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Elliptical rotation of a bosonic oscillator in ultrastrong waveguide QED
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We investigate the optical response of a linear waveguide quantum electrodynamics (QED) system, namely,
a bosonic oscillator coupled to a waveguide. Our analysis is based on exact diagonalization of the overall
Hamiltonian and is therefore rigorous even in the ultrastrong-coupling regime of waveguide QED. Owing to the
counter-rotating terms in the oscillator-waveguide coupling, the phase-space motion of the oscillator is elliptical
in general, and this becomes remarkable in the ultrastrong-coupling regime. We also reveal that such elliptical
motion does not propagate into the output field and present an analytic form of the reflection coefficient that is
asymmetric with respect to the resonance frequency.
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I. INTRODUCTION

Cavity quantum electrodynamics (QED) deals with the
interaction between a single atom and a discretized photon
mode confined in a resonator, which is the simplest embod-
iment of quantum light-matter interaction. The cavity QED
systems have been realized in various physical platforms:
just to cite a few, single atoms coupled to an optical cavity,
a semiconductor quantum dot in a photonic-crystal cavity,
and a superconducting qubit coupled to a transmission-line
resonator. Interestingly, regardless of its physical platform,
a cavity QED system is characterized by several universal
parameters, such as ωa and ωc (atom and cavity frequencies), g
(atom-photon coupling), κ (cavity decay rate), and γ (atomic
decay rate into environments). In the history of cavity QED,
extensive efforts have been made to reach the strong-coupling
regime (g > κ, γ ), where the vacuum Rabi oscillation and
splitting become observable [1–4]. In usual strong-coupling
systems, the coupling is still by far smaller than the resonance
frequencies of the atom and cavity. Recently, attainments
of the ultrastrong-coupling (g � ωa,c/10) and deep-strong-
coupling (g � ωa,c) regimes have been reported [5–12]. In
such ultrastrong-coupling systems, the counter-rotating terms
in the Hamiltonian, which do not conserve the total number
of excitations and are usually negligible in the weakly cou-
pled systems, result in several intriguing physical phenomena,
such as the Bloch-Siegert shift [13,14], virtual photons in the
ground state [15–19], and multiphoton vacuum Rabi oscilla-
tion [20–22].

Waveguide QED deals with the interaction between a sin-
gle atom and a one-dimensional continuum of photon modes,
typically provided by a waveguide attached to the atom. The
parameters to characterize waveguide QED systems are ωa, γe

(atomic decay rate into waveguide), and γi (atomic decay rate
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into environments). The strong-coupling regime in waveguide
QED is defined by γe � γi, namely, the condition that radia-
tion from the atom is dominantly forwarded to the waveguide
[23–28]. This is reflected in spectroscopy as a strong suppres-
sion of transmission near the atomic resonance. Following
cavity QED, the ultrastrong waveguide QED is defined as
γe � ωa/10 [29] and the deep-strong waveguide QED should
be defined as γe � ωa. These regimes of waveguide QED have
already been reached using a superconducting qubit [29,30].
Theoretically, up to the usual strong-coupling regime, pertur-
bative treatment of dissipation based on the rotating-wave and
Born-Markov approximations provides convenient and pow-
erful theoretical tools, such as the Lindblad master equation
and the input-output formalism [31,32]. However, this is not
the case in highly dissipative regimes, and rigorous numerical
methods are actively developed [33–36].

In this study, we investigate a linear waveguide QED setup,
namely, a bosonic oscillator coupled to a waveguide, and
investigate its optical response to a classical drive field applied
through this waveguide. A merit of this system is that the
overall Hamiltonian is diagonalizable by the Fano’s method
[37–39] and rigorous optical response is accessible even for
highly dissipative situations. We report an elliptic phase-
space motion of the oscillator due to the counter-rotating
terms, which becomes remarkable in the ultrastrong-coupling
regime. However, in contrast with the intuition provided by
the input-output theory, such elliptic motion does not propa-
gate into the waveguide. We also obtain an analytic formula of
the reflection/transmission coefficient, which is asymmetric
with respect to the dressed oscillator frequency. We hope
that the rigorous optical response presented here would be
useful for developing theoretical tools applicable to highly
dissipative cavity and waveguide QEDs.

II. THEORETICAL MODEL

A. Lagrangian to Hamiltonian

In a setup considered in this study (Fig. 1), a bosonic
oscillator is coupled to a semi-infinite waveguide and a
monochromatic drive field is applied through this waveguide.
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FIG. 1. Schematic of an oscillator-waveguide system. A bosonic
oscillator is coupled to a semi-infinite waveguide, through which a
monochromatic drive field is applied. The r < 0 (r > 0) region in
the waveguide corresponds to the input (output) port.

We denote the bare resonance frequency and the amplitude of
the oscillator by ω0 and x, respectively. The waveguide modes
are labeled by a continuous wave vector k. We denote the
frequency and the amplitude of the waveguide mode k by ωk

and xk , respectively. Assuming a linear dispersion ωk = vk,
where v is the velocity of the waveguide photon, the classical
Lagrangian of this system is given by (v = 1 for simplicity)

L = ẋ2 − ω2
0x2

2
+

∫ ∞

0
dk

ẋ2
k − k2x2

k

2
+

∫ ∞

0
dk ηkxẋk, (1)

where the oscillator-waveguide coupling ηk is real. The conju-
gate momenta corresponding to x and xk are p = ∂L/∂ ẋ = ẋ
and pk = ∂L/∂ ẋk = ẋk + ηkx. After the Legendre transforma-
tion, H = ẋp + ∫ ∞

0 dk ẋk pk − L, the classical Hamiltonian is
given by

H = p2 + ω2
1x2

2
+

∫ ∞

0
dk

p2
k + k2x2

k

2
−

∫ ∞

0
dk ηkxpk, (2)

where the renormalized oscillator frequency ω1 is given by

ω2
1 = ω2

0 +
∫ ∞

0
dk η2

k . (3)

Quantization is done by imposing the commutation relations,
[x̂, p̂] = i and [x̂k, p̂k′ ] = iδ(k − k′) (h̄ = 1 for simplicity).
We introduce the annihilation operators by b̂ = (ω1x̂ +
i p̂)/

√
2ω1 and ĉk = (ikx̂k − p̂k )/

√
2k. The commutators for

these operators are [b̂, b̂†] = 1 and [ĉk, ĉ†
k′ ] = δ(k − k′),

respectively. The quantized Hamiltonian is given by

Ĥ = ω1b̂†b̂ +
∫ ∞

0
dk

[
kĉ†

k ĉk + ξk (b̂† + b̂)(ĉ†
k + ĉk )

]
, (4)

ξk = ηk

2

√
k

ω1
. (5)

In this study, in order to apply the Fano diagonalization, we
assume the following conditions on the coupling constants
[38]: (i) ηk (ξk) is nonzero for k > 0 and (ii) η2

k (ξ 2
k ) is a even

(odd) function of k.

B. Drude coupling

To be more concrete, we assume that the coupling ηk is
insensitive to k in the relevant frequency region,

η2
k = 2 f /π

1 + (k/ωx )2
, (6)
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FIG. 2. Dependences of the linewidth κ̃ (solid) and dressed reso-
nance frequency ω̃ (dashed) of the oscillator on the coupling strength
f . Their ratio, κ̃/ω̃, is plotted by a dotted line. ωx = 5ω0. The
ultrastrong coupling (̃κ/ω̃ > 0.1) is attained for f /ω0 > 0.103 and
the deep-strong coupling (̃κ/ω̃ > 1) is attained for f /ω0 > 1.004.

where ωx is a cutoff frequency and f is a constant that deter-
mines the coupling strength. From Eq. (3), ω1 is given by

ω1 =
√

ω2
0 + f ωx. (7)

It is of note that, although ω1 diverges in the ωx → ∞ limit,
observable physical quantities such as the oscillator amplitude
remain finite even in this limit (see Appendix E). ξk is reduced
to the following Drude form:

ξ 2
k = f ω2

x

2πω1

k

k2 + ω2
x

. (8)

Note that, in circuit QED, the atom/cavity-waveguide cou-
pling takes the Drude form [40]. We assume ωx � ω0 so that
the coupling is Ohmic (ξ 2

k ∝ k) near the cavity resonance.
We set ωx = 5ω0 hereafter, and observe the effects of cutoff
frequency in Appendix E. As we observe in Fig. 2, f is almost
identical to the linewidth κ̃ of the oscillator, particularly for
weaker coupling. In this paper, we employ a dimensionless
quantity f /ω0 as a measure of coupling strength.

C. Linewidth and dressed frequency

As the oscillator-waveguide coupling increases, the
linewidth κ̃ of the oscillator increases. Furthermore, the
dressed resonance frequency ω̃ also changes from its bare
value ω0 by renormalization. We determine these quantities
through the phase shift upon reflection (Fig. 7). The dressed
resonance is identified as the drive frequency achieving the π

phase shift, and the linewidth is identified as the difference
between the drive frequencies achieving the 3π/2 and π/2
phase shifts. In terms of the transmissivity (Fig. 8), ω̃ and
κ̃ correspond to the center frequency of the dip and the full
width at half maximum, respectively.

In Fig. 2, we plot the dependencies of κ̃ and ω̃ on the
coupling strength f . We observe that κ̃ is almost identical
to f , while ω̃ is not so sensitive to f . The ultrastrong-
coupling regime (̃κ/ω̃ > 0.1) is achieved for f /ω0 > 0.103
and the deep-strong-coupling regime (̃κ/ω̃ > 1) is achieved
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f /ω0 > 1.004. In particular, in the weak-coupling region, ω̃

and κ̃ are related to the complex frequency λ1 of the oscilla-
tor as ω̃ = Re(λ1) and κ̃/2 = Im(λ1). Using the perturbative
solution of λ1 [Eq. (26)], we obtain ω̃ ≈ ω0 + ω0 f /2ωx and
κ̃ ≈ f .

D. Initial state vector

In this study, we investigate the optical response of the
oscillator driven by a monochromatic classical field applied
through the waveguide (Fig. 1). The positively rotating part of
drive amplitude is given by

E (r, t ) = Ed eikd (r−t ), (9)

where Ed and kd are the complex amplitude and wave
number/frequency of the drive, respectively. At the initial
moment (t = 0), we assume that the whole system is in the
ground state except the drive field in the waveguide, which is
in a coherent state. The initial state vector is then written as

|ψi〉 = exp
(√

2πEd ĉ†
kd

−
√

2πE∗
d ĉkd

)|vac〉, (10)

where |vac〉 is the ground state of the coupled system.
The real-space representation c̃r of the waveguide field

operator is defined as the Fourier transform of ĉk ,

c̃r = 1√
2π

∫ ∞

0
dk eikr ĉk . (11)

We can check that 〈̃cr (0)〉 ≡ 〈ψi |̃cr (0)|ψi〉 = E (r, 0). Note
that under this initial condition the drive field exists not only
in the input port (r < 0) but also in the output port (r > 0).
The latter propagates freely into positive direction without
interacting with the oscillator.

Strictly speaking, the real-space representation of the
waveguide mode depends on the boundary condition of
the waveguide at r = 0. For example, for a closed bound-
ary condition, the waveguide mode function takes the form
of fk (r) = √

2/π sin(kr) = (ie−ikr − ieikr )/
√

2π [41]. There-
fore, we should add a phase factor i (−i) for the input (output)
port in Eq. (11), which accounts for the sign flip upon re-
flection at a mirror. However, we employ Eq. (11) as the
real-space representation of waveguide modes for simplicity.
This introduces no problem except for definition of the relative
phase in the input and output ports.

III. DIAGONALIZATION

A. General formula

The Hamiltonian [Eq. (4)] is bilinear in bosonic operators
and can be diagonalized by the Fano’s method. We can rewrite
the Hamiltonian as

Ĥ =
∫ ∞

0
dk kd̂†

k d̂k, (12)

where d̂k is an eigenmode annihilation operator satisfying the
bosonic commutation relation,

[d̂k, d̂†
k′ ] = δ(k − k′). (13)

Re

Im

00

i x

12

3

FIG. 3. λ1,2,3 on the complex plane. Arrows indicate the direc-
tions as the coupling strength f is increased.

d̂k is given by linear combination of the original bosonic
operators as

d̂k = β1(k)b̂ + β2(k)b̂†

+
∫ ∞

0
dq

[
γ1(k, q)ĉq + γ2(k, q)ĉ†

q

]
, (14)

where the coefficients are given by (see Appendix A for
derivation)

β1(k) = (k + ω1)ξk

k2 − ω2
1z(k)

, (15)

β2(k) = (k − ω1)ξk

k2 − ω2
1z(k)

, (16)

γ1(k, q) = δ(k − q) + γ̃1(k, q), (17)

γ2(k, q) = 2ω1ξkξq

(k + q)[k2 − ω2
1z(k)]

, (18)

where

γ̃1(k, q) = 2ω1ξkξq

(k − q − i0)[k2 − ω2
1z(k)]

, (19)

and z(k) is a dimensionless quantity representing the self-
energy correction for the oscillator frequency,

z(k) = 1 + 2

ω1

∫ ∞

−∞
dq

ξ 2
q

k − q − i0
. (20)

Note that z(−k) = z∗(k), which results from the property
that ξ 2

−k = −ξ 2
k . Inversely, the bare operators b̂ and ĉk are

expressed in terms of the eigenoperators by

b̂ =
∫ ∞

0
dq[β∗

1 (q)d̂q − β2(q)d̂†
q ], (21)

ĉk =
∫ ∞

0
dq[γ ∗

1 (q, k)d̂q − γ2(q, k)d̂†
q ]. (22)

B. Specific results for Drude coupling

When the coupling is given by Eq. (8), z(k) and k2 −
ω2

1z(k) are rewritten as follows:

z(k) = 1 + i f ω2
x

ω2
1(k − iωx )

, (23)

k2 − ω2
1z(k) = (k − λ1)(k − λ2)(k − λ3)

k − iωx
, (24)
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FIG. 4. Elliptical motion of the oscillator amplitude. (a) Trajectories on the phase space for f /ω0 = 0.01. The drive frequency is set at
kd = 1.00ω0 (resonance, solid) and kd = 1.02ω0 (off resonance, dotted). The photon rate of the drive field is set at |Ed |2 = 2.5̃κ , at which
the mean oscillator excitation is roughly 〈b̂†b̂〉 = 4|Ed |2/̃κ = 10 on resonance. The uncertainty ellipse is also shown. (b) The same plot as
(a) for f /ω0 = 1. kd = 1.00ω0 (solid) and kd = 3.00ω0 (dotted). (c) Dependence of the long and short axial radii on the drive frequency for
f /ω0 = 0.01. (d) The same plot as (c) for f /ω0 = 1.

where λ1,2,3 are the solutions of the following cubic
equation for k,

k3 − iωxk2 − ω2
1k + iωxω

2
0 = 0. (25)

As shown in Fig. 3, λ1 (λ2) is on the first (second) quadrant
and λ3 is on the positive imaginary axis. The real and imag-
inary parts of λ1 correspond to the dressed resonance ω̃ and
half of the linewidth κ̃ unless the coupling is not very strong.
For reference, we present the perturbative solution of Eq. (25)
with respect to the coupling strength f . The zeroth-order
solutions are λ

(0)
1 = ω0, λ(0)

2 = −ω0, and λ
(0)
3 = iωx. Up to the

first order in f , the three solutions are given by

λ1 ≈ (ω0 + f ω0/2ωx ) + i f /2, (26)

λ2 ≈ −(ω0 + f ω0/2ωx ) + i f /2, and λ3 ≈ iωx − i f .

IV. OPTICAL RESPONSE

A. Oscillator amplitude

In this section, we investigate time evolution of the whole
system from the initial state vector, Eq. (10). We first ob-
serve the oscillator amplitude 〈b̂(t )〉 ≡ 〈ψi|b̂(t )|ψi〉. Since d̂k

is an eigenoperator of the Hamiltonian, b̂(t ) is given, from

Eq. (21), by

b̂(t ) =
∫ ∞

0
dq

[
e−iqtβ∗

1 (q)d̂q − eiqtβ2(q)d̂†
q

]
. (27)

Furthermore, |ψi〉 is an eigenstate of d̂q and satisfies

d̂q|ψi〉 =
√

2π [Edγ1(q, kd ) + E∗
d γ2(q, kd )]|ψi〉. (28)

From these results, 〈b̂(t )〉 is given by

〈b̂(t )〉 =
√

2πEd

∫ ∞

0
dq[e−iqtβ∗

1 (q)γ1(q, kd )

−eiqtβ2(q)γ ∗
2 (q, kd )]

+
√

2πE∗
d

∫ ∞

0
dq[e−iqtβ∗

1 (q)γ2(q, kd )

−eiqtβ2(q)γ ∗
1 (q, kd )]. (29)

This is divided into stationary and transient components
as 〈b̂(t )〉 = 〈b̂(t )〉s + 〈b̂(t )〉t . The stationary component is
given by

〈b̂(t )〉s =
√

2πβ∗
1 (kd )Ed e−ikd t −

√
2πβ2(kd )E∗

d eikd t . (30)
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The transient component is presented in Appendix B. Putting
Ed = |Ed |eiθd , we have

Re〈b̂(t )〉s =
√

8π |Ed |ω1ξkd Re

(
ei(kd t−θd )

k2
d − ω2

1z(kd )

)
, (31)

Im〈b̂(t )〉s = −
√

8π |Ed |kdξkd Im

(
ei(kd t−θd )

k2
d − ω2

1z(kd )

)
. (32)

These equations indicate that the phase-space motion of the
oscillator amplitude 〈b̂(t )〉s is elliptical in general. The ratio of
the vertical (imaginary) radius relative to the horizontal (real)
radius is kd/ω1, and thus depends on the drive frequency. As
a measure of the ellipticity of phase-space motion, we employ
the ratio of the two axial radii at the dressed resonance,

E = ω̃/ω1. (33)

As we observe in Figs. 4(a) and 4(c), such elliptical motion
is not remarkable for weak coupling. Under the parameter of
these figures, from Eqs. (48), (7), and (33), ω̃/ω0 = 1.002,
ω1/ω0 = 1.025, and E = 0.978. In contrast, as we observe in
Figs. 4(b) and 4(d), the phase-space motion becomes highly
elliptical for stronger coupling. In these figures, ω̃/ω0 =
1.235, ω1/ω0 = 2.449, and E = 0.504. These results agree
with the general intuition that the counter-rotating terms,
which are the origin of noncircular motion, become more
crucial for stronger coupling.

B. Quadrature fluctuations

Here, we investigate the quadrature fluctuations of the os-
cillator. We define the X̂ and Ŷ quadratures by X̂ = (b̂ + b̂†)/2
and Ŷ = −i(b̂ − b̂†)/2, respectively, and their fluctuations by
�X =

√
〈X̂ 2〉 − 〈X̂ 〉2 and �Y =

√
〈Ŷ 2〉 − 〈Ŷ 〉2, respectively,

where 〈Ô〉 = 〈ψi|Ô|ψi〉. From these definitions, we have

�X =
√

1 + 2〈b̂†(t ), b̂(t )〉 + 2Re〈b̂(t ), b̂(t )〉
2

, (34)

�Y =
√

1 + 2〈b̂†(t ), b̂(t )〉 − 2Re〈b̂(t ), b̂(t )〉
2

, (35)

where 〈Ô, Ô′〉 ≡ 〈ÔÔ′〉 − 〈Ô〉〈Ô′〉. From Eqs. (27) and (28),
we can confirm that both 〈b̂†(t ), b̂(t )〉 and 〈b̂(t ), b̂(t )〉 reduce
to the following time-independent quantities:

〈b̂†, b̂〉 =
∫ ∞

0
dq|β2(q)|2, (36)

〈b̂, b̂〉 = −
∫ ∞

0
dq β∗

1 (q)β2(q), (37)

and that the quadrature fluctuations, �X and �Y , are identical
to those of the vacuum fluctuations. The integrals appearing in
Eqs. (36) and (37) can be performed analytically for the Drude
coupling (Appendix C). Figure 5 plots the dependencies of
�X and �Y on the coupling strength f . We observe that there
exists squeezing in Y quadrature. The state is not a minimum
uncertainty state, since

√
�X�Y > 1/2.

C. Waveguide amplitude

From Eqs. (22) and (28), the amplitude of the waveguide
field in the wave-number representation is given by

〈ĉk (t )〉 =
√

2πEd

∫ ∞

0
dq

[
e−iqtγ ∗

1 (q, k)γ1(q, kd ) − eiqtγ2(q, k)γ ∗
2 (q, kd )

]
+

√
2πE∗

d

∫ ∞

0
dq

[
e−iqtγ ∗

1 (q, k)γ2(q, kd ) − eiqtγ2(q, k)γ ∗
1 (q, kd )

]
. (38)

Using Eqs. (17)–(19), this quantity is rewritten as follows:

〈ĉk (t )〉 =
√

2πEd
[
e−ikd tδ(k − kd ) + e−ikt γ̃1(k, kd ) + e−ikd t γ̃ ∗

1 (kd , k)
]

−i
√

2/πω1ξkξkd Ed

∫ ∞

−∞
dq

e−iqt

(q − k + i0)(q − kd − i0)

(
1

q2 − ω2
1z(q)

− 1

q2 − ω2
1z∗(q)

)
+

√
2πE∗

d

[
e−iktγ2(k, kd ) − eikd tγ2(kd , k)

]
+i

√
2/πω1ξkξkd E∗

d

∫ ∞

−∞
dq

eiqt

(q + k − i0)(q − kd + i0)

(
1

q2 − ω2
1z(q)

− 1

q2 − ω2
1z∗(q)

)
. (39)

The integral in the second line in the above equation can
be performed by employing the residue theorem. The inte-
grand has four poles in the lower complex plane of q at
k − i0, λ∗

1, λ∗
2, and λ∗

3, and the latter three poles yield tran-
sient components. Therefore, the stationary component of the
second line comes from the pole at k − i0 and is given by
−√

8πω1ξkξkd
Ed e−ikt

k−kd −i0 ( 1
k2−ω2

1z(k)
− 1

k2−ω2
1z∗(k)

). Repeating the
same arguments, the stationary component of the fourth

line of Eq. (39) is given by −√
8πω1ξkξkd

E∗
d e−ikt

k+kd
( 1

k2−ω2
1z(k)

−
1

k2−ω2
1z∗(k)

). As a result, the stationary component of the waveg-
uide amplitude is written as

〈ck (t )〉 = 〈ck (t )〉(1) + 〈ck (t )〉(2) + 〈ck (t )〉(3), (40)

〈ck (t )〉(1) =
√

2πδ(k − kd )Ed e−ikd t , (41)
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〈ck (t )〉(2) =
√

8πω1ξkξkd Ed

k − kd − i0

(
e−ikt

k2−ω2
1z∗(k)

− e−ikd t

k2
d−ω2

1z∗(kd )

)
,

(42)

〈ck (t )〉(3) =
√

8πω1ξkξkd E∗
d

k + kd

(
e−ikt

k2−ω2
1z∗(k)

− eikd t

k2
d−ω2

1z(kd )

)
.

(43)

We switch to the real-space representation 〈̃cr (t )〉, using
Eq. (11). 〈̃cr (t )〉(1) is immediately given by

〈̃cr (t )〉(1) = Ed eikd (r−t ) = E (r, t ). (44)

Obviously, this is nothing but the input drive field
[Eq. (9)]. Regarding 〈̃cr (t )〉(2), the principal contribu-
tion comes from the pole at k = kd + i0 in the right-
hand side of Eq. (42). Therefore, we can employ
the following approximation, 〈ck (t )〉(2)

s ≈ √
8πω1ξ

2
kd

Ed [k2
d −

ω2
1z∗(kd )]−1[k − kd − i0]−1(e−ikt − e−ikd t ). Then, we have

〈̃cr (t )〉(2) ≈ − 4π iω1ξ
2
kd

k2
d − ω2

1z∗(kd )
θ (r)θ (t − r)E (r, t ), (45)

where θ is the Heaviside step function. This represents the
radiation from the oscillator emitted into the positive r region.
In contrast, regarding 〈̃cr (t )〉(3), the pole at k = −kd in the
right-hand side of Eq. (43) does not yield a significant contri-
bution since the integration range in Eq. (11) is restricted to
the positive k region. Combining these results, we obtain the
following analytic form of 〈̃cr (t )〉:

〈̃cr (t )〉 ≈
(

1 − 4π iω1ξ
2
kd

k2
d − ω2

1z∗(kd )
θ (r)θ (t − r)

)
× E (r, t ).

(46)

The spatial shape of the normalized amplitude,
〈̃cr (t )〉/E (r, t ), is plotted in Fig. 6. If the oscillator is
uncoupled to the waveguide, the drive field propagates freely
in the waveguide, namely, 〈̃cr (t )〉 = E (r, t ), and therefore
the real (imaginary) part of the normalized amplitude is
unity (zero) at any r. Such free propagation is observed in
Fig. 6 in the r < 0 and t < r regions. In contrast, when the
oscillator is coupled to the waveguide, radiation from the
driven oscillator is overlapped onto the freely propagating
field in the 0 < r < t region. Under the parameters of
Fig. 6, the reflection coefficient [Eq. (47)] amounts to
R = (−12 + 5i)/13. The normalized amplitude at the output
port is Re(R) = −0.923 and Im(R) = 0.385, as we observe
in Fig. 6.

The rigorous shape of 〈̃cr (t )〉 [numerical Fourier transform
of Eq. (40)] and the approximate one [Eq. (46)] are compared
in Fig. 6. We observe good agreement between them, except
deviations at the wavefront of radiation (r ∼ t) and at the
oscillator position (r ∼ 0). The former deviation originates
in the transient oscillator response, which is neglected when
deriving Eq. (46). The transient response vanishes within a
timescale of κ̃−1, which agrees with our observation in Fig. 6.
On the other hand, the latter deviation around the oscillator
position originates in the fact that the oscillator-waveguide
coupling has a finite bandwidth and therefore is not spatially
local. The bandwidth is of the order of ω0 in the wave-number
space due to the lower cutoff at k = 0, and is therefore of the
order of ω−1

0 in the real space. This explains the deviation
around the origin in Fig. 6.

(b)
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FIG. 6. Normalized amplitude of the waveguide field, 〈̃cr (t )〉/E (r, t ). (a) Real and (b) imaginary parts. Solid (thin dashed) lines represent
the rigorous amplitudes at t = 300/ω0 (200/ω0) and dotted lines represent the approximate ones [Eq. (46)] at t = 300/ω0. The other parameters
are f /ω0 = 0.1 (̃κ/ω0 = 0.0978) and kd/ω0 = 1.

023060-6



ELLIPTICAL ROTATION OF A BOSONIC OSCILLATOR … PHYSICAL REVIEW RESEARCH 3, 023060 (2021)

ph
as

e 
sh

ift
 (u

ni
ts

 o
f 

)

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2  2.5  3

f/ 0=0.01
0.1

1

kd 0

FIG. 7. Phase shift upon reflection as a function of the drive
frequency. The oscillator-waveguide coupling strength f is indicated.

A notable fact is that, in contrast with the oscillator am-
plitude [Eq. (30)] that is composed of both positively and
negatively oscillating components, the waveguide field am-
plitude in the output port [Eq. (46)] is composed only of
the positively oscillating one [42,43]. Therefore, the elliptic
motion is specific to the oscillator amplitude.

D. Reflection coefficient

The reflection coefficient is identified as R =
〈̃cr (t )〉/E (r, t ) at the output port (r > 0). From Eq. (46),
R is given by

R(kd ) = 1 − 4π iω1ξ
2
kd

k2
d − ω2

1z∗(kd )
. (47)

We can check that |R| = 1 for any drive frequency kd . This
implies that input field is reflected completely coherently,
which is characteristic to linear optical response. In Fig. 7,
we plot the phase shift upon reflection, arg R, as a func-
tion of kd , varying the coupling strength f . We observe the
broadening of the linewidth as we increase the coupling. The
spectrum takes a kink-shaped form around the resonance. For
a weak coupling, the spectrum is antisymmetric with respect
to the resonance frequency, in accordance with the standard

input-output theory. However, for a stronger coupling, such
symmetry is gradually lost.

We define the dressed resonance frequency ω̃ as the drive
frequency achieving the π phase shift, R(ω̃) = −1. From this
equation, ω̃ is analytically given by

ω̃2 =
√

(ω2
x − ω2

0 − f ωx )2 + 4ω2
0ω

2
x − (ω2

x − ω2
0 − f ωx )

2
.

(48)

We observe in Fig. 7 that the reflection coefficient be-
comes independent of the coupling strength at the bare
cavity resonance, kd = ω0; we can check that R(ω0) = (iω0 −
ωx )/(iω0 + ωx ).

E. Open waveguide

In Sec. IV D, we evaluated the reflection coefficient R
when a semi-infinite waveguide is coupled to the oscillator.
From this result, we can readily determine the reflection and
transmission coefficients R′ and T ′, when the oscillator is
coupled to an open waveguide [Fig. 8(a)]. The amplitude of
the waveguide field in this case is written as

E (r, t ) = Ed e−iωd t ×
{

eikd r + R′e−ikd r (r < 0)
T ′eikd r (0 < r).

(49)

We divide this field into even and odd components. The
even component interacts with the oscillator, whereas the
odd component does not. The even component is defined
by Es(r, t ) = [E (r, t ) + E (−r, t )]/2 and is therefore given
by Es(r, t ) = 1

2 Ed e−ikd (r+t ) + R′+T ′
2 Ed eikd (r−t ) for r > 0. Since

the first (second) term in the right-hand side of this equation
represents the incoming (outgoing) field, we have R′ + T ′ =
R. Similarly, the odd component is defined by Ea(r, t ) =
[E (r, t ) − E (−r, t )]/2 and is therefore given by Es(r, t ) =
− 1

2 Ed e−ikd (r+t ) + T ′−R′
2 Ed eikd (r−t ) for r > 0. Since the incom-

ing field simply transmits the oscillator without interaction,
we have T ′ − R′ = 1. Therefore,

R′ = (R − 1)/2, (50)

T ′ = (R + 1)/2. (51)

We can readily confirm that |R′|2 + |T ′|2 = 1. The transmis-
sivity |T ′|2 is plotted in Fig. 8(b) as a function of the drive

r
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FIG. 8. (a) Schematic of an oscillator coupled to an open waveguide. (b) Transmissivity |T ′|2 as a function of the drive frequency. The
oscillator-waveguide coupling strength f is indicated.
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FIG. 9. The same plot as Fig. 4(d) for different cutoff frequency ωx . (a) ωx/ω0 = 1 and f /ω0 = 1. (b) ωx/ω0 = 25 and f /ω0 = 1.

frequency. We observe that the symmetric transmission dip for
a weak-coupling case (solid line) gradually becomes asym-
metric as the oscillator-waveguide coupling increases (dashed
and dotted lines).

V. SUMMARY

We investigated optical response of a linear waveguide
QED system, namely, a bosonic oscillator coupled to a
waveguide. Our analysis is based on exact diagonalization
of the overall Hamiltonian, and is therefore rigorous even
in the ultra- and deep-strong-coupling regimes of waveguide
QED. Owing to the counter-rotating terms in the oscillator-
waveguide coupling, the phase-space motion of the oscillator
amplitude is elliptical in general, and this becomes remarkable
in the ultrastrong coupling regime. However, such an elliptical
motion does not appear in the output field, contrary to the
intuition by the standard input-output theory. We obtained an
analytic expression of the reflection/transmission coefficient,
which becomes asymmetric with respect to the resonance
frequency for stronger coupling. Although the present work
is based on a specific Drude coupling, the features observed
here would apply generally in ultrastrong waveguide QED.
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FIG. 10. Quadrature fluctuations �X (solid) and �Y (dashed)
for different cutoff frequency ωx . Red, thin green, and blue lines are
the results for ωx/ω0 = 1, 5, and 25, respectively.
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APPENDIX A: DETERMINATION OF β1,2 AND γ1,2

From Eqs. (12) and (13), we have [d̂k, Ĥ ] = kd̂k . This leads
to the following equations:

(k − ω1)β1(k) =
∫ ∞

0
dq ξq[γ1(k, q) − γ2(k, q)], (A1)

(k + ω1)β2(k) =
∫ ∞

0
dq ξq[γ1(k, q) − γ2(k, q)], (A2)

(k − q)γ1(k, q) = ξq[β1(k) − β2(k)], (A3)

(k + q)γ2(k, q) = ξq[β1(k) − β2(k)]. (A4)

From Eqs. (A2) and (A4), we obtain β2(k) = k−ω1
k+ω1

β1(k)

and γ2(k, q) = k−q
k+q γ1(k, q). Then, Eqs. (A1) and (A3) are

rewritten as

(k − ω1)β1(k) = 2
∫ ∞

0
dq

qξq

k + q
γ1(k, q), (A5)

(k − q)γ1(k, q) = 2ω1

k + ω1
β1(k)ξq. (A6)

Equation (A6) is rewritten as

γ1(k, q) = 2ω1

k + ω1
β1(k)ξq

(
1

k − q − i0
+ y(k)δ(k − q)

)
,

(A7)

where y(k) is a quantity to be determined. Substituting the

above equation into Eq. (A5), and using
∫ ∞

0
qξ 2

q

(k+q)(k−q−i0) =
1
2

∫ ∞
−∞

ξ 2
q

k−q−i0 , y(k) is given by

y(k) = 1

ξ 2
k

(
k2 − ω2

1

2ω1
− �(k)

)
, (A8)

�(k) =
∫ ∞

−∞
dq

ξ 2
q

k − q − i0
. (A9)
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FIG. 11. The same plot as Fig. 7 for different cutoff frequency ωx . (a) ωx/ω0 = 1. (b) ωx/ω0 = 25.

Note that �(k) is the self-energy of the oscillator, satisfying
�(−k) = �∗(k) and Im�(k) = πξ 2

k .
Up to here, we derived the expressions of β2, γ1, and γ2 in

terms of β1. β1(k) is determined by the normalization condi-
tion, Eq. (13). This is rewritten as δ(k − k′) = β1(k)β∗

1 (k′) −
β2(k)β∗

2 (k′) + ∫ ∞
0 dq[γ1(k, q)γ ∗

1 (k′, q) − γ2(k, q)γ ∗
2 (k′, q)],

which leads to 2ω1ξk

(k+ω1 ) |β1(k)||y(k)| = 1. By adequately
choosing the phase of β1, we obtain Eq. (15),

β1(k) = k + ω1

2ω1ξky(k)
= (k + ω1)ξk

k2 − ω2
1z(k)

. (A10)

β2, γ1, and γ2 are obtained accordingly.

APPENDIX B: TRANSIENT COMPONENT OF OSCILLATOR AMPLITUDE

Here we present the transient component of the oscillator amplitude 〈b̂(t )〉t , which is omitted in Sec. IV A:

〈b̂(t )〉t =
√

8πEdω1ξkd

∫ ∞

−∞
dq

e−iqt (q + ω1)ξ 2
q

(q − kd − i0)[q2 − ω2
1z(q)][q2 − ω2

1z∗(q)]

−
√

8πE∗
d ω1ξkd

∫ ∞

−∞
dq

eiqt (q − ω1)ξ 2
q

(q − kd + i0)[q2 − ω2
1z(q)][q2 − ω2

1z∗(q)]
. (B1)

Using
ω1ξ

2
q

[q2−ω2
1z(q)][q2−ω2

1z∗(q)]
= 1

4iπ ( 1
q2−ω2

1z(q)
− 1

q2−ω2
1z∗(q)

) and that 1
q2−ω2

1z(q)
has no poles on the lower half plane, the transient

component is rewritten as

〈b(t )〉t = iEdξkd√
2π

∫ ∞

−∞
dq

e−iqt (q + ω1)

(q − kd − i0)[q2 − ω2
1z∗(q)]

+ iE∗
d ξkd√
2π

∫ ∞

−∞
dq

eiqt (q − ω1)

(q − kd + i0)[q2 − ω2
1z(q)]

. (B2)

APPENDIX C: INTEGRALS IN EQS. (36) AND (37)

Here, we derive an analytical form of the integral in the right-hand side of Eq. (36). From Eq. (20), we have z(k) − z∗(k) =
4iπξ 2

k /ω1. Therefore, the integral is rewritten as∫ ∞

0
dq|β2(q)|2 = 1

4iπω1

(∫ ∞

0
dq

(q − ω1)2

q2 − ω2
1z(q)

− c.c.

)
. (C1)

We denote the integrand in the right-hand side of Eq. (C1) by f (q). Using Eq. (24), f (q) is rewritten as

f (q) = (q − ω1)2

q2 − ω2
1z(q)

= (q − ω1)2(q − iωx )

(q − λ1)(q − λ2)(q − λ3)
= 1 +

3∑
j=1

c j

q − λ j
, (C2)

where c j is a residue of f (q) at q = λ j . Substituting Eq. (C2) into Eq. (C1), we obtain

∫ ∞

0
dq|β2(q)|2 = − 1

2πω1

3∑
j=1

Im{c j ln(−λ j )}. (C3)
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Repeating the same argument, the integral appearing in Eq. (37) is given by

−
∫ ∞

0
dq β∗

1 (q)β2(q) = − 1

2πω1

3∑
j=1

Im{d j ln(−λ j )}, (C4)

where dj is a residue at q = λ j of the following function g(q),

g(q) = (ω2
1 − q2)(q − iωx )

(q − λ1)(q − λ2)(q − λ3)
. (C5)

APPENDIX D: DERIVATION OF EQ. (39)

Here, we present the derivation of Eq. (39) from Eq. (38). In particular, we focus on the first integral on the right-hand
side of Eq. (38), I = √

2πEd
∫ ∞

0 dq[e−iqtγ ∗
1 (q, k)γ1(q, kd ) − eiqtγ2(q, k)γ ∗

2 (q, kd )]. Using Eq. (17), this quantity is rewritten as
I = I1 + I2 + I3, where

I1 =
√

2πEd
[
e−ikd tδ(k − kd ) + e−ikt γ̃1(k, kd ) + e−ikd t γ̃ ∗

1 (kd , k)
]
, (D1)

I2 =
√

2πEd

∫ ∞

0
dq e−iqt γ̃ ∗

1 (q, k)γ̃1(q, kd ), (D2)

I3 = −
√

2πEd

∫ ∞

0
dq eiqtγ2(q, k)γ ∗

2 (q, kd ). (D3)

I1 is the first line of the right-hand side of Eq. (39). Using Eq. (19), I2 is rewritten as

I2 = 4
√

2πω2
1ξkξkd Ed

∫ ∞

0
dq

e−iqtξ 2
q

(q − k + i0)(q − kd − i0)[q2 − ω2
1z(q)][q2 − ω2

1z∗(q)]
. (D4)

From Eq. (20), we obtain z(q) − z∗(q) = 4iπξ 2
q /ω1. Therefore,

ξ 2
q

[q2 − ω2
1z(q)][q2 − ω2

1z∗(q)]
= 1

4iπω1

(
1

q2 − ω2
1z(q)

− 1

q2 − ω2
1z∗(q)

)
. (D5)

Substituting Eq. (D5) into Eq. (D4), we have

I2 = −i
√

2/πω1ξkξkd Ed

∫ ∞

0
dq

e−iqt

(q − k + i0)(q − kd − i0)

(
1

q2 − ω2
1z(q)

− 1

q2 − ω2
1z∗(q)

)
. (D6)

Repeating the same arguments, I3 is rewritten as

I3 = i
√

2/πω1ξkξkd Ed

∫ ∞

0
dq

eiqt

(q + k)(q + kd )

(
1

q2 − ω2
1z(q)

− 1

q2 − ω2
1z∗(q)

)
. (D7)

By switching the integral variable (q → −q) in Eq. (D7) and using z∗(q) = z(−q), we finally have

I2 + I3 = −i
√

2/πω1ξkξkd Ed

∫ ∞

−∞
dq

e−iqt

(q − k + i0)(q − kd − i0)

(
1

q2 − ω2
1z(q)

− 1

q2 − ω2
1z∗(q)

)
, (D8)

which is the second line of the right-hand side of Eq. (39).

APPENDIX E: EFFECTS OF CUTOFF FREQUENCY

Throughout this study, we fixed the cutoff frequency of the Drude coupling at ωx = 5ω0. Here, we present the numerical
results for smaller (ωx = ω0) and larger (ωx = 25ω0) cutoff frequencies. Figure 9 plots the long/short axial radii of the phase-
space rotation, and Fig. 10 plots the quadrature fluctuations. We observe that elliptic phase-space motion and the quadrature
squeezing are more stressed for larger cutoff frequency. This is attributed to the fact the net oscillator-waveguide coupling,∫ ∞

0 dk η2
k = f ωx, is larger for higher ωx. The reflection coefficient plotted in Fig. 11 is not affected by ωx significantly. These

observations indicate that the cutoff frequency (more generally, the functional form of the coupling) affects the results of the
main part of this paper quantitatively, but retains their qualitative features.
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