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A superconducting qubit in the strong dispersive regime of a circuit quantum electrodynamics
system is a powerful probe for microwave photons in a cavity mode. In this regime, a qubit spectrum
is split into multiple peaks, with each peak corresponding to an individual photon number in the
cavity (discrete ac Stark shift). Here, we measure the qubit spectrum in the cavity that is driven
continuously with a squeezed vacuum field generated by a Josephson parametric amplifier. By fitting
the qubit spectrum with a model which takes into account the finite qubit excitation power, the
photon number distribution, which is dissimilar from the apparent peak area ratio in the spectrum,
is determined. The photon number distribution shows the even-odd photon number oscillation and
quantitatively fulfills Klyshko’s criterion for the nonclassicality.

Advancement of the superconducting quantum circuit
technologies [1] and the concept of circuit quantum elec-
trodynamics (QED) [2] have led to the emergence of mi-
crowave quantum optics, enabling us to generate and
characterize nonclassical states of electromagnetic fields
in the microwave domain.

One of the most widely studied nonclassical states as
a resource in quantum technologies is a squeezed vac-
uum [3]. In microwave quantum optics, a squeezed vac-
uum is conveniently generated by degenerated paramet-
ric down conversion in a Josephson parametric ampli-
fier (JPA) based on the nonlinearity of Josephson junc-
tions [4, 5]. Characterizations of such states propagat-
ing in a waveguide have been realized by measuring the
quadrature amplitudes with a homodyne technique using
a JPA [6] or a cryogenic HEMT amplifier [7, 8]. JPAs
and related circuits are also used to generate and char-
acterize two-mode squeezing in spatially or spectrally
separated propagating modes [9–13]. More recently, it
has been shown that a squeezed vacuum injected in a
cavity induces nontrivial effects to the relaxations of a
qubit [14, 15] and a spin ensemble [16]. In the Fock basis,
on the other hand, a squeezed vacuum displays another
feature of the nonclassicality, i.e., the photon number
distribution composed of only even photon numbers [17].
In the optical domain, direct observations of the photon
number distribution using a photon-number-resolving de-
tector were reported [18, 19]. In the microwave domain,
however, because of the smallness of the energy of a single
photon, photon counting in a propagating mode is still
a challenging task, while a few realizations of microwave
single-photon detectors have been reported [20–22].

Here, we report the measurement of the photon num-
ber distribution for a squeezed vacuum field continuously
injected into a cavity containing a superconducting qubit.
In the strong dispersive regime of the circuit-QED archi-
tecture, the spectrum of the superconducting qubit is

split into multiple peaks, with each peak corresponding
to a different photon number in the cavity [23, 24]. Fur-
thermore, it is known that the peak area ratio in the qubit
spectrum obeys the photon number distribution [25]. In
practice, however, we find unwanted effects of the finite
qubit drive power, which give discrepancies between the
observed peak area ratio and the actual photon num-
ber distribution in the cavity. We demonstrate a scheme
to deduce the latter by comparing the spectrum with
a numerical calculation. The determined photon num-
ber distribution confirms its nonclassicality by Klyshko’s
criterion, quantitatively indicating the even-odd photon
number oscillation [26]. This is a steady-state realization
and characterization of a nonclassical photon number dis-
tribution in a cavity driven continuously with a squeezed
vacuum field. Owing to the input-output relation [27],
the photon number distribution in the cavity can be in-
terpreted as that of the injected microwave state in the
propagating mode. It is in stark contrast with the dy-
namical generations and characterizations of nonclassical
states (e.g., cat states) in a cavity [28, 29].

We use a circuit-QED system in the strong dispersive
regime, where a transmon qubit is mounted at the center
of a three-dimensional superconducting cavity as shown
schematically in Fig. 1(a). Setting ~ = 1, the qubit-
cavity coupled system is described by the Hamiltonian

H = ωca
†a+

ωq

2
σz − χa†aσz, (1)

where a†(a) is the creation (annihilation) operator of the
cavity mode, σz is the Pauli operator of the transmon
qubit, ωc/2π = 10.4005 GHz is the cavity resonant fre-
quency, ωq/2π = 8.7941 GHz is the qubit resonant fre-
quency, and χ/2π = 3.9 MHz is the dispersive shift. Note
that the Hamiltonian is truncated to the subspace of the
ground state |g〉 and the first excited state |e〉 of the
transmon qubit; the higher excited states of the qubit
are not populated in the experiment below. The total
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FIG. 1. (a) Schematic of the experimental setup with
squeezed vacuum injection. A squeezed vacuum generated
by a flux-driven Josephson parametric amplifier (JPA), as a
cavity drive field ωs, is injected into the cavity from port 2.
The cavity probe field ωp and the qubit drive field ωd are in-
put from port 1, and the transmission of the cavity probe field
ωp is measured. The cavity is designed to have asymmetric
external coupling rates of κ2 ≈ 100 × κ1. For the thermal-
and coherent-state injections, the connection to the JPA is
switched to a heavily attenuated microwave line connected to
the source at room temperature. (b) Energy levels of a dis-
persively coupled qubit-cavity system. |g〉 and |e〉 label the
ground and the first exited states of the transmon qubit, and
|n〉 (n = 0, 1, 2, · · · ) indicates the photon number states of
the cavity. The cavity drive field ωs generate the steady-state
photon number distribution in the cavity (red dots).

decay rate of the cavity is κ/2π = 0.5 MHz, the relax-
ation time of the qubit is T1 = 5.5 µs, and the dephasing
time of the qubit is T ∗2 = 4.5 µs, determined respectively
from independent measurements. As shown in Fig. 1(b),
the dispersive interaction produces both the qubit-state-
dependent shift of the cavity resonant frequency and the
photon-number-dependent light shift of the qubit reso-
nant frequency (discrete ac Stark shift).

In our experiment, three inputs of continuous mi-
crowaves are used: the cavity drive, the qubit drive and
the cavity probe (see Fig. 1). The cavity drive field,
whose frequency ωs is fixed at the cavity resonant fre-
quency ωc+χ for the qubit in the ground state, is injected
to the cavity to generate the steady-state photon number
distribution. The qubit drive field ωd is applied in order
to excite the qubit depending on the photon number dis-
tribution in the cavity. The cavity probe field, whose fre-
quency ωp is fixed around the cavity resonant frequency,
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FIG. 2. (a) Cavity transmission as a function of the
qubit drive frequency ωd and the cavity probe frequency ωp.
The transmission is normalized by the maximum peak value.
White dashed lines indicate ωp = ωc ± χ. (b) Cross sections
of (a) at ωp = ωc±χ (red and blue dots, respectively). Green
lines represent the rigorous numerical results in which the
finite cavity probe power is fully incorporated, whereas the
black lines represent the numerical results within the linear
response to the cavity probe field ωp, which corresponds to
the weak power limit of the cavity probe field. The splitting
of the single-photon peak, which is observed for ωp = ωc − χ
(blue arrow), is understood as the Autler-Townes effect of
the qubit, driven strongly at ωd = ωq − 2χ (see [30] for the
details).

is used to probe the transmission of the cavity depend-
ing on the the qubit excitation probability. By measuring
the cavity transmission as a function of the qubit drive
frequency ωd, we can observe the qubit spectrum reflect-
ing the photon number distribution in the cavity. As the
cavity drive fields ωs, we compare thermal states, coher-
ent states, and squeezed vacuum states. Thermal states
are generated by amplifying the thermal noise at room
temperature, and coherent states are generated by a mi-
crowave source at room temperature. They are led to
the cavity through a series of attenuators to suppress the
background noise. Squeezed vacuum states are generated
by pumping a flux-driven JPA [31] at twice the JPA res-
onant frequency as shown in Fig. 1(a). The correlated
photon pairs, generated from each single pump photon,
show the even-odd photon number oscillation in the pho-
ton number distribution. Note that a squeezed vacuum
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FIG. 3. (a)-(c) Qubit spectra reflecting the photon number
distributions in the cavity. The cavity drive fields ωs are in
(a) thermal, (b) coherent, and (c) squeezed vacuum states, re-
spectively. Blue dots are the experimental data, and the black
solid lines are the numerically calculated linear responses. (d)-
(f) Photon number distributions determined from the fittings
(dots). Solid lines are the photon number distributions cal-
culated from the corresponding models. (g) Klyshko’s figures
of merit Kn evaluated for each drive.

field propagating through a waveguide is in a bandwidth
broader than the cavity, and the photon pairs are gener-
ated symmetrically in frequency with respect to the cen-
ter frequency of the squeezed vacuum field due to energy
conservation.

Before going to the main topic, we study the effect
of the cavity probe field ωp on the qubit spectra. In
Fig. 2(a), we plot the cavity transmission as a function
of the cavity probe frequency ωp and the qubit drive fre-
quency ωd. Red (blue) dots in Fig. 2(b) depict the cross-
section at ωp = ωc + χ (ωp = ωc − χ) of the color plot in
Fig. 2(a), respectively. Despite the absence of the cav-
ity drive field ωs, we observe unexpected dips and peaks

corresponding to single or double photon occupation in
the cavity. Nevertheless, the numerical results, which
take into account the finite cavity probe power, repro-
duce them very well (green lines). The excess dips in the
spectrum at ωp = ωc + χ are induced by the back-action
of the cavity probe field ωp on the cavity transmission.
On the other hand, for ωp = ωc − χ (cavity resonant
frequency for the qubit in the excited state), the back-
action is minimal. Note that the small single-photon
peak still remains due to the thermal background noise,
corresponding to the average photon number nth = 0.04
in the cavity. Black solid lines in Fig. 2(b) represent the
numerical results within the linear response to the cav-
ity probe field ωp. The deviation of the linear response
from the observed spectrum is smaller at ωp = ωc − χ
than at ωp = ωc + χ. For the measurements below, we
fix the cavity probe frequency ωp = ωc − χ which does
not influence the cavity states significantly and apply the
linear-response analysis.

The qubit spectra obtained in the cavity driven by dif-
ferent states of microwave fields are shown in Figs. 3(a)-
(c). The numerical calculations (black solid lines) repro-
duce well the experimental results (blue dots). Dots in
Figs. 3(d)-(f) represent the photon number distributions
in the cavity, determined from the numerical fits for the
spectra. The even-odd photon number oscillations are
observed both in the qubit spectrum and in the pho-
ton number distribution for the squeezed vacuum state
[Figs. 3(c) and (f)]. We estimate the quantum states
of the cavity mode from the determined photon number
distributions. Red line in Fig. 3(d) is the distribution
corresponding to a thermal state with the average pho-
ton number nth = 0.22. Green line in Fig. 3(e) is the
distribution of a thermal coherent state with nth = 0.04
and the displacement parameter α = 0.49. Blue line in
Fig. 3(f) is the distribution of a squeezed vacuum state
with the squeezing parameter r = 0.54 and the loss ra-
tio l = 0.42 [30]. This corresponds to a 2.1-dB squeezed
state. Note that the determined photon number distri-
butions have much less weights for larger n than the ap-
parent peak area ratio in the qubit spectra. This is be-
cause the qubit excitation rate and the cavity decay rate
are larger than the qubit decay rate. In the steady-state
measurement, once the qubit is excited, the population
is accumulated in |e, 0〉, which enhances the cavity trans-
mission signal conditioned to the qubit excited state more
than the actual photon number distributions for larger n.

To verify the nonclassicality of the photon number dis-
tribution under the squeezed drive, we evaluate Klyshko’s

figures of merit Kn = (n+1)Pn−1Pn+1

nPn
2 (n = 1, 2, · · · ) [26]

shown in Fig. 3(g). Kn gives the nonclassicality crite-
rion which can be calculated with the photon number
distribution alone. If one of Kn is less than one, the
state is nonclassical. As shown in Fig. 3(g), in the case
of squeezed vacuum state, Kn becomes below unity for
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FIG. 4. (a)-(d) Squeezed-drive-frequency dependence of the
qubit spectrum. δ = ωs−(ωc+χ) is the detuning between the
center frequency ωs of the squeezed vacuum field and the cav-
ity resonant frequency ωc +χ. Blue dots are the experimental
results, and black solid lines are the numerical calculations.
(e)-(h) Photon number distributions determined from the fit-
tings (dots and dashed lines). Solid lines in (e) and (h) are
the photon number distributions calculated from the corre-
sponding models. (i) Klyshko’s figures of merit Kn evaluated
for each detuning δ.

n = 2 and 4. Thus, the photon number distribution ful-
fills Klyshko’s criterion for nonclassicality. In contrast,
Kn’s for coherent states are all expected to be one. For
the case with a coherent drive, the values are indeed close
to one with a small excess due to the thermal background.

Finally, we study the squeezed-drive-frequency depen-
dence of the qubit spectrum as shown in Figs. 4(a)-(d).
When the detuning δ between the center frequency ωs

of the generated broadband squeezed vacuum field and
the cavity resonant frequency ωc + χ is zero, both pho-
tons in a pair are injected into the cavity with an iden-
tical probability, so that the even-odd photon number
oscillation is preserved. When the detuning is increased,
however, the injection probabilities of the photon pairs
are asymmetrically biased, and the photon number os-
cillation is weakened. In the large detuning limit, the
cavity state becomes a thermal state. This can be un-
derstood from the fact that a two-mode squeezed vacuum
state is reduced to a thermal state after tracing out one
of the modes. In Fig. 4, we observe that the photon
number oscillation is diminished as the detuning is in-
creased. Eventually, the photon number distribution ap-
proaches the Boltzmann distribution of a thermal state
with the average photon number nth = 0.27 [red solid line
in Fig. 4(h)]. These observations indicate that a broad-
band squeezed vacuum field has correlated photon pairs
in frequency space. Klyshko’s figures of merit plotted in
Fig. 4(i) shows that the nonclassicality is reduced as the
detuning is increased and that the cavity state becomes
a classical state, i.e., Kn > 1 for any photon number n.

In conclusion, we developed a circuit-QED scheme
to determine the photon number distribution in a cav-
ity driven continuously. By analyzing the Stark-shifted
qubit spectra, the photon number distributions are de-
termined for the drive fields such as thermal, coherent,
and squeezed vacuum states. Most importantly, the dis-
tribution under the squeezed vacuum drive is shown to
fulfill Klyshko’s criterion for nonclassicality. According
to the input-output relation, the measurement scheme
allows us to analyze the photon number distribution and
the nonclassicality in the propagating microwave field.

We acknowledge the fruitful discussion with K. Wakui.
This work was supported in part by the Project for Devel-
oping Innovation System of MEXT, ALPS, JSPS KAK-
ENHI (No. 16K05497 and 26220601), and ERATO, JST.
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SUPPLEMENTARY MATERIALS

S1. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. S1. We use
a circuit-QED architecture, where a transmon qubit is
mounted at the center of a three-dimensional supercon-
ducting cavity. The three-dimensional superconducting
cavity is made of aluminum (A1050). The transmon
qubit with an Al/AlOx/Al Josephson junction is fabri-
cated on a silicon substrate. From the frequency-domain
measurements (see Sec. S4 below), we determine the
dressed cavity resonant frequency ωc/2π = 10.4005 GHz,
the total cavity decay rate κ/2π = 0.494 MHz, and the
effective dispersive shift χ/2π = 3.9 MHz. The dressed
qubit resonant frequency is ωq/2π = 8.7941 GHz, and
the dressed anharmonicity is −136 MHz. By using the
dressed frequencies, we find the bare cavity resonant fre-
quency, 10.3660 GHz, and the coupling strength between
the qubit and the cavity, 240 MHz. The bare qubit res-
onant frequency is 8.8320 GHz, and its anharmonicity is
−140 MHz, corresponding to EJ/EC ≈ 500.

To determine the photon number distribution in the
cavity that is driven continuously by various types of mi-
crowave fields, we observe the qubit spectra, which re-
flect the photon number distribution. The transmission
of the cavity probe field ωp is measured by using a vector
network analyzer (VNA), while sweeping the qubit drive
frequency ωd. The qubit drive field ωd is added to the in-
put line at the directional coupler at room temperature.
As the cavity drive field ωs to generate the steady-state
photon number distribution in the cavity, we use thermal
states, coherent states, and squeezed vacuum states. A
switch connects each source to the cavity, as shown in
Fig. S1. Thermal states are generated by amplifying and
filtering the thermal noise at room temperature and led
to the cavity through attenuators. Coherent states are
generated by a microwave source at room temperature
and led to the cavity through attenuators to suppress
the thermal background. Squeezed vacuum states are
generated by pumping a flux-driven Josephson paramet-
ric amplifier (JPA) at twice the JPA resonant frequency
[8, 31]. The JPA resonant frequency is tuned to the cav-
ity resonant frequency with the qubit in the ground state
by applying the DC magnetic field.

S2. THEORETICAL DESCRIPTION

In this section, we present the formula used in the nu-
merical calculations. In the setup considered (Fig. S2), a
qubit-cavity system (System A) is subject to a continuous
squeezed vacuum field generated by a JPA (System B).
Setting ~ = 1, The Hamiltonian of System A with the
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FIG. S1. Schematic of the experimental setup. ωp = ωc − χ
is the cavity probe frequency, ωd is the qubit drive frequency,
and ωs = ωc + χ is the cavity drive frequency.

qubit drive and the cavity probe fields is described by

H =ωca
†a+

ωq

2
σz − χa†a σz +

Ωd

2
(e−iωdtσ† + eiωdtσ)

+
Ωp

2
(e−iωpta† + eiωpta),

(S1)

where a and σ respectively denote the annihilation oper-
ators of the cavity mode and the qubit, σz = σ†σ − σσ†,
and Ωd and Ωp are the amplitudes of the qubit drive
and the cavity probe, respectively. The Hamiltonian of
System B is given by

H′ = ωsb
†b+

Ωs

2
(e−2iωstb†2 + e2iωstb2), (S2)

where b is the annihilation operator of the JPA mode,
and ωs is its frequency. We apply a pump field with
frequency 2ωs and amplitude Ωs to the JPA to generate
a squeezed vacuum.

By taking the free Hamiltonian H0 = ωs(a
†a + b†b) +

ωd

2 σz, we switch to the rotating frame. In this frame, H
and H′ are rewritten as

H = (ωc − ωs)a
†a+

(ωq − ωd)

2
σz − χa†aσz

+
Ωd

2
(σ† + σ) +

Ωp

2
(e−i(ωp−ωs)ta† + ei(ωp−ωs)ta),

(S3)

H′ =
Ωs

2
(b†2 + b2). (S4)

The squeezed vacuum field generated by System B is
guided to System A through a waveguide. We define a
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FIG. S2. Schematic of the model. The output field from
System B (JPA) is used as the input for System A (qubit and
cavity). The coordinate r is defined along the propagation
direction of the waveguide field. A circulator placed between
Systems A and B in the experiment (see Fig. S1) allows us to
treat only the right-going mode in the calculation.

spatial coordinate r along with the propagating direction
of the waveguide field (see Fig. S2). The waveguide field
interacts with System A at ra and System B at rb. Set-
ting the microwave velocity in the waveguide to unity,
the overall Hamiltonian is written as

Htotal = H+H′ +
∫
dk kc†kck

+
√
κ′e
(
b†c̃rb + c̃†rbb

)
+
√
κe

(
a†c̃ra + c̃†raa

)
,

(S5)

where ck is the waveguide-field operator with wave num-
ber k, and κe (κ′e) represents the external coupling of
System A (B) to the waveguide field. c̃r is the spatial
representation of the waveguide-field operator, as given
by c̃r = (2π)−1/2

∫
dkeikrck. Note that the photon fre-

quency should be measured relative to ωs, since we are
in the rotating frame.

We denote an arbitrary operator belonging to Sys-
tem A (B) by SA (SB) and investigate its time evolution
at t (t− l), where l = ra−rb(> 0) is the distance between
the two systems. This is because SA(t) and SB(t− l) are
on the same light cone and are therefore relativistically
simultaneous. From Eq. (S5), we can derive the following
Heisenberg equations,

d

dt
SA = i[H, SA] + i

√
κe [a†, SA]c̃ra(t)

+ i
√
κe c̃

†
ra(t)[a, SA], (S6)

d

dt
SB = i[H′, SB] + i

√
κ′e [b†, SB]c̃rb(t− l)

+ i
√
κ′e c̃

†
rb

(t− l)[b, SB], (S7)

and the input-output relation,

c̃r(t) =c̃r−t(0)

− i
√
κ′e θ(r − rb)θ(t− r + rb)b(t− r + rb)

− i
√
κe θ(r − ra)θ(t− r + ra)a(t− r + ra),

(S8)

where θ(t) is the step function. Since we analyze the
stationary response, we assume that t is sufficiently large.
Therefore, c̃rb(t − l) = c̃ra−t(0) − i

√
κ′e b(t − l)/2 and

c̃ra(t) = c̃ra−t(0) − i
√
κe a(t)/2 − i

√
κ′e b(t − l). From

these equations, Eqs. (S6) and (S7) are rewritten as

d

dt
SA = i[H, SA] +

κe

2
La[SA]

+
√
κeκ′e [a†, SA]b+

√
κeκ′e b

†[SA, a]

+ i
√
κe [a†, SA]c̃ra−t(0) + i

√
κe c̃

†
ra−t(0)[a, SA],

(S9)

d

dt
SB = i[H′, SB] +

κ′e
2
Lb[SB]

+ i
√
κ′e [b†, SB]c̃ra−t(0) + i

√
κ′e c̃

†
ra−t(0)[b, SB],

(S10)

where La[SA] = [a†, SA]a + a†[SA, a]. The Heisenberg
equation for the product operator SBSA can be derived
from Eqs. (S9) and (S10). Care should be taken that
[c̃ra−t(0), SB(t − l)] = i

√
κ′e [b(t − l), SB(t − l)]/2 and

[c̃ra−t(0), SA(t)] = i
√
κe [a(t), SA(t)]/2, both of which re-

sult from Eq. (S8). In the considered setup, we do not
apply an input field to System A through the waveguide.
Therefore, denoting the initial state vector of the over-
all system by |ψi〉, we can rigorously take c̃r(0)|ψi〉 = 0.
Then, the equation of motion for 〈SASB〉 = 〈ψi|SASB|ψi〉
is written as

d

dt
〈SASB〉 = i〈[H, SA]SB〉+ i〈SA[H′, SB]〉

+
√
κeκ′e 〈[SA, a]b†SB〉+

√
κeκ′e 〈[a†, SA]SBb〉

+
κe

2
〈La[SA]SB〉+

κ′e
2
〈SALb[SB]〉. (S11)

Up to here, we assumed for simplicity that Systems A
and B damp only through the radiative coupling to the
waveguide field. Here, we include other dissipation chan-
nels, such as the decay of cavities A and B into other
environments, and the decay and pure dephasing of the
qubit in System A. Furthermore, we take account of the
thermal excitation of the systems through the environ-
ment. Then, Eq. (S11) should be replaced with the fol-
lowing one,

d

dt
〈SASB〉 = i〈[H, SA]SB〉+ i〈SA[H′, SB]〉

+
√
κeκ′e 〈[SA, a]b†SB〉+

√
κeκ′e 〈[a†, SA]SBb〉

+
κ′e
2
〈SALb[SB]〉+

κ(1 + nth)

2
〈La[SA]SB〉

+
κnth

2
〈La† [SA]SB〉+

γ(1 + pth)

2
〈Lσ[SA]SB〉

+
γpth

2
〈Lσ† [SA]SB〉+

γφ
2
〈Lσ†σ[SA]SB〉.

(S12)

where κ is the total cavity decay, nth is the average ther-
mal photon number in the cavity, γ = 1/T1 is the qubit
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decay rate, pth is the thermal excitation probability of
the qubit, and γφ is the qubit pure dephasing rate. Note
that the internal loss and the thermal photon excitation
of the JPA mode are neglected in Eq. (S12).

In the Fock-state basis, the state vector of the compos-
ite system is written as |q, n,m〉, where q(= g, e) denotes
the qubit state in System A, and n and m(= 0, 1, · · · )
denotes the cavity photon numbers in Systems A and
B, respectively. The density matrix of the composite
system is obtained by setting SASB = Sqnm,q′n′m′ =
|q, n,m〉〈q′, n′,m′| in Eq. (S12). Since the probe field
is weak, we solve this equation perturbatively in Ωp. For
this purpose, we first determine the steady-state solution
〈Sqnm,q′n′m′〉(0) by setting Ωp = 0 in Eq. (S12). Then,
we determine the linear response 〈Sqnm,q′n′m′〉(1), which
is proportional to Ωpe

−i(ωp−ωd)t. Since the output probe
field is measured at a different port (Port 2 in Fig. S1)
from the input one (Port 1 in Fig. S1), the probe trans-
mission coefficient is proportional to the cavity amplitude
of System A, 〈a〉(1) =

∑
q,n,m

√
n+ 1〈Sqnm,q(n+1)m〉(1).

The parameters used in the numerical calculations are
shown in Table S1.

The parameters characterizing the cavity drive fields
(thermal, coherent, and squeezed vacuum states) are de-
termined by fitting the qubit spectrum with numerical
results from Eq. (S12). Then, the photon number dis-
tribution is determined from Eq. (S12) in absence of the
qubit drive and cavity probe fields (Ωd = Ωp = 0). When
a thermal state is applied as the cavity drive field, the
average thermal photon number nth is used as the fitting
parameter. When a coherent state is used as the cavity
drive, the Hamiltonian of System B is replaced with

H′ =
Ωs

2
(b† + b). (S13)

Then, the output field from System B becomes a coherent
state. The amplitude Ωs, corresponding to the strength
of the coherent drive to the cavity, is used as an addi-

TABLE S1. System parameters.

Dressed cavity transition frequency ωc/2π 10.4005 GHz

Cavity external coupling rate κe/2π 0.490 MHz

Cavity total decay rate κ/2π 0.494 MHz

Thermal average photon number nth 0.04

Cavity probe amplitude Ωp/2π 0.16 MHz

Dressed qubit transition frequency ωq/2π 8.7941 GHz

Qubit decay rate γ = 1/T1 1/5.5 µs−1

Qubit dephasing rate γφ 0

Thermal excitation probability pth 0.01

Qubit drive amplitude Ωd/2π 0.46 MHz

Effective dispersive shift χ/2π 3.9 MHz

JPA external (total) coupling rate κ′e/2π 40 MHz
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FIG. S3. Cavity transmission as a function of the cavity probe
frequency ωp. The amplitude is normalized by the maximum
peak value. This normalization factor is used commonly all
through the paper. The main peak at ωp = ωc+χ corresponds
to the cavity resonance with the qubit in the ground state.
The small cavity peak at ωp = ωc−χ (arrow), corresponding
to the qubit excited state, is also observed due to the thermal
excitation of the qubit. Red solid line represents the numerical
result.

tional fitting parameter. For the case with a squeezed
vacuum drive, we need to incorporate the loss of waveg-
uide between the JPA and the cavity, since the squeezed
vacuum state is degraded considerably by the loss of the
waveguide. Theoretically, such waveguide loss is taken
into account by decreasing the coupling κe between the
waveguide and the cavity of System A while keeping its
total decay rate κ. Accordingly, the pump amplitude
for the JPA, Ωs, and the external coupling rate of the
cavity, κe, are used as the fitting parameters. In the
numerical simulations in Fig. 3 of the main text, we em-
ployed the following parameters: nth = 0.22 in Fig. 3(a),
Ωs/2π = 1.3 MHz in Fig. 3(b), and Ωs/2π = 4.0 MHz
and κe/2π = 0.42 MHz in Fig. 3(c).

S3. PHOTON NUMBER DISTRIBUTION

Throughout this work, we determine the cavity photon
number distribution numerically, based on the framework
described in Sec. 2. In order to characterize these quan-
tum states more intuitively, we here employ the single-
mode density matrices and evaluate their photon number
distributions. When the classical fields, such as thermal
and coherent states, are applied to the cavity, the cav-
ity state is described by a thermal coherent state, whose
density matrix ρtc is given by

ρtc = D(α)ρ(nth)D†(α), (S14)

where D(α) = exp(αa† − α∗a) is the displacement op-

erator with a parameter α, and ρ(nth) ∝
(

nth

1+nth

)a†a
is
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(a) (b)

FIG. S4. Time-domain measurements of the qubit coherence.
(a) Relaxation of the qubit. Red solid line is a fit to a exponen-
tial curve with T1 = 5.5 µs. (b) Dephasing of the qubit. T ∗2 is
4.5 µs. Red solid line is the numerical result with nth = 0.04.

the thermal-state density matrix with the average pho-
ton number nth. In Figs. 3(a) and (b) of the main text,
we plot the photon number distribution calculated from
Eq. (S14) by solid lines. We find the cavity state for the
thermal drive corresponds to a thermal coherent state
with |α| = 0.0 and nth = 0.22, which is an exact thermal
state. In the same way, the cavity state for the coherent
cavity drive is fitted by a thermal coherent state with
|α| = 0.49 and nth = 0.04. The finite thermal photon
population is due to the background noise from room
temperature. For the squeezed cavity drive, we assume
the following density matrix,

ρsq = Tra′
[
UBS(θ) ρ(r)⊗ ρ′0 U

†
BS(θ)

]
, (S15)

where ρ(r) = S(r)|0〉〈0|S†(r)
[
S(r) = exp

(
r
2 (a2 − a†2)

)]
is a squeezed vacuum state of the cavity mode a with a
squeezing parameter r, ρ′0 is a vacuum state of an ancilla
mode a′, UBS(θ) = exp

(
− θ2

(
aa′† + a†a′

))
is a unitary

operator describing a beam splitter with a loss rate of
l = sin θ, and Tra′ is a partial trace for the ancilla mode
a′. By fitting the photon number distribution with this
theoretical model, we find the cavity quantum state with
the squeezed drive corresponds to a squeezed vacuum
state (r = 0.54) with a loss (l = 0.42).

S4. SYSTEM PARAMETERS

In this section, we explain how we determined the pa-
rameters used in the previous sections. Since the cavity
drive field ωs is absent here, we take a rotating frame de-
termined by H0 = ωpa

†a+ ωd

2 σz. Then, the Hamiltonian
Eq. (S1) is rewritten as

H = (ωc − ωp)a†a+
(ωq − ωd)

2
σz − χa†a σz

+
Ωd

2
(σ† + σ) +

Ωp

2
(a† + a).

(S16)
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FIG. S5. Cavity transmission as a function of the cavity probe
frequency ωp and the qubit drive power Ωd. White dashed
lines depict the observed cavity resonances.

By using Eq. (S12) with SB = 1̂ and κ′e = 0, we calcu-
late the time-evolution and the steady-state solutions of
System A. They correspond to the solution of the con-
ventional system-bath master equation of System A.

First, the cavity transmission amplitude, measured as
a function of the cavity probe frequency ωp in the ab-
sence of any drive field, is shown in Fig. S3. The cavity
resonance is observed at the probe power corresponding
to the single photon level. The main peak at ωp = ωc +χ
is the cavity resonance with the qubit in the ground
state. In addition, the small peak corresponding to the
cavity with the qubit excited state is also observed at
ωp = ωc − χ due to the finite thermal excitation proba-
bility of the qubit, pth. Red solid line is calculated from
the steady-state solution of Eq. (S12), by setting SA = a.
From this, we find pth = 0.01.

Next, time-domain measurements are conducted to
evaluate the coherence of the qubit. A DAC-ADC sys-
tem, instead of the VNA in Fig. S1, is used for the mea-
surement. The results of the qubit relaxation and Ram-
sey decay measurements are shown in Figs. S4(a) and
(b). We obtain T1 = 5.5 µs, T ∗2 = 4.5 µs by fitting the
data. The total dephasing rate of the qubit 1/T ∗2 is de-

scribed with γ/2 + γφ + γth, where γth = 4κχ2

κ2+χ2 nth is
the dephasing rate due to the thermal photon fluctua-
tion in the cavity [32]. Assuming γφ = 0, the thermal
average photon number nth in the cavity is determined
to be 0.04 by using the simple formula. Red solid line in
Fig. S3(b) is the time-evolution solution of Eq. (S12), by
setting SA = (σz + 1)/2, where (ωq−ωd)/2π = 0.9 MHz,
Ωd = Ωp = 0, and nth = 0.04 are used. The calculation
reproduces well the experimental result.

In order to calibrate the qubit drive power, the cavity
transmission, measured as a function of the cavity probe
frequency ωp and the qubit drive power Ωd, is shown in
Fig. S5. The qubit drive frequency ωd is in resonance
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FIG. S6. Cavity transmission as a function of the qubit drive
frequency ωd and the cavity probe frequency ωp. (a) Experi-
mental data. (b) Steady-state solutions of Eq. (S12). Diago-
nal dashed line corresponds to the resonant condition for the
two-photon transition, ωp + ωd = ωc + ωq − χ. (c) Magnified
plot of the region in yellow dashed rectangle in (b) at around
ωp = ωc − χ and ωd = ωq − 2χ. White dashed lines depict
the calculated transition frequencies between |e, 0〉 and the
hybridized states composed of |e, 1〉 and |g, 1〉. Black solid
line indicates ωd = ωq − 2χ, corresponding to the qubit tran-
sition frequency with the single photon state in the cavity.
(d) Energy levels of the dispersively coupled qubit-cavity sys-
tem with the qubit drive field. |e, 1〉 and |g, 1〉 are hybritized
by the qubit drive.

with the qubit resonant frequency ωq. As the qubit drive
power increases, the cavity peak corresponding to the
qubit in the excited state appears, and each peak splits
into two peaks due to Rabi splitting of the qubit. In
this experiment, the cavity probe power is weak enough
to excite at most the single photon state in the cav-
ity. Therefore, the four resonances in Fig S5 correspond

to the transitions between the lowest eigen frequencies:

ω0± = ±Ωd

2 and ω1± = ωc ±
√
χ2 +

(
Ωd

2

)2
, which are

calculated from the Hamiltonian Eq. (S16) with ωd = ωq

and ωp = Ωp = 0. White dashed lines in Fig. S5 de-
pict these transition frequencies and agree with the ob-
served resonance peaks. With this plot, we performed
the calibration between the actual qubit drive power and
Ωd. The qubit drive power −97 dBm at sample, that
we use for the measurement of the qubit spectroscopy,
corresponds to Ωd/2π = 0.46 MHz.

In order to calibrate the cavity probe power, we use the
qubit spectra at ωp = ωc±χ, as shown in Fig. 2(b) of the
main text. Red (blue) dots plot the cavity transmission
as a function of the qubit drive frequency ωd, fixing the
cavity probe frequency ωp = ωc + χ (ωp = ωc − χ).
The qubit spectra strongly reflect the cavity probe power
Ωp and the average thermal photon number nth in the
cavity. Green solid lines are the steady-state solution of
Eq. (S12), by setting SA = a. From the simulations,
we find the cavity probe power −125 dBm at sample,
that we use for the qubit spectroscopy, corresponds to
Ωp/2π = 0.16 MHz. The average thermal photon number
nth, which is determined from T ∗2 measurement, agrees
well with the qubit spectra.

Using these parameters, listed in Table S1, the cavity
transmission as a function of the qubit drive frequency ωd

the cavity probe frequency ωp are numerically calculated
from the steady-state solution of Eq. (S12), by setting
SA = a, as shown in Fig. S6. The calculation results
agree well with the experimental results, which assures
the accuracy in the determination of the parameters.

In the qubit spectrum for ωp = ωc − χ [Fig. 2(a)], we
find a splitting in the peak corresponding to the single
photon occupancy. The splitting is understood as the
Autler-Townes effect involving the three states: |e, 0〉,
|e, 1〉 and |g, 1〉 [33]. In the cavity probe frequency ωp de-
pendence of the qubit spectra, an anti-crossing like split-
ting is observed at around ωp = ωc−χ and ωd = ωq−2χ,
as shown in the yellow rectangle in Fig. S6(b) and in
Fig. S6(c). Due to the thermal photon excitation in the
cavity, the population of |g, 1〉 is finite. In the steady-
state, the qubit drive field at ωd = ωq − 2χ transfers
the population of |g, 1〉 to |e, 0〉, because the cavity de-
cay rate κ is larger than the qubit Rabi frequency Ωd

and the qubit decay rate γ. Therefore, the cavity probe
field around ωp = ωc − χ can excite the photons in the
cavity from |e, 0〉. The qubit drive field couples |e, 1〉 to
|g, 1〉 and splits the spectrum into the two peaks with the
separation of Ωd [see fig. S6(d)]. White dashed lines in
Fig. S6(c) depict the transition frequencies from |e, 0〉
to the hybridized states composed of |g, 1〉 and |e, 1〉,
which is calculated from the Hamiltonian Eq. (S16) with
ωp = Ωp = 0.
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