Al-
though our system does not exhibit a net phase change, there
is, as will be shown below, a growth in the phase fluctuations;
this can be calculated for the standing-wave mode and then
divided by 2 to get the traveling-wave result.

We start with a single-atom model, which can be solved
exactly, and then we look at a less accurate approximation
for the multiatom system, which will nevertheless allow us to
estimate the phase spread observed in Fig. 4(c).

2. Single atom, single-mode approach

A single-atom, single-mode system is known as the Jaynes-
Cummings model [49], and it is analytically solvable. With
the atom initially in the excited state |e⟩, the state of the sys-
tem at the time t is

|ψ(t)⟩ =
∞∑

n=0

Cn

[
cos(g

√
n+ 1 t)|e⟩|n⟩

−i sin(g
√
n+ 1 t)|g⟩|n+ 1⟩

]
, (D2)

where the Cn = e−|α|2/2αn/
√
n! are coherent-state coeffi-

cients. The mean number of photons in the initial state is
n̄ = |α|2. In what follows we will take α =

√
n̄ real for

simplicity.
To bring the atom to the ground state |g⟩, we need

gt
√
n+ 1 = π/2, which cannot actually be satisfied for all

values of n. We will define tπ = π/(2g
√
n̄), where 2g

√
n̄

plays the role of the Rabi frequency Ω introduced in the main
text of the paper, and look at what the state of the field is, con-
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ditioned on the assumption that the atom does in fact decay,
that is, the last term on Eq. (D2):

|Φ(t)⟩ = −i
∞∑

n=0

Cn sin(g
√
n+ 1 t)|n+ 1⟩

≃ −1

2
eigt/(2

√
n̄)

∞∑
n=0

Cne
ig
√
n t|n+ 1⟩

+
1

2
e−igt/(2

√
n̄)

∞∑
n=0

Cne
−ig

√
n t|n+ 1⟩, (D3)

where we have expanded
√
n+ 1 ≃

√
n+1/(2

√
n) and then

replaced n→ n̄ in the second term, since we expect that to be
quite small for all the values of n that matter in the sums in
(D3) (assuming n̄ is large enough). It can be shown that, as n̄
increases, the norm of the state |Φ(t)⟩, which gives the decay
probability, approaches 1 at t = tπ .

Consider next the first of the two field states on the right-
hand side of Eq. (D3) (a similar treatment applies to the sec-
ond one). We can write

∞∑
n=0

Cne
ig
√
n t|n+ 1⟩ = V †

∞∑
n=0

Cne
ig
√
n t|n⟩, (D4)

where V † =
∑∞

n=0 |n + 1⟩⟨n| is one of the Susskind-
Glogower operators [50] that act as displacement operators for
the photon number. If a phase operator ϕ̂, canonically conju-
gate to n̂, existed, then one could write V = eiϕ̂ (V † = e−iϕ̂)
as the operators to decrease (increase) the photon number by
1 [51], in the same way as e−ip̂a/h̄ displaces a state’s position
by an amount a. As we shall see in a moment, for a coherent
state with a sufficiently large amplitude, the action of V and
V † is indeed very similar to that of an “exponential of phase”
operator.

As for the sums
∑∞

n=0 Cne
±ig

√
n t|n⟩, it was shown in

Ref. [46] that they are well approximated (up to terms of or-
der 1/n̄) by coherent states e±ig

√
n̄ t/2|αe±igt/(2

√
n̄)⟩. We can

then interpret the result (D3) as a sum of two coherent states,
each with one photon added with respect to the original state,
and with phases growing in opposite directions at the slow
rates ±g/(2

√
n̄). By the time tπ this is a very small phase

shift, ±π/(4n̄), but for a large number of atoms it may be an
observable effect, as we shall show below.

We have still to consider what the effect of the operator
V † is on a coherent state. Let |ψ′⟩ = V †|

√
n̄eiϕ⟩. Direct

calculation quickly shows that ⟨ψ′|a†a|ψ′⟩ = n̄+ 1, whereas
for ⟨ψ′|a|ψ′⟩ we find

⟨ψ′|a|ψ′⟩ = eiϕ
∑
n

|Cn|2
1√
n̄

√
n(n+ 1), (D5)

where the coefficients Cn are those corresponding to the ini-
tial coherent state with mean photon number n̄. Expanding the
term

√
n(n+ 1) around n = n̄, and using the known results

for the Poisson distribution’s variance, we obtain

⟨ψ′|a|ψ′⟩ ≃ eiϕ
(√

n̄+
1

2
√
n̄
− 1

8n̄3/2

)
≃

√
n̄+ 1 eiϕ.

(D6)

Accordingly, we can write V †|
√
n̄eiϕ⟩ as a coherent state with

amplitude
√
n̄+ 1 eiϕ to a very good approximation.

Collecting all these results, we have at the time tπ =
π/(2g

√
n̄)

|Φ(t)⟩ ≃ − 1

2
eiπ/4|

√
n̄+ 1 eiπ/4n̄⟩

+
1

2
e−iπ/4|

√
n̄+ 1 e−iπ/4n̄⟩. (D7)

Since the intrinsic phase uncertainty of a coherent state is
1/(2

√
n̄), the phase split between the two components seen

in Eq. (D7) will not really be resolvable for large n̄, and it
is in fact a good approximation to treat the whole thing as a
single coherent state with amplitude

√
n̄+ 1 and zero phase.

Nevertheless, we have chosen to write the state in the form
(D7) to show that a broadening of the uncertainty in the phase
quadrature is already hinted at in the single-atom case. The
following subsection shows that this is expected to be more
pronounced in the multiatom case.

3. Multiatom case: semiclassical treatment

Consider a Hamiltonian of the form (h̄ = 1)

H = g(aJ+ + J−a
†), (D8)

where the J± operators are, as in the paper, angular momen-
tum operators describing a collection of N two-level atoms,
with an equivalent total angular momentum J = N/2. If one
replaces the field operators a and a† in Eq. (D8) by real con-
stants, this Hamiltonian has as its stationary states the eigen-
states of Jx = 1

2 (J+ + J−), which we can write as |m⟩x.
Accordingly, we may expect that if the initial field state is a
coherent state with a large number of photons, the evolution
of the fully quantum system will still be “quasiclassical” in
some sense. Indeed, it was shown in Ref. [46], for the case of
a single atom, that the initial condition |Ψ⟩ = | ± 1/2⟩x|α⟩
led to approximately disentangled evolution, at the slow rate
g/2

√
n̄, where the field remained approximately coherent for

short times, only with a phase ϕ = ∓gt/2
√
n̄. When starting

from a state that is a superposition of the {|m⟩x} with equal
weights for positive and negativem, we expect the field to end
up in a superposition of positive and negative phases, explain-
ing the phase spread that we see in Fig. 4(c).

This can be made more quantitative by extending slightly
the analysis in the Appendix of Ref. [47], to deal with the mul-
tiatom case. Assuming an approximately factorizable field-
atom evolution, the Heisenberg equations of motion for the
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Hamiltonian (D8) can be written as

d⟨a⟩
dt

= −ig⟨J−⟩, (D9)

d⟨J−⟩
dt

= 2ig⟨Jz⟩⟨a⟩, (D10)

d⟨Jz⟩
dt

= −ig
(
⟨J+⟩⟨a⟩ − ⟨a†⟩⟨J−⟩

)
. (D11)

Noting that ⟨J+⟩ = ⟨J−⟩∗ and ⟨a†⟩ = ⟨a⟩∗, it is easy to see
the system (D9)-(D11) has two constants of the motion: s =√
|⟨J−⟩|2 + ⟨Jz⟩2, and Ntot = |⟨a⟩|2 + ⟨Jz⟩. This suggests

the following change of variables: let

⟨a⟩ = reiϕ, (D12)

⟨J−⟩ = s cos η eiζ , (D13)
⟨Jz⟩ = s sin η. (D14)

where r and η are constrained by r2 + s sin η = Ntot. This
yields the system

ϕ̇ = −gs
r

cos η cos(ϕ− ζ), (D15)

ζ̇ = 2gr tan η cos(ϕ− ζ), (D16)
η̇ = 2gr sin(ϕ− ζ). (D17)

When starting from a state |m⟩x, the initial condition will be
η = 0, s = m, and ϕ = ζ = 0 if the field’s initial phase
is zero. An approximate result for short times is obtained by
linearizing the system (D15)-(D17) assuming η and ϕ remain
small, and expanding r around η = 0 accordingly. One ob-
tains then, keeping only leading terms in powers of 1/

√
n̄,

ϕ(t) ≃ ζ(t) ≃ −gmt√
n̄
, (D18)

η(t) ≃ −m
n̄

sin2(g
√
n̄ t). (D19)

This shows that, as anticipated, the field remains approxi-
mately coherent, with a phase that grows in one direction or
another, dependent on the sign of m, while the atomic state
stays close to the x-y plane (at least for large n̄, meaning small
η), where it rotates at a rate that mirrors the field’s. Compari-
son with the single-atom case treated above, with m = ±1/2,
shows that this approach correctly predicts the evolving phase
of the field for a state |±⟩ = 1√

2
(|e⟩ ± |g⟩), and hence the

phase split when the initial state is |e⟩ = 1√
2
(|+⟩ + |−⟩).

(Unfortunately, due to its semiclassical nature, this approach
cannot be used to correctly predict the change in photon num-
ber.)

Returning to the N atom case, assume that the initial state
is one where all the atoms are excited, that is, the |J⟩z state
(with J = N/2). We can write this as a superposition of |m⟩x
states, and for each of them assume a phase drift as given by
Eqs. (D18) and (D19). The overall phase spread (variance)

can then be calculated as

∆2ϕ =

J∑
m=−J

|x⟨m|J⟩z|2
(
gmt√
n̄

)2

=
g2t2

n̄

J∑
m=−J

z⟨J |Jx|m⟩xx⟨m|Jx|J⟩z

=
g2t2

n̄
z⟨J |J2

x |J⟩z

=
Ng2t2

4n̄
, (D20)

since z⟨J |J2
x |J⟩z = J/2 = N/4. This shows an uncertainty

in the phase quadrature that grows as ∆ϕ =
√
Ngt/2

√
n̄. For

a π pulse, where t = tπ = π/(2g
√
n̄), this becomes ∆ϕ =√

Nπ/(4n̄), inversely proportional to n̄, and proportional to
the square root of the number of atoms.

To use this result for a traveling-wave field, with Nin pho-
tons, we need to do two things: divide the phase shift by
2, as explained in Eq. (D1), and also realize that the mean
number of photons n̄ in the standing wave is actually equal
to Nin/2 (which also follows from Eq. (D1)). These two
corrections cancel each other out, so we can use directly
∆ϕampl =

√
Nπ/(4Nin) as an estimate for the increase in

the phase uncertainty of the traveling-wave state due to the
amplification process. We can expect this to result in an in-
crease in the fluctuations in the azimuthal quadrature approxi-
mately equal to ∆Yampl ≃ ∆ϕampl⟨cout⟩ = ∆ϕampl

√
GNin.

This should be added to the intrinsic quadrature uncertainty of
the initial coherent state (∆Y0 = 1/2) as “independent noise,”
that is, adding the squares first and then taking the square root.

Altogether, then, the single-mode approach (with all the ad-
ditional approximations, in particular the large n̄ limit that
leads to the approximate factorization of Eqs. (D9)-(D11) )
predicts fluctuations in the azimuthal quadrature ∆Y after am-
plification given approximately by

∆Y =

√
1

4
+
Nπ2G

16Nin
. (D21)

The number of photons used in Fig. 4(c) can be inferred from
the π pulse condition, so for the rectangular pulse Nin =
π2/(2γtp). At the three points where gain is highest, γtp =
0.1, 0.3, and 0.5, we then get ∆Y = 0.63, 0.86, and 1.0. The
first two values seem to agree fairly well with Fig. 4(c); the last
one is too low, but at this point one only has ∼ 9.9 photons in
the pulse, and many of the approximations we have made are
expected to break down. The approximation is also not very
good for the sine pulse (for which Nin = π4/(16γtp)), pre-
dicting actually slightly lower values than for the rectangular
pulse; however, again, it is not to be expected that a single-
mode approximation could accurately predict effects depend-
ing on the pulse shape.
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