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Abstract
A Josephson quantum filter (JQF) protects a data qubit (DQ) from the radiative decay into
transmission lines (TLs) in superconducting quantum computing architectures. A transmon,
which is a weakly nonlinear harmonic oscillator rather than a pure two-level system, can play a
role of a JQF or a DQ. However, in the previous study, a JQF and a DQ were modeled as two-level
systems neglecting the effects of higher levels. We theoretically examine the effects of the higher
levels of the JQF and the DQ on the control of the DQ. It is shown that the higher levels of the DQ
cause the shift of the resonance frequency and the decrease of the maximum population of the first
excited state of the DQ in the controls with a continuous wave (cw) field and a pulsed field, while
the higher levels of the JQF do not. Moreover, we present optimal parameters of the pulsed field,
which maximize the control efficiency.

1. Introduction

In waveguide quantum electrodynamics (QED) systems, an atom is coupled strongly to a one-dimensional
(1D) optical field typically provided by a waveguide or a transmission line (TL), so that spontaneous
emission from an atom is mostly forwarded to this one-dimensional field. Such systems are indispensable
for realization of distributed quantum computation, in which photonic qubits quantum-mechanically
connect distant matter qubits. In contrast with the natural atom–atom interaction, which becomes weaker
rapidly as their mutual distance increases, the atom–atom interaction in waveguide QED systems is
long-ranged owing to the one-dimensionality of the field.

A waveguide QED system was first realized with a cavity QED system (atom-cavity coupled system) in
the bad-cavity regime exploiting the Purcell effect [1]. Waveguide QED systems can be realized also in
superconducting circuits, which is a promising platform for quantum information processings [2–11], by
coupling a superconducting artificial atom directly to a microwave TL [8, 12, 13]. This enabled us to
implement a waveguide QED setup involving several atoms coupled to a common waveguide [14]. In such
setups, distant atoms can interact with each other via virtual photons propagating in the waveguide. The
coupling between a superconducting artificial atom with a 1D waveguide has been achieved even in the
ultrastrong coupling regime [15]. Quantum computation schemes [16, 17], two-photon nonlinearlities and
photon correlation function [18] were studied in waveguide QED systems.

Gate operations of qubits should be performed in the coherence times of the qubits for quantum
computation. A strong drive field can realize short-time gate operations of a target qubit. However, it can
induce unwanted crosstalk of the qubit with neighboring qubits and resonators. A strong coupling between
a qubit and its control line can make the gate speed fast even with a weak drive field, but makes the qubit
lifetime, T1, short due to radiative decay through the line. (For the dephasing time T∗

2 cannot exceed twice
T1, T1 ultimately limits the qubit coherence [19].) Therefore, it is important to decrease the radiative decay
of a qubit while keeping the coupling between the qubit and the control line sufficiently strong.
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Figure 1. Schematic of the setup. The DQ and the JQF are coupled to a semi-infinite TL, through which control pulses for the
DQ is applied.

Various methods to decrease or design qubit decay in circuit QED systems have been studied using, e.g.
effect of boundary condition [20], mirror [21], other multiple qubits [14, 22–24] including
superconducting metamaterials [25].

It was shown that a qubit attached to a TL with suitable parameters can work as a filter, which prohibits
a data qubit (DQ) from radiative decay to the TL [26, 27]. The protecting qubit is called a Josephson
quantum filter (JQF). A transmon can work as a JQF or a DQ in superconducting quantum computing
architectures. A transmon is a weakly nonlinear harmonic oscillator rather than a pure two-level system
[28]. However, in the previous study [26], both the DQ and the JQF were modeled as pure two-level
systems neglecting higher levels.

In this paper, we consider controls of the DQ with a continuous wave (cw) field and a pulsed field,
which are routinely performed for calibrations of experimental apparatuses, parameter determinations, and
quantum information processing. We examine the effects of the higher levels of the qubits and show the
shift of the resonance frequency and the change in the maximum fidelity of the controls induced by them.
Furthermore, we show optimal parameters for controls with a pulsed field.

The rest of this paper is organized as follows. In section 2, we introduce a model for the system. In
section 3, we derive formulae of the resonance frequency and the maximum population of the first excited
state of the DQ under a cw field. We numerically study the controls of the DQ with a cw field and a pulsed
field in section 4. The results are compared with the theoretical prediction. We present an optimal pulse
length for the control with a pulsed field. Section 5 provides a summary.

2. Model

Our system is composed of two qubits, the DQ (qubit 1) and the JQF (qubit 2), attached to a semi-infinite
TL, which extends in the r > 0 region. The schematic of the setup is illustrated in figure 1. The position,
angular frequency, anharmonicity parameter and coupling strength to the TL of qubit m(= 1, 2) are
denoted by lm, ωm, αm and γm, respectively. When l1 < l2 and γ1 � γ2, qubit 2 can work as a JQF, which
prohibits the radiative decay of qubit 1 [26]. In this study, we assume that the resonance frequencies of the
qubits are identical and that the positions of the qubits are optimal, that is, l1 = 0 and l2/λq = 0.5, where
λq is the resonance wavelength of the qubits.

Adopting the units in which � = v = 1, where v is the microwave velocity in the TL, the Hamiltonian of
the system is represented as

H =
∑

m

(
ωmc†mcm +

αm

2
c†mc†mcmcm

)

+

∫ ∞

0
dk

[
kb†kbk +

∑
m

gmk(c†mbk + b†kcm)

]
, (1)

where cm is the bosonic annihilation operator of qubit m, and bk(>0) is the annihilation operator of the
eigenmode of the TL with the wave number k and the mode function, fk =

√
2/π cos kr, normalized as∫∞

0 drfk′ (r)fk(r) = δ(k − k′). The coupling constant between qubit m and the TL is given by

gmk =

√
γm

2
fk(lm) =

√
γm

π
cos(klm), (2)

where γm represents the radiative decay rate of the first excited state of qubit m, when coupled to an open
waveguide. By naively applying the Fermi’s golden rule, the radiative decay rate of the nth excited level of
qubit m to the (n − 1)th level amounts to 2πn|gmωm |2 = 2nγm cos2(ωmlm).
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2.1. Equation of motion
The Heisenberg equation for bk leads to

d

dt
bk = −ikbk − i

∑
m

gmkcm, (3)

which is formally solved as

bk(t) = bk(0)e−ikt − i
∑

m

gmk

∫ t

0
dt′cm(t′)eik(t′−t). (4)

We formally extend the lower limit of k to −∞ in order to introduce the real-space representation of the
field operator defined by

b̃r =
1√
2π

∫ ∞

−∞
dk eikrbk. (5)

Here, r runs over −∞ < r < ∞. The negative and positive regions represent the incoming and outgoing
fields, respectively. The introduction of the real-space representation has been validated in reference [29].
Using equations (4) and (5), we obtain

b̃r(t) = b̃r−t(0) − i
∑

m

√
γm

2

[
Θr∈(−lm,t−lm)cm(t − r − lm)

+ Θr∈(lm ,t+lm)cm(t − r + lm)
]

, (6)

where Θr∈(a,b) = θ(r − a)θ(b − r). Using equation (6), we can obtain

b̃lm (t) + b̃−lm (t) = b̃lm−t(0) + b̃−lm−t(0) − i
∑

n

√
γn

2
[cn(t − lm − ln)

+ cn(t − |lm − ln|)
]
. (7)

On the other hand, the Heisenberg equation for a system operator O (composed of qubit operators) is
written as

d

dt
O = i[Hs, O] + i

∑
m

√
γm

2

(
[c†m, O]

{
b̃lm (t) + b̃−lm (t)

}

+
{

b̃†lm (t) + b̃†−lm
(t)

}
[cm, O]

)
, (8)

where Hs =
∑

m(ωmc†mcm + αm
2 c†mc†mcmcm) and [A, B] = AB − BA. Substitution of equation (7) into

equation (8) leads to

d

dt
O = i[Hs, O] + i

∑
m

{
[c†m, O]Nm(t) + N†

m(t)[cm, O]
}

+
∑
m,n

√
γmγn

2
[c†m, O] {cn(t − lm − ln) + cn(t − |lm − ln|)}

−
∑
m,n

√
γmγn

2

{
c†n(t − lm − ln) + c†n(t − |lm − ln|)

}
[cm, O], (9)

where Nm(t) is the noise operator defined by

Nm(t) =

√
γm

2

[
b̃lm−t(0) + b̃−lm−t(0)

]
. (10)

By replacing cm(t −Δt) with eiωmΔtcm (free evolution approximation [26]), the equation of motion is
rewritten as

d

dt
O = i[Hs, O] + i

∑
m

{
[c†m, O]Nm(t) + N†

m(t)[cm, O]
}

+
∑
m,n

(
ξmn[c†m, O]cn − ξ∗mnc†n[cm, O]

)
, (11)
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where

ξmn =

√
γmγn

2

(
eiωq(lm+ln) + eiωq|lm−ln|

)
. (12)

Note that ω1 = ω2 is assumed here, and they are denoted by ωq.

2.2. Radiative decay
Here, we show how the radiative decay of the DQ is suppressed following the manner used in reference
[26]. We assume that only the DQ is excited at the initial moment and no drive field is applied. Then, there
is only a single excitation in the whole system during the dynamics because the Hamiltonian conserves the
total excitation number. Therefore, higher levels of the DQ and the JQF can be neglected.

Using equation (11), the equation of motion for cm(m = 1, 2) is written as

d

dt
cm = (−iωm − ξmm)cm − ξmncn − iNm(t), (13)

where n = 3 − m. In equation (13), we have omitted terms with αm because higher levels do not play any
roles. The initial state is represented as

|Ψ(0)〉 = c†1|v〉, (14)

where |v〉 represents the vacuum state of the whole setup. The state at time t can be written as

|Ψ(t)〉 =
∑

m=1,2

φm(t)c†m|v〉+
∫

drf (r, t)b̃†r |v〉, (15)

where the coefficient φm and the wave form of the emitted photon f(r, t) satisfy the normalization condition,∑
m|φm(t)|2 +

∫ t
0 dr|f (r, t)|2 = 1. Coefficient φm can be written as

φm(t) = 〈v|cm|Ψ(t)〉 = 〈v|cm(t)c†1(0)|v〉 (16)

using the fact that H|v〉 = 0.
Using equations (13) and (16), we obtain the equations of motion for φm as

d

dt
φ1 = −(iωq + ξ11)φ1 − ξ12φ2,

d

dt
φ2 = −ξ21φ1 − (iωq + ξ22)φ2. (17)

The initial conditions are φ1(0) = 1 and φ2(0) = 0. A solution of equation (17) is represented as

φ1(t) =

(
μ2 + ξ11

μ2 − μ1
eμ1t +

μ1 + ξ11

μ1 − μ2
eμ2t

)
e−iωqt ,

φ2(t) =
ξ21

μ2 − μ1
(eμ1t − eμ2t)e−iωqt , (18)

where μ1 and μ2 are the solutions of a quadratic equation for z, (z + ξ11)(z + ξ22) − ξ12ξ21 = 0.
With an optimal choice of l1,2, l1 = 0 and l2/λq = 0.5, we have ξ11 = γ1, ξ22 = γ2, and

ξ12 = ξ21 = −√
γ1γ2. Then, equation (18) is rewritten as

φ1(t) =

(
γ2

γ1 + γ2
+

γ1

γ2 + γ2
e−(γ1+γ2)t

)
e−iωqt ,

φ2(t) =
√
γ1γ2

γ1 + γ2
[1 − e−(γ1+γ2)t] e−iωqt . (19)

Thus, the survival probability of the DQ is approximately unity, i.e. |φ1(t)|2 ≈ 1, when γ2 � γ1. This
stabilization of the DQ is due to the photon-mediated interaction between the DQ and JQF. (We refer to
reference [26] for more details.)

2.3. Dynamics under control field
We assume that the qubits are in the ground state at the initial time, and that a classical control field Ein(t) is
applied for t > 0. The spatial waveform of the control field at t = 0 is represented as Ein(−r). The initial
state vector is written as

|φ(0)〉 = N exp

(∫ 0

−∞
dr Ein(−r)b̃†r

)
|v〉, (20)

4
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where N = exp(−
∫

dr|Ein(−r)|2/2) is a normalization factor, and |v〉 is the overall ground state, the
product state of the ground states of two qubits and the vacuum states of the waveguide modes. The control
field is represented as

Ein(t) = 2Ed(t) cos(ωdt) (21)

where the frequency and the envelope of the control field are ωd/2π and Ed, respectively.
We can determine the reduced density matrix of the system (the DQ and the JQF) from equation (11) as

follows. By definition, the reduced density matrix of the system at time t is written as

ρs(t) = TrTL[U(t)|φ(0)〉〈φ(0)|U†(t)], (22)

where U(t) = e−iHt denotes the time evolution operator of the whole system, and TrTL means taking the
partial trace on the photon modes in the TL. We introduce the transition operator of the system defined by

Sm′n′ mn = |m′n′〉〈mn|, (23)

where the first and second indices in the state vector represent the excitation number of the DQ and the
JQF, respectively. In the Heisenberg picture, the expectation value of this operator is given by

〈Sm′n′mn(t)〉 = 〈φ(0)|Sm′n′mn(t)|φ(0)〉. (24)

Using Sm′n′mn(t) = U†(t)Sm′n′mn(0)U(t), the above quantity can be rewritten as

〈Sm′n′mn(t)〉 = 〈mn|ρs(t)|m′n′〉 = ρm,n,m′,n′(t). (25)

Thus, the reduced density matrix elements are determined as the expectation values of the transition
operators. From equation (25), we have

ρ̇m,n,m′,n′(t) = 〈Ṡm′n′mn(t)〉, (26)

where the dot denotes the time derivative. The right-hand side of equation (26) can be rewritten in terms of
ρk,l,k′,l′(t) by using equation (11) with O = Sm′n′mn (see appendix C).

3. Effects of a higher level in cw drive

We consider a cw drive of the DQ protected by the JQF. As shown in the following section, we observe the
shift of the resonance frequency and the decrease of maximum population of the first excited state in Rabi
oscillations. We attribute these to the second excited state of the DQ, and derive analytic formulae of the
resonance frequency and the maximum population with the use of an effective Hamiltonian, which consists
of a transmom under a control field.

The effective time-dependent Hamiltonian describing the DQ is given by

H(t) = ωc†c +
α

2
c†c†cc + 2Ω cos(ωdt)(c† + c), (27)

where ω = ωq, α = α1 < 0 and c = c1. Here, Ω is the Rabi frequency, which is related to the control field by
Ω =

√
2γ1Ed. As we observe later appendix (A), when γ1,2 � |Ed|2, the dynamics of the DQ is mainly

governed by the applied field and the mutual interaction with the JQF is negligible. Therefore, assuming
such a strong drive regime, we neglect the existence of JQF in this section.

Now, we consider a subsystem spanned by three levels |0〉, |1〉 and |2〉. The Hamiltonian is represented as

H =

⎛
⎝ 0 2Ω cos(ωdt) 0

2Ω cos(ωdt) ω 2
√

2Ω cos(ωdt)
0 2

√
2Ω cos(ωdt) 2ω + α

⎞
⎠ . (28)

We move to a rotating frame with angular frequency of ωd and use the rotating wave approximation to
rewrite the Hamiltonian as

H =

⎛
⎝0 Ω 0
Ω ω − ωd

√
2Ω

0
√

2Ω 2(ω − ωd) + α

⎞
⎠ . (29)

We consider a subspace expanded by |1〉, |2〉 in which the Hamiltonian is represented as

H2 =

(
ω − ωd

√
2Ω√

2Ω 2(ω − ωd) + α

)
=

3(ω − ωd) + α

2
I(2) +

(
a b
b −a

)
, (30)

5
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where I(2) is the identity operator and

a =
−α− ω + ωd

2
,

b =
√

2Ω. (31)

The eigenenergies are represented as

E± =
3(ω − ωd) + α

2
±
√

a2 + b2, (32)

and the corresponding eigenstates are written as

|±〉 = cos θ±|1〉+ sin θ±|2〉, (33)

where

tan θ± =
−a ±

√
a2 + b2

b
. (34)

Alternatively, the eigenstates are represented as

|±〉 = − b

s±
|1〉+ a ∓

√
a2 + b2

s±
|2〉 (35)

with

s± =
{

2
√

a2 + b2(
√

a2 + b2 ∓ a)
}1/2

. (36)

We rewrite the Hamiltonian in equation (29) with the basis set {|0〉, |+〉, |−〉}. In the matrix
representation, the Hamiltonian is represented as

H =

⎛
⎝ 0 Ω cos θ+ Ω cos θ−
Ω cos θ+ E+ 0
Ω cos θ− 0 E−

⎞
⎠ . (37)

Note that |+〉 
 |1〉 when Ω/|α| is sufficiently small. We also emphasize that cos θ+ 
 1 � cos θ−.
Therefore, |−〉 can be neglected, and a Rabi oscillation will be observed between |0〉 and |+〉 when
parameters are chosen so that E+ = 0. We regard E+ = 0 as the resonance condition. For example, ωd can
be tuned to satisfy the resonance condition. The deviation of ωd from ω is the origin of the shift of the
resonance frequency.

Now we derive an analytic form of the shift of the resonance frequency. When Ω/|α| � 1, we have
a � b. Then, we obtain from equation (32)

E+ 
 ω − ωd +
2Ω2

−α− ω + ωd
, (38)

where we used
√

a2 + b2 
 a + b2/2a. Thus, we obtain

ωd 
 ω +
2Ω2

−α− ω + ωd
, (39)

when E+ = 0. Assuming ωd 
 ω, we can derive a simple resonance condition

ωd − ω 
 −2Ω2

α
. (40)

This represents the shift of the resonance frequency as a function of Ω and α. This shift of the resonance
frequency can be understood as follows. When α < 0(> 0), level |2〉 is below (above) level |1〉 in the
rotating frame at ωd, assuming a small detuning, |ω − ωd| < |α|. The interaction between |1〉 and |2〉
induced by the drive field pushes upward (downward) level |1〉. Thus, the resonance frequency is increased
(decreased). The shift becomes larger for smaller |α| and larger Ω.

Equation (35) shows that the maximum population of |1〉 during the Rabi oscillation between |0〉 and
|+〉 is given by

pmax
1,cw =

b2

s2
. (41)

6
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Figure 2. Time dependence of the population of the first excited state of the DQ, p1, under the cw control field. The used
parameter set is α/2π = −300 MHz, ω1,2/2π = 5 GHz, γ1/2π = 2 kHz, γ2/2π = 100 MHz and

√
2γ1Ed/2π = 16 MHz.

Higher levels are taken into account for the data represented by the red solid and the green dashed curves, while the black dotted
curve corresponds to the system where the qubits are modeled as two-level systems. The frequency of the control field is
ωd/2π = 5 GHz for the green dashed and the black dotted curves, while ωd/2π = 5.0017 GHz for the red solid curve, which is
optimized to give the highest value of p1. Inset: the same plot for a wider time range. Three lines are mostly overlapping.

By using Ω/|α| � 1 and a 
 −α/2, an approximate form of the maximum population can be derived as

pmax
1,cw 
 1 − 2Ω2

α2
. (42)

The same formula can be obtained using Schrieffer–Wolff transformation (see appendix B). The decrease of
pmax

1,cw with respect to the increase of |Ω| and the decrease of |α| can be understood as follows: the interaction
between |1〉 and |2〉 makes |+〉 a composite of them. The portion of |2〉 increases with the increase of |Ω|
and the decrease of |α|. Therefore, pmax

1,cw is decreased with the increase of |Ω| and the decrease of |α|.

4. Numerical results

In this section, we numerically examine controls of the DQ with a cw field and with a Gaussian pulse
focusing on the shift of the resonance frequency and the maximum value of the population, p1, of the first
excited state of the DQ. The numerical results are compared with the theoretical prediction in section 3 for
the control with a cw field. An optimal pulse length is presented for the control with a Gaussian pulse. It is
also shown that the maximum value of p1 for the control with a Gaussian pulse is higher than the one for
the control with a cw field.

4.1. cw drive
We simulate the dynamics of the system under a cw control field and calculate the population of the first
excited state of the DQ defined by p1 = 〈Π1 ⊗ I〉, where Π1 is the projection operator to the first excited
state of the DQ and I denotes the identity operator for the JQF. Figure 2 shows the time dependence of p1.
As a reference, we also calculate the dynamics of the system, where both of the DQ and the JQF are modeled
as two-level systems, under the cw field with ωd = ωq (dotted line in figure 2). The maximum value of p1 is
slightly less than unity due to the effects of the JQF [26]. On the other hand, the maximum value of p1 for
the system in which higher levels are taken into account is further lowered even if the frequency of the
control field is optimized (solid line in figure 2). In the optimization, we numerically simulated the
dynamics of the system for various values of ωd and looked for ωd = ωres

d /2π, which maximizes the
maximum value of p1.

The optimized frequency of the control field, ωres
d /2π, deviates from the resonance frequency of a bare

qubit. Figure 3(a) shows ωres
d /2π as a function of α. The other parameters used are the same as those in

figure 2. It is observed that ωres
d /2π increases linearly with respect to −1/α and is consistent with the

analytic expression in equation (40).
Figure 3(b) shows the maximum value of p1 denoted by pmax

1,cw as a function of 1/α. It is seen that pmax
1,cw

decreases when the anharmonicity parameter −α decreases because the higher excited states become more
populated. The numerical result agrees with the theoretical prediction in equations (41) and (42) although
pmax

1,cw is slightly lower than the theoretical result. We attribute the difference between the numerical and the

7
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Figure 3. (a) Resonance frequency, ωres
d /2π, for cw drive for various values of α. The solid line corresponds to the theoretical

prediction in equation (40). (b) Maximum value of p1 for various values of α. The solid and the dotted curves, which are almost
overlapping, represent theoretical prediction in equations (41) and (42), respectively. The other parameters used are the same as
those in figure 2.

theoretical result to the finite coupling between |0〉 and |−〉. The JQF and the levels of the DQ higher than
its second excited state also contribute to the difference because the difference becomes smaller when they
are omitted.

Similar decrease of the maximum value of p1 occurs even if the drive amplitude, Ed, is gradually
increased. We consider the case in which Ed is increased with a Gaussian form and becomes constant. Ed is
represented as

Ed(t) =

⎧⎪⎨
⎪⎩

Eamp exp

(
−4 ln 2

(t − t0)2

σ2

)
for t < t0,

Eamp for t � t0.

(43)

The time dependence of Ed is shown in figure 4(a). Figure 4(b) shows the time dependences of p1 under the
drive with Ed in equation (43) and the drive with

Ed(t) = Eampθ(t − t′0), (44)

where θ is the Heaviside step function. Here, t′0 is set so that the pulse areas of the both controls are the
same. The maximum values of p1 in the both controls are approximately 0.994.

4.2. Pulsed drive
We consider a π pulse control aiming at a bit flip of the DQ from the ground state. In this study, we
consider a Gaussian pulse represented as

Ed(t) = Eamp exp

(
−4 ln 2

(t − t0)2

σ2

)
, (45)

where t0, σ, Eamp are the pulse center, full width at half maximum and the height of the pulse, respectively.
Figure 5 shows the time dependence of p1 during the control. The frequency and the amplitude of the drive
field are optimized for σ of 10 ns to maximize p1 after the pulse injection. In the optimization, we simulated
the dynamics with various values of ωd and Eamp and looked for the values, which maximizes p1 after the

8
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Figure 4. (a) Time profiles of the drive field: equation (43) (red solid curve) and equation (44) (blue dashed curve). (b) Time
dependences of p1 under the drive with Ed in equation (43) (red solid curve) and equation (44) (blue dashed curve). We set√

2γ1Eamp/2π = 16 MHz, ωd/2π = 5.0017 GHz, σ = 10 ns, t0 = 20 ns and t′0 = 14.7 ns. The other parameters used are the
same as those in figure 2.

Figure 5. Time dependence of p1 under the drive with a Gaussian pulse with σ = 10 ns and t0 = 20 ns. The red solid curve is for
the model, which takes into account the higher levels of the DQ. The four lowest levels of DQ and the two lowest levels of the JQF
are taken into account. The blue dashed curve is for the system without JQF. The other parameters used are the same as those in
figure 2. The horizontal dotted line represents popt

1,p . The inset shows p1 and the pulse envelope in an arbitrary unit for
0 � t � 40 ns.

pulse injection. p1 is increased up to 0.9995 in spite of the existence of the higher levels, and it becomes
stationary after the control because the JQF prohibits unwanted radiative decay of the DQ (solid line in
figure 5). This insensitivity of the control efficiency to the higher levels is attributed to the narrow
distribution of the pulse field in the frequency space. The full width at half maximum of the pulse field in
the frequency space is approximately 88 MHz, and it is smaller than the absolute value of the anharmonicity
parameter. The comparison with the result for the system without JQF in which p1 decreases exponentially
with time due to the radiative decay to the TL after the pulse injection, highlights the protection of the DQ
by the JQF (dotted line in figure 5).
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Figure 6. (a) Optimal drive frequency, ωopt
d /2π, for a pulsed drive with σ = 10 ns for various values of α. The dotted line is

guide to the eye. (b) popt
1,p for various values of α. The other parameters used are the same as those in figure 2.

The optimal drive frequency, ωopt
d /2π, which maximizes p1 after the pulse injection, is shown as a

function of α in figure 6(a). The frequency and the amplitude of the drive field are optimized for each α.
The shift of the optimal drive frequency increases almost linearly with respect to −1/α similar to the case
with the cw drive. The maximum value of p1 after the π pulse control, popt

1,p , in figure 6(b) is insensitive to

−1/α for −2π/α < 5 ns and is high compared to the case of the cw drive in figure 3. However, popt
1,p

decreases as −1/α increases further because higher levels become more populated when the anharmonicity,
|α|, of the qubit becomes small.

Figure 7 shows popt
1,p as a function of σ. The frequency and the amplitude of the drive field are optimized

for each σ. We have calculated popt
1,p also for the system where the DQ and the JQF are modeled as two-level

systems (|α| →∞), to highlight the decrease of popt
1,p in the case with higher levels. For the system with

two-level qubits, popt
1,p decreases monotonically with respect to σ. This is due to the following reason: the JQF

does not protect the DQ from radiative decay while the control field is applied due to saturation of the JQF
[26]. Thus, the decay of the DQ is enhanced as the control pulse becomes longer. In contrast, there is a peak
of popt

1,p at σ = 5 ns when the higher levels are taken into account. When σ < 5 ns, popt
1,p drops because the

spectral width of the drive pulse becomes large and causes unwanted transitions to the higher levels of the
DQ. We have confirmed that popt

1,p is insensitive to the existence of the higher levels of the JQF (see

appendix A). For σ > 5 ns, the behavior of popt
1,p is similar to the case with two-level qubits, although it is

slightly lower.

4.3. Comparison between cw and pulsed drives
We compare the controls with a cw field and a Gaussian pulse of which Ed is defined in equations (43) and
(45), respectively. Figures 8(a) and 8(b) show the time evolution of Ed and p1 during the controls. The
maximum p1 for a Gaussian pulse is higher than the one for a cw field. In the control with a Gaussian pulse,
p1 is sufficiently higher than 0.999, while it increases only up to 0.988 in the control with the cw field. This
is because the narrow distribution of Gaussian pulse in the frequency space decreases the effects of the

10



New J. Phys. 23 (2021) 013006 S Masuda and K Koshino

Figure 7. popt
1,p as a function of the pulse length σ. The circles (crosses) are for the system with (without) higher levels. The dashed

lines are guide to the eye. The other parameters used are the same as those in figure 2. The four lowest levels of DQ and the two
lowest levels of the JQF are taken into account. (see appendix A for the results with more levels of the JQF).

Figure 8. (a) Time dependence of Ed in the controls with a cw field (blue dashed curve) and a Gaussian pulse (red solid curve).
The vertical lines represent the position of the peak of the Gaussian pulse. (b) Time dependence of p1 corresponding to Ed in
panel (a). The inset is a closeup around the second peak of p1 in the control with a cw field. The used parameter set is σ = 10 ns
and

√
2γ1Eamp/2π = 23.7 MHz. We used the optimal drive frequencies of 5.0030 GHz and 5.0024 GHz for the controls with a cw

field and a Gaussian pulse, respectively. The other parameters used are the same as those in figure 2.

higher levels of the DQ (The width of the pulse in the frequency space is narrower than the anharmonicity
parameter), while the population of |2〉 decreases p1 in the control with the cw field as shown in section 3.

11



New J. Phys. 23 (2021) 013006 S Masuda and K Koshino

5. Summary

We have studied the effects of the higher levels of qubits on controls of the DQ protected by a JQF. It has
been shown that the higher levels of the DQ cause the shift of the resonance frequency and the decrease of
the maximum population of the first excited state in the controls with a cw field and a pulsed field, while
the higher levels of the JQF can be neglected. The resonance frequency shift and the time evolution of the
populations of the DQ under a cw field has been explained using a simplified model, which leads to simple
formulae of the resonance frequency and the population matching well to the numerical results. These
results will be useful for the parameter determinations of the system with a cw field.

We have numerically examined the control with a pulsed field aiming at transferring the population to
the first excited state of the DQ from the ground state. We have obtained the shift of the resonance
frequency, which is inversely proportional to the anharmonicity parameter similarly to the cw drive. In
contrast to the cw drive, the maximum population of the first excited state is insensitive to the
anharmonicity parameter and is considerably higher the one of the cw drive, when the intensity of the
anharmonicity parameter is sufficiently large. The insensitivity of the control efficiency to the higher levels
is attributed to the narrow distribution of the pulse field in the frequency space. Moreover, we have shown
optimal parameters of the pulsed field, which maximize the control efficiency.
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Appendix A. Higer levels of JQF

We simulate the dynamics of the system under the drive with a Gaussian pulse, taking into account the
higher levels of the JQF. In our numerical simulations, we take into account NJQF lowest levels of the JQF.
We numerically solve equation (C.1) moving to a rotating frame at ωd for the DQ and the JQF with the use
of the rotating wave approximation (see appendix C for detail). The Gaussian pulse is the same as the one
used in figure 5 for NJQF = 2. Figure A1 shows the time dependence of p1. p1 for larger NJQF is slightly lower
than the one for NJQF = 2 due to the disturbance by the higher levels. It is seen that p1 converges with
respect to the increase of NJQF.

The dynamics of the DQ shown in figure A1 is insensitive to the higher levels of the JQF. We attribute to
this insensitivity to the following. The DQ is driven by two different mechanisms: the mutual interaction
with the JQF and the drive field. The intensity of the mutual interaction and the drive field are |ξ12| and
|〈N1〉| in equation (C.2), respectively. In our simulations, we have |ξ12| � |〈N1〉| near the pulse center. In
this strong drive regime, the dynamics of the DQ is governed mainly by the drive field. On the other hand,
the JQF is lossy much more the DQ. Thus, it approaches rapidly to a mixed state. Figure A2 shows the time
dependence of 〈|i〉〈i| ⊗ I2〉, 〈I1 ⊗ |i〉〈i|〉, |〈|i〉〈i + 1| ⊗ I2〉| and |〈I1 ⊗ |i〉〈i + 1|〉|, where Im and 〈A〉 denote
the identity operator of qubit m and the expectation value of A, respectively. Near the pulse center
(|t − t0| < σ/2), the DQ is changed from the ground state to the first excited state. On the other hand, the
rapid change of the JQF is observed in |t − t0| > σ/2 when the drive field is relatively weak. The state of the
JQF can be approximated by a mixed state near the pulse center.

Appendix B. Analysis with Schrieffer–Wolff transformation

We derive the shift of the resonance frequency and the decrease of maximum population of the first excited
state in Rabi oscillations using the Schrieffer–Wolff transformation.

In the rotating frame at ωd, the Hamiltonian is represented as

H = H0 + H1 + V , (B.1)

with

H0 = ε1σ11 + ε2σ22
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Figure A1. Time dependence of p1 under the drive with a Gaussian pulse, where NJQF is the number of the levels of the JQF
taken into account. The other parameters are the same as those in figure 5.

Figure A2. (a) Time dependence of 〈|i〉〈i| ⊗ I2〉 and 〈I1 ⊗ |i〉〈i|〉, (b) time dependence of |〈|i〉〈i + 1| ⊗ I2〉| and |〈I1 ⊗ |i〉〈i + 1|〉|
for NJQF = 4 and NDQ = 4, where NDQ is the number of the levels of the DQ taken into account. The yellow color represents the
time domain: |t − t0| < σ/2. The other parameters are the same as those in figure 5.

H1 = Ω(σ01 + σ10)

V =
√

2Ω(σ12 + σ21), (B.2)

where we take into account only three levels |0〉, |1〉 and |2〉. Here, ε1 = ω − ωd, ε2 = 2(ω − ωd) + α and
σij = |i〉〈j|. We transform the Hamiltonian (Schrieffer–Wolff transformation) as

H′ = e−(S1+S2)HeS1+S2

= H0 + H1 + V + [H0, S1]

+ [H1, S1] + [V , S1] +
1

2
[[H0, S1], S1] + [H0, S2] + · · · . (B.3)
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We choose S1,2 to diagonalize H′ up to O(Ω2) except for H1, which is responsible for Rabi oscillation. Here,
S1 is determined by V + [H0, S1] = 0 as

S1 = −i

∫ 0

−∞
dtV(t) =

√
2Ω

ε2 − ε1
(σ12 − σ21). (B.4)

S2 is determined by [H1, S1] + [V , S1] + 1
2 [[H0, S1], S1] + [H0, S2] = 0, which is rewritten as [H1, S1] +

[V, S1]/2 + [H0, S2] = 0. Since 1
2 [V , S1] = 2Ω2

ε2−ε1
(σ22 − σ11) is already diagonal, we choose S2 to satisfy

[H1, S1] + [H0, S2] = 0. Since [H1, S1] = 2Ω2

ε2−ε1
(σ02 − σ20), we have

S2 = −i

∫ 0

−∞
dt

√
2Ω2

ε2 − ε1
(σ02 e−iε2t + σ20 eiε2t)

=

√
2Ω2

(ε2 − ε1)ε2
(σ02 − σ20). (B.5)

Thus, H′ = H0 + H1 + [V, S1]/2 is given by

H′ =

(
ε1 −

2Ω2

ε2 − ε1

)
σ11 +

(
ε2 +

2Ω2

ε2 − ε1

)
σ22 +Ω(σ01 + σ10). (B.6)

Neglecting Ω(σ01 + σ10), the eigenstates of H′ are |0〉, |1〉 and |2〉. Thus, we have

H′|0〉 = 0,

H′|1〉 = E+|1〉,

H′|2〉 = E−|2〉, (B.7)

where E+ = ε1 − 2Ω2/(ε2 − ε1) and E− = ε1 − 2Ω2/(ε2 − ε1). The resonance condition E+ = 0 leads to
the same form of the resonance frequency as equation (38).

Because equation (B.7) is rewritten as

HeS1+S2 |0〉 = 0,

HeS1+S2 |1〉 = E+eS1+S2 |1〉,

HeS1+S2 |2〉 = E−eS1+S2 |2〉, (B.8)

the eigenstates of H are

eS1+S2 |0〉 = |0〉,

eS1+S2 |1〉 = |+〉,

eS1+S2 |2〉 = |−〉. (B.9)

Up to O(Ω), |+〉 is expanded as

|+〉 = (1 + S1)|1〉 = |1〉 −
√

2Ω

ε2 − ε1
|2〉+ · · · . (B.10)

This means that the population of |2〉 in |+〉 is (
√

2Ω
ε2−ε1

)2, and the decrease of maximum population of the

first excited state in Rabi oscillations is (
√

2Ω
ε2−ε1

)2. This result is compatible with the one in section 3.

Appendix C. Equation of motion

We use equation (11) with O = Sm′n′mn in equation (26) to obtain the equation of motion for ρm,n,m′ ,n′ as

ρ̇m,n,m′,n′ = [−i(ωmn − ωm′n′) − ξ11m − ξ22n − ξ∗11m′ − ξ∗22n′]ρm,n,m′,n′

+ i〈N1〉
√

m′ + 1ρm,n,m′+1,n′ + i〈N2〉
√

n′ + 1ρm,n,m′,n′+1

− i〈N1〉
√

mρm−1,n,m′,n′ − i〈N2〉
√

nρm,n−1,m′,n′

+ i〈N†
1〉
√

m′ρm,n,m′−1,n′ + i〈N†
2〉
√

n′ρm,n,m′,n′−1

14
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− i〈N†
1〉
√

m + 1ρm+1,n,m′,n′ − i〈N†
2〉
√

n + 1ρm,n+1,m′,n′

+ ξ11

√
m + 1

√
m′ + 1ρm+1,n,m′+1,n′ + ξ12

√
n + 1

√
m′ + 1ρm,n+1,m′+1,n′

+ ξ21

√
m + 1

√
n′ + 1ρm+1,n,m′,n′+1 + ξ22

√
n + 1

√
n′ + 1ρm,n+1,m′,n′+1

− ξ12
√

m
√

n + 1ρm−1,n+1,m′,n′ − ξ21

√
m + 1

√
nρm+1,n−1,m′,n′

− ξ∗12

√
m′

√
n′ + 1ρm,n,m′−1,n′+1 − ξ∗21

√
m′ + 1

√
n′ρm,n,m′+1,n′−1

+ ξ∗11

√
m + 1

√
m′ + 1ρm+1,n,m′+1,n′ + ξ∗12

√
m + 1

√
n′ + 1ρm+1,n,m′,n′+1

+ ξ∗21

√
n + 1

√
m′ + 1ρm,n+1,m′+1,n′ + ξ∗22

√
n + 1

√
n′ + 1ρm,n+1,m′,n′+1, (C.1)

where ωmn = ω1m + α1
2 m(m − 1) + ω2n + α2

2 n(n − 1), and 〈Nm〉 and ρm,n,m′,n′ abbreviate
〈φ(0)|Nm(t)|φ(0)〉 and ρm,n,m′,n′(t), respectively. In the derivation of equation (C.1), we used the fact that
Nm in equation (11) can be replaced by [26]

〈N1(t)〉 =
√

2γ1 cos(ω1l1)Ein(t),

〈N2(t)〉 =
√

2γ2 cos(ω2l2)Ein(t). (C.2)

The replacement is valid because the initial coherent state is an eigenstate of the noise operator in
equation (10).

For the simulations in section 4, we numerically solved equation (C.1) moving to a rotating frame at ωd

for the DQ and the JQF with the use of the rotating wave approximation. We used a fourth-order
Runge–Kutta integrator with the time step of less than 0.18 ps. We confirmed the convergence of the
numerical results by checking the convergence of the time dependence of p1 as the time step is decreased.
For example in figure 2, the maximum value of p1 changes less than 0.001% when we halve the time step.
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