
ar
X

iv
:s

ub
m

it/
11

60
71

7 
 [

qu
an

t-
ph

] 
 1

6 
Ja

n 
20

15

Theory of microwave single-photon detection using an impedance-matched Λ system

Kazuki Koshino,1 Kunihiro Inomata,2 Zhirong Lin,2, 3 Yasunobu Nakamura,2, 4 and Tsuyoshi Yamamoto2, 5

1College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
2RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

3Beijing Computational Science Research Center, Beijing 100084, China
4Research Center for Advanced Science and Technology (RCAST),

The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
5Smart Energy Research Laboratories, NEC Corporation, Tsukuba, Ibaraki 305-8501, Japan

(Dated: January 16, 2015)

By properly driving a qubit-resonator system in the strong dispersive regime, we implement an
“impedance-matched” Λ system in the dressed states, where a resonant single photon deterministi-
cally induces a Raman transition and excites the qubit. Combining this effect and a fast dispersive
readout of the qubit, we realize a detector of itinerant microwave photons. We theoretically analyze
the single-photon response of the Λ system and evaluate its performance as a detector. We achieve
a high detection efficiency close to unity without relying on precise temporal control of the input
pulse shape and under a conservative estimate of the system parameters. The detector can also be
reset quickly by applying microwave pulses, which allows a short dead time and a high repetition
rate.

PACS numbers: 42.50.Pq 03.67.Lx 85.25.Cp

I. INTRODUCTION

Extensive efforts have been made in a variety of physical systems to realize strong coupling between a single quantum
emitter and a one-dimensional photon field [1–10]. In such one-dimensional optical systems, interaction between an
emitter and a photon is enhanced drastically due to the destructive interference between the incident field and the
radiation from the emitter. This opens the possibility for deterministic control of quantum systems by individual
photons.
In particular, in a Λ-type three-level system that has identical radiative decay rates from the top level and is coupled

to a semi-infinite one-dimensional field, a resonant single photon deterministically induces a Raman transition in the
Λ system and switches its electronic state [11–14]. Recently, we implemented such a Λ system by utilizing the
dressed states of a driven circuit-quantum-electrodynamics (circuit-QED) system. Applying continuous microwave to
the Λ system, we confirmed that the field amplitude vanishes completely upon its reflection (perfect absorption by
“impedance matching”), and that input photons are down-converted by the Λ system [15–17]. This indicates highly
efficient switching of the Λ system induced by individual microwave photons. Deterministic switching of a Λ system
has also been demonstrated recently in the visible-light domain by using a spherical cavity and an atom [18, 19].
Exploiting the large transition dipole of superconducting qubits, circuit QED enables various microwave quantum-

optical phenomena that have not been reached by quantum optics in the visible domain: The examples include direct
and strong coupling of qubits to itinerant waveguide photons [20–22] and various effects in the strong-dispersive regime
of the qubit-cavity interaction [23–25]. However, an apparent shortcoming of microwave quantum optics has been the
lack of efficient single photon detectors: The main difficulty is in the energy scale of single microwave photons orders
of magnitude smaller than that of visible or infrared photons.
In recent proposals and an experiment, a current-biased Josephson junction was used as a microwave photon

detector [26–28]: a metastable two-level system formed in the tilted washboard potential resonantly absorbs an
incoming photon and switches into the voltage state of the junction to make a “click”. While the successful operation
was demonstrated [28], the dark count and the dead time after the detection are remaining issues. In this study,
we theoretically analyze the single-photon response of an impedance-matched Λ system realized in a driven qubit-
resonator system and demonstrates its excellent performance as a single photon detector in the microwave domain.
The detector has a low dark count rate and attains a high detection efficiency close to unity. Moreover, the system
is switched to a discrete and definite quantum state upon detection, which enables us to reset the system quickly
and therefore to shorten the dead time of the detector. In comparison with the works that demonstrate deterministic
capture of propagating microwave pulses in a harmonic oscillator mode [29–32], our scheme based on a Λ system has
a merit that it is free from precise temporal control of the input pulse shape and/or the system parameters: high
switching efficiency close to unity can be attained as long as the input photon has a narrower bandwidth than the
linewidth of the Λ system.
The rest of this paper is organized as follows. In Sec. II, we theoretically describe the driven qubit-resonator system

and derive basic equations for the analysis. In Sec. III, we explain two distinct functionalities of the device. In the
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FIG. 1: Schematic of the setup. A superconducting qubit (two-level atom) is coupled dispersively to a resonator. The
resonator is coupled to a semi-infinite waveguide (WG1), through which a signal photon is input. The qubit is coupled to
another waveguide (WG2), through which a drive pulse is applied.

“Λ” mode, which is realized under a proper qubit drive, a single incident photon excites the qubit deterministically.
In the “I” mode, which is realized when the qubit drive is off, the dispersive readout of the qubit state is possible.
In Sec. IV, we present our single-photon detection scheme, which is composed of three stages: capture, readout, and
reset. In Sec. V, we discuss the capture stage and show that a high detection efficiency close to unity is achievable
with practical parameter values. In Sec. VI, we discuss the reset stage and show that the present system can be
initialized within a few hundred nanoseconds. Section VII summarizes this study.

II. SYSTEM

Here, we theoretically describe the device considered in this study [33, 34]. Its schematic is shown in Fig. 1. A
superconducting qubit, which can be regarded as a two-level atom, is dispersively coupled to a transmission line
resonator. The resonator is further coupled to a semi-infinite waveguide (WG1), through which a signal photon pulse
to be detected is input. Our objective is to determine whether the signal pulse contains a photon or not. We also use
this port for readout of the qubit and for resetting the system. Through another waveguide (WG2), we apply drive
pulses to the qubit in order to engineer the dressed states of the qubit-resonator system.

A. Hamiltonian

Setting ~ = v = 1, where v is the microwave velocity in the waveguides, the Hamiltonian of the overall system is
written as

H = Hsys +Hdamp, (1)

Hsys = ωra
†aσσ† +

[
ωq + (ωr − 2χ)a†a

]
σ†σ, (2)

Hdamp =

∫
dk

[
ka†kak +

√
κ′/2π(a†ak + a†ka)

]
+

∫
dk

[
kb†kbk +

√
γ′/2π(σ†bk + b†kσ)

]
, (3)

where a (σ) is the annihilation operator for the resonator (qubit) and ak (bk) is the annihilation operator for microwave
photon propagating in WG1 (WG2) with wave number k. ωr (ωq) is the resonance frequency of the resonator (qubit),
χ is the dispersive frequency shift, and κ′ (γ′) is the radiative decay rate of the resonator (qubit) into WG1 (WG2).
The parameter values are listed in Table I.
Three comments are in order regarding this Hamiltonian. (i) The qubit-resonator system is described by the

Jaynes-Cummings Hamiltonian, Hsys = ω̄ra
†a + ω̄qσ

†σ + g(a†σ + σ†a), where ω̄r and ω̄q are the bare frequencies of
the resonator and qubit and g is their coupling. In the dispersive regime (|ω̄r− ω̄q| ≫ g), Hsys is recast into a diagonal
form of Eq. (2). The renormalized frequencies are given by ωr = ω̄r + χ and ωq = ω̄q − χ, where χ = g2/(ω̄r − ω̄q).
(ii) Although omitted for simplicity, the resonator and qubit are subject to nonradiative decay to the environment.
We denote the total decay rate of the resonator (qubit) by κ (γ). (iii) In practice, we switch to the rotating frame
to remove the natural phase factors. We subtract H0 = ωsa

†a + ωdσ
†σ from Hsys of Eq. (2), where ωs (ωd) is the

central frequency of the signal photon (drive pulse).
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ωq 2π × 5 GHz
ωr 2π × 10 GHz
χ 2π × 40 MHz
κ 2π × 20 MHz
κ′ 2π × 20 MHz
γ 2π × 0.1 MHz
γ′ 2π × 0.1 kHz
ωd ωq − 2π × 70 MHz

TABLE I: Parameter values for ωq (qubit frequency), ωr (resonator frequency), χ (dispersive shift), κ (total decay rate of the
resonator), κ′ (radiative decay rate of the resonator to WG1), γ (total decay rate of the qubit), and γ′ (radiative decay rate of
the qubit to WG2), and ωd (qubit drive frequency).

B. Heisenberg equations

We introduce the real-space representation of the field operator for WG1 by

ãr =
1√
2π

∫
dkeikrak. (4)

In this representation, the r < 0 (r > 0) region corresponds to the incoming (outgoing) field. The field operator b̃r
for WG2 is defined similarly. From Hdamp of Eq. (3), we can derive the following input-output relations:

ãr(t) = ãr−t(0)− i
√
κ′a(t− r)θ(r)θ(t − r), (5)

b̃r(t) = b̃r−t(0)− i
√
γ′σ(t− r)θ(r)θ(t − r). (6)

The conventional input and output field operators are defined at r = ±0 by ain(t) = ã−0(t) and aout(t) = ã+0(t).
bin(t) and bout(t) are defined similarly. From Eqs. (1), (5) and (6), the Heisenberg equation for any system operator
S (composed of σ, a and their conjugates) is given by

d

dt
S = i[Hsys, S] +

κ

2
(2a†Sa− a†aS − Sa†a) +

γ

2
(2σ†Sσ − σ†σS − Sσ†σ)

+ i
√
κ′a†in(t)[a, S] + i

√
κ′[a†, S]ain(t) + i

√
γ′b†in(t)[σ, S] + i

√
γ′[σ†, S]bin(t). (7)

C. Microwave response

In our setup, a signal photon is input through WG1 and a classical drive pulse is applied through WG2. We denote
the wavefunction of the signal photon by fs(t) and the amplitude of the drive pulse by fd(t). Note that fs(t) is
normalized as

∫
dt|fs(t)|2 = 1. Extension to the two-photon input through WG1 is straightforward (see Appendix A).

Analysis of the microwave response to a single photon can be simplified by replacing the single-photon state |1〉
with a coherent state |α〉, performing perturbation calculation with respect to α, and picking up the relevant terms
afterwards [35]. Therefore, we investigate a situation in which two classical pulses, αfs(t) and fd(t), are applied through
WG1 and WG2, respectively. Since a classical pulse (coherent state) is an eigenstate of an input field operator, we
can rigorously replace ain(t) and bin(t) in Eq. (7) with αfs(t) and fd(t), respectively. Then, the expectation value of
an operator S evolves as

d

dt
〈S〉c = i〈[Hsys, S]〉c + κ(〈a†Sa〉c − 〈a†aS〉c/2− 〈Sa†a〉c/2) + γ(〈σ†Sσ〉c − 〈σ†σS〉c/2− 〈Sσ†σ〉c/2)

+ i
√
κ′α∗f∗

t (t)〈[a, S]〉c + i
√
κ′αfs(t)〈[a†, S]〉c + i

√
γ′f∗

d (t)〈[σ, S]〉c + i
√
γ′fd(t)〈[σ†, S]〉c. (8)

We expand 〈S〉c as 〈S〉c =
∑∞

m,n=0(α
∗)mαn〈S〉mn

c . Then, 〈S〉mn
c evolves as

d

dt
〈S〉mn

c = i〈[Hsys, S]〉mn
c + κ(〈a†Sa〉mn

c − 〈a†aS〉mn
c /2− 〈Sa†a〉mn

c /2) + γ(〈σ†Sσ〉mn
c − 〈σ†σS〉mn

c /2− 〈Sσ†σ〉mn
c /2)

+ i
√
κ′f∗

t (t)〈[a, S]〉(m−1)n
c + i

√
κ′fs(t)〈[a†, S]〉m(n−1)

c + i
√
γ′f∗

d (t)〈[σ, S]〉mn
c + i

√
γ′fd(t)〈[σ†, S]〉mn

c . (9)

with the convention that 〈S〉mn
c = 0 for negative m or n.
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Our objective is to evaluate the expectation value for a single-photon input, 〈S〉s. As discussed in Appendix A, it
is given by

〈S〉s = 〈S〉00c + 〈S〉11c . (10)

Therefore, we solve the simultaneous differential equations for 〈S〉00c , 〈S〉01c , 〈S〉10c and 〈S〉11c to evaluate 〈S〉s.

III. I AND Λ MODES

As discussed in Refs. [15, 16], for a drive field with properly chosen power and frequency, the dressed states of a
qubit-resonator system constitutes an “impedance-matched” Λ system, which absorbs an input photon with a high
efficiency close to unity. To observe this, we first consider a case with a continuous drive in this section. The drive
field fd(t) is given by

fd(t) =
Ωd√
γ′
e−iωdt, (11)

where ωd is the drive frequency and Ωd is the drive amplitude expressed in terms of the Rabi frequency. In the frame
rotating at ωd, the Hamiltonian for the driven qubit-resonator system is written as

Hsys+dr = ωra
†aσσ† +

[
(ωq − ωd) + (ωr − 2χ)a†a

]
σ†σ +Ωd(σ

† + σ). (12)

We label the state vectors of the system with |q, n〉, where q(= g, e) denotes the qubit state and n(= 0, 1, · · · ) denotes
the resonator photon number. Throughout this study, only the lowest four states (|g, 0〉, |e, 0〉, |g, 1〉 and |e, 1〉) are
relevant. When the drive is off (Ωd = 0), their energies are respectively given by ω|g,0〉 = 0, ω|e,0〉 = ωq−ωd, ω|g,1〉 = ωr

and ω|e,1〉 = ωq − ωd + ωr − 2χ. We choose the drive frequency ωd to satisfy ωq − 2χ < ωd < ωq. Then, the level
structure becomes nested, i.e., ω|g,0〉 < ω|e,0〉 < ω|e,1〉 < ω|g,1〉 [Fig. 2(a)]. When the drive is on (Ωd > 0), |g, 0〉 and
|e, 0〉 (|g, 1〉 and |e, 1〉) are mixed to form the dressed states |1̃〉 and |2̃〉 (|3̃〉 and |4̃〉), where the dressed states are

labeled from the lowest in energy [Fig. 2(b)]. The radiative decay rate from |̃i〉 to |̃j〉 emitting a photon into WG1 is

given by κ̃ij = κ′|〈̃i|a† |̃j〉|2.
Figure 2(c) plots κ̃ij as functions of the drive amplitude. The drive frequency ωd is fixed at the value in Table I

throughout this study. When the drive is off, κ̃32 = κ̃41 = κ′ and κ̃31 = κ̃42 = 0. Namely, the radiative decay occurs
only in one direction as depicted in Fig. 2(a). We refer to this as the “I” mode of the qubit-resonator system. In
this mode, the microwave transition occurs conserving the qubit state, and the transition frequency differs by 2χ
depending on the qubit state. We can use this mode for the dispersive readout of the qubit state.
In contrast, at a proper drive power [Ωimp

d in Fig. 2(c)], the four decay rates become identical, i.e., κ̃31 = κ̃32 =

κ̃41 = κ̃42 = κ′/2. Then, the three levels |1̃〉, |2̃〉 and |ũ〉 (u = 3 or 4) function as an impedance-matched Λ system: a

single photon resonant to the |1̃〉 → |ũ〉 transition deterministically induces the Raman transition of |1̃〉 → |ũ〉 → |2̃〉
and switches the electronic state. We refer to this as the “Λ” mode of the qubit-resonator system [Fig. 2(b)]. The
underlying physical mechanism for this phenomenon is the destructive interference between the input and elastically
scattered photons [15]. Figure 2(d) shows the reflection coefficient |r| of a weak continuous signal field applied through
WG1, as a function of the drive amplitude Ωd and the signal frequency ωs. We observe two impedance-matching spots
(|r| ≃ 0) at (Ωd, ωs) ≃ (Ωimp

d , ω̃31) and (Ωimp
d , ω̃41), where ω̃ij is the transition frequency between dressed states |̃i〉

and |̃j〉. We have two comments regarding Fig. 2(d). (i) We observe that ωs of the upper (lower) spot deviates slightly

from ω̃41 (ω̃31). This is due to the small energy difference between levels |3̃〉 and |4̃〉 that is comparable to the linewidth

of the Λ system (∼ κ′/2). In this case, weak elastic scattering induced by level |3̃〉 (|4̃〉) is not negligible. (ii) In our
former experiment, Ωd of the two spots differed considerably [17]. That was because we used a relatively strong signal
field to improve the signal to noise ratio. Here, we consider the weak-field limit to discuss the single-photon response.

IV. DETECTION SCHEME

As we observed in the previous section, the present qubit-resonator system has two distinct functionalities. In the
Λ mode, the system captures a single photon nearly deterministically and makes a transition to the qubit excited
state. In the I mode, the system functions as an oscillator whose resonance frequency depends on the qubit state. We
can read out the qubit state efficiently with a single probe pulse. These two modes can be switched adiabatically by
a temporally smooth qubit drive pulse.
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FIG. 2: (a) I mode of the qubit-resonator system. This is attained when the qubit drive is off. Arrows indicate the directions
of radiative decays. (b) Λ mode of the qubit-resonator system. The four decay rates are identical. This is attained when a
proper drive field is applied to the qubit. (c) Radiative decay rates κ̃31, κ̃32, κ̃41 and κ̃42 as functions of the drive amplitude.

The four rates become identical at Ωimp

d /2π = 13.2 MHz. (d) Reflection coefficient |r| of a weak signal field applied through

WG1. White dashed lines show ω̃31 and ω̃41. Impedance matching (|r| ≃ 0) occurs at (Ωd, ωp) ≃ (Ωimp

d , ω̃31) and (Ωimp

d , ω̃41).

waveguide 1

waveguide 2

capture readout reset

time

time

FIG. 3: Pulse sequence for single-photon detection. (i) Capture stage. We simultaneously input a signal photon through WG1
and a classical drive pulse through WG2. (ii) Readout stage. We apply a classical readout pulse through WG1 and switch off
a drive pulse through WG2. (iii) Reset stage. We simultaneously apply a classical reset pulse through WG1 and a classical
drive pulse through WG2. The carrier frequencies of the three pulses applied through WG1 are different from each other.

In the single-photon detection considered here, it is assumed that the arrival time and the length of the signal pulse
are known in advance: we determine whether the pulse contains a single photon or not by this measurement. Our
single-photon detection proceeds in the following three steps. (i) Initially, the qubit-resonator system is in its ground
state |g, 0〉 and a signal pulse is input through WG1. Through WG2, we apply a drive pulse that covers the signal
pulse in time, and switch the system to the Λ mode during this period. At the end of this stage, the photon number
in the signal pulse (0 or 1) is mapped onto the qubit state (g or e). We refer to this as the “capture” stage and discuss

in detail in Sec. V. (ii) Next, we perform dispersive readout of the qubit. In order to prevent the |2̃〉 → |ũ〉 → |1̃〉
transition (u = 3 or 4) induced by the probe, we turn off the qubit drive and keep the system in the I mode during
this process. We apply a classical probe pulse to the resonator and measure the phase shift of the reflected pulse. We
refer to this as the “readout” stage. We do not touch this stage in this paper, since dispersive readout of the qubit
has been discussed in prior works: High-fidelity single-shot readout has been achieved with the Josephson parametric
amplifier [36, 37] and the parametric phase-locked oscillator [38]. (iii) The qubit-resonator system is initialized (i.e.,
decays to its ground state |g, 0〉) automatically by the natural qubit decay. However, in order to shorten the dead time
of the detector, we artificially reset the system by applying microwave pulses. For this purpose, we use the inverse
process of stage (i): We apply a drive pulse through WG2 to form a Λ system and a reset pulse through WG1. Note
that the reset pulse can be a classical and strong one in contrast with the capture stage. We refer to this as the
“reset” stage and discuss in detail in Sec. VI.

V. CAPTURE OF SIGNAL PHOTON

In this section, we present the numerical results for the capture stage of Fig. 3, where a signal pulse to be detected
and a qubit drive pulse are input simultaneously. We assume a Gaussian pulse with length l for the signal pulse:

fs(t) =

(
8 ln 2

πl2

)1/4

2−t2/(l/2)2e−iωst, (13)
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l

w/2

signal photon
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βl w/2

FIG. 4: Envelopes of the signal photon and the qubit drive pulse. We use a smooth drive pulse in order to switch the I and
Λ modes adiabatically.

Note that fs is normalized as
∫
dt|fs(t)|2 = 1. On the other hand, we assume the following pulse shape for the qubit

drive:

fd(t) =
Ωd√
γ′
e−iωdt ×

{
1 (|t| ≤ βl/2)

2−(|t|−βl/2)2/(w/2)2 (|t| > βl/2)
. (14)

Namely, a square pulse with length βl is smoothened by Gaussian functions with width w. We smoothen the drive
pulses in order to switch the I and Λ modes adiabatically and to suppress unwanted qubit excitations. A real positive
constant β is chosen so that fd covers fs in time. For Gaussian signal pulses, we set β = 2. The envelope functions of
the signal photon and the drive pulse are drawn in Fig. 4. In the capture stage, we set the drive amplitude at Ωimp

d
indicated in Fig. 2(c).

A. Zero-photon input

Here, we discuss the case in which the signal pulse contains no photons. Namely, we observe the dynamics induced
solely by the drive pulse applied throughWG2. In Fig. 5, we plot the time evolution of the qubit excitation probability,
p0(t) = 〈σ†σ〉. (The subscript 0 represents the photon number in the signal pulse.) For reference, we also plot the
excitation probability p0(t) under the adiabatic approximation, which is obtained as follows. The system Hamiltonian
including the qubit drive is written, in the rotating frame, as Hsys+dr = ωra

†aσσ†+
[
(ωq − ωd) + (ωr − 2χ)a†a

]
σ†σ+√

γ′|fd(t)|(σ†+σ). Its lowest two eigenstates |1̃〉 and |2̃〉 are given by |1̃〉 = cos θ|g, 0〉−sin θ|e, 0〉 and |2̃〉 = sin θ|g, 0〉+
cos θ|e, 0〉, where

θ(t) =
1

2
arctan

(
2
√
γ′|fd(t)|

ωq − ωd

)
. (15)

Under the adiabatic assumption, the system always stays in its ground state, |1̃〉. The excitation probability, p0(t) =

|〈e, 0|1̃〉|2, is therefore given by

p0(t) = sin2 θ(t). (16)

We observe in Fig. 5 that p0(t) is at most a few percents and roughly agrees with p0(t). The deviation between them
originates in the nonadiabatic transition, which is suppressed by increasing w. Immediately after the drive is switched
off, p0(t) comes back close to zero and becomes nearly independent of time. Hereafter, we set w = 30 ns and define the
detection probability P0 as the qubit excitation probability at the end of this stage. Namely, P0 = p0(tf ), where we
set tf = βl/2 + 50 ns. Under this choice of w, the detection probability is negligibly small for the zero-photon input.
This means that the dark counts are suppressed nearly completely in the present scheme. For example, P0 ≃ 10−4

for l = 200 ns and β = 2.

B. One-photon input

Here, we discuss the case in which the signal pulse contains one photon. We denote the qubit excitation probability
for one-photon input by p1(t). We plot p1(t) in Fig. 6(a), where the signal frequency is set at ωs/2π = 10.007 GHz
[the upper impedance-matching spot in Fig. 2(d)]. It is observed that p1(t) increases rapidly during the signal pulse

duration (|t| . l/2): the excitation probability roughly evolves as p1(t) ∼
∫ t

dτ |fs(τ)|2. At the end of the capture
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result for zero-photon case, p0(t), is also plotted for reference (blue dashed). The parameters used are: l = 100 ns, β = 2,
w = 30 ns, and ωs/2π = 10.007 GHz. (b) Dependence of the detection probability P1 on the signal pulse length l for various
values of γ/2π: 0.1 MHz (red solid), 0.02 MHz (blue dashed) and 0 MHz (green dotted). (c) Dependence of the detection
probability P1 on the drive amplitude Ωd and the signal photon frequency ωs.

stage, a high detection probability P1 = p1(tf ) close to unity is achieved, in clear contrast with the zero-photon case
where P0 is negligibly small.
Figure 6(b) shows the dependence of P1 on the signal pulse length l. Here we assumed three values of the qubit

decay rate γ. In the ideal limit of infinite qubit lifetime (γ = 0), the detection probability increases monotonically in
l and a high probability close to unity is attained for l ≫ κ−1. This is because a longer pulse is advantageous for the
destructive interference between the input and elastically scattered photons, which is the key physical mechanism for
the deterministic switching of the Λ system. However, in reality, the detection probability is decreased by the decay
of the qubit into other channels during the pulse duration. A longer pulse is disadvantageous in this regard. We
thus have an optimum pulse length lopt that maximize the detection probability. Under a practical qubit decay rate
(γ/2π =0.1 MHz), P1 amounts to 0.89 at lopt ∼ 100 ns. If the qubit lifetime is improved five times (γ/2π =0.02 MHz),
P1 reaches 0.96 at lopt ∼ 200 ns. Note that these detection probabilities represent the switching probability in the
capture stage of Fig. 3 which does not include the potential errors in the qubit readout stage.
Figure 6(c) plots P1 as a function of the drive power and the signal frequency for a signal pulse length l = 100 ns.

We observe qualitative agreement with the reflectivity plot of Fig. 2(d): P1 is maximized when the drive amplitude

satisfies the impedance-matching condition (Ωd = Ωimp
d ) and the photon frequency is tuned closely to ω̃31 or ω̃41.

C. Two-photon input

As we discussed in previous subsections, our device discriminates with a high efficiency whether the signal pulse
contains a photon or not. Here we present the results for two-photon input to observe the multiphoton effects in
the signal pulse. In Fig. 7(a), we compare the time evolution of p1(t) and p2(t). When the signal photons are out
of resonance with the Λ system (ωs/2π = 10.030 GHz) and therefore the excitation probabilities are low, p2(t) is
roughly twice as large as p1(t). The two photons excites the qubit independently in this case. In contrast, when the
signal photons are on resonance (ωs/2π = 10.007 GHz) and a high efficiency is attained for the one-photon input,
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FIG. 8: Dependence of the detection probability on the pulse length l for various pulse shapes: Gaussian (red solid), square
(blue dashed), and exponential (green dotted). The qubit decay rate γ/2π is 0 MHz in (a), 0.02 MHz in (b), and 0.1 MHz in
(c).

p2(t) becomes comparable as p1(t) due to the saturation of the Λ system. Figure 7(b) plots the ratio of the detection
probabilities, P2/P1, as a function of Ωd and ωs. By comparing Figs. 6(c) and 7(b), we observe that P2 ≃ 2P1 holds
when P1 . 0.2 and P2 . P1 holds when P1 & 0.7.

D. Pulse-shape dependence

Up to here, we assumed a Gaussian pulse for the signal photon. Here, in order to observe the effects of the pulse
shape, we consider square and exponential shapes for the signal pulse:

f sq
s (t) =

e−iωst

√
l

×
{
1 (|t| ≤ l/2)

0 (|t| > l/2)
, (17)

f exp
s (t) =

√
2 ln 2

l
e−iωst ×

{
2−(t/l+β/2) (t > −βl/2)

0 (t < −βl/2)
. (18)

Note that the amplitude decays exponentially in f exp
s , as in the single photons generated by spontaneous emission of

an emitter. Regarding the drive pulse of Eq. (14), we set β = 1 (β = 3) for the square (exponential) shape to cover
the signal pulse. We employ the same definition for the detection probability: P1 = p1(tf ), where tf = βl/2 + 50 ns.
Figure 8 shows the dependence of the detection probability on the pulse length l. For the cases of infinite qubit

lifetime [Fig. 8(a)], the detection efficiencies increase monotonically. A high detection probability exceeding 0.9 is
obtained for l & 100 ns, regardless of the pulse shape. However, if we take account of the finite qubit lifetime [Figs. 8(b)
and (c)], the detection probability decreases due to the qubit decay. A square pulse is advantageous in this regard,
since we can use a shorter drive pulse (smaller β) and suppress the qubit relaxation during the capture stage. Overall,
regardless of the pulse shape, a high detection efficiency exceeding 0.9 is possible if the qubit has a sufficient lifetime
(γ/2π . 0.02 MHz).
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pe(t), starting from |e, 0〉. The natural qubit decay is also plotted by the thin line. (c) Qubit excitation probability for 〈n〉 = 10
at the end of reset stage starting from |e, 0〉.

VI. RESET OF THE SYSTEM

In the present device, the qubit-resonator system is automatically reset to the ground state |g, 0〉 through the qubit
decay. However, in order to shorten the dead time of the detector, we reset the system through microwave transitions.
In the reset stage of Fig. 3, we simultaneously apply a drive pulse to the qubit through WG2 and a reset pulse to the
resonator through WG1: the drive pulse sets the system to the Λ mode, and the reset pulse induces the |2̃〉 → |ũ〉 → |1̃〉
transition (u = 3 or 4). The drive pulse profile is the same as that in the capture stage, fd(t) of Eq. (14). However,

as we observe below, a stronger drive (Ωd > Ωimp
d ) is advantageous in this stage. As the reset pulse, we use a classical

Gaussian pulse,

fr(t) =
√
〈n〉 ×

(
8 ln 2

πl2

)1/4

2−t2/(l/2)2e−iωrt, (19)

where 〈n〉 is the mean photon number in the reset pulse. Hereafter, we set ωr close to ω̃32 and use |2̃〉 → |3̃〉 → |1̃〉
transition for resetting. Furthermore, we fix the pulse length at l = 100 ns and β = 2, and set the initial and final
moments of the reset stage at ti = −βl/2− 50 ns and tf = βl/2 + 50 ns.
In Fig. 9(a), we show the time evolution of the qubit excitation probability pg(t) in the reset stage, starting from

|g, 0〉. For ti < t < −βl/2, an adiabatic |g, 0〉 → |1̃〉 transition is induced by the drive pulse. For −βl/2 < t < βl/2,
the excitation probability is perturbed by the reset pulse only slightly, which is due to the large detuning of ωr from
both ω̃31 and ω̃41. For βl/2 < t < tf , through an adiabatic |1̃〉 → |g, 0〉 transition the system returns to the ground
state as the drive pulse is switched off. At the end of the stage, the unwanted qubit excitation is suppressed nearly
completely. For example, the excitation probability Pg = pg(tf ) is below 0.005 for 〈n〉 . 20.
In Fig. 9(b), we show the qubit excitation probability pe(t) starting from |e, 0〉. For ti < t < −βl/2, an adiabatic

|e, 0〉 → |2̃〉 transition is induced by the drive pulse. For −βl/2 < t < βl/2, we observe rapid decrease of pe(t),

which is due to the |2̃〉 → |3̃〉 → |1̃〉 transition induced by the reset pulse. The reset pulse power 〈n〉 determines the

transition rate. When 〈n〉 & 10, the system transits to |1̃〉 nearly completely at t = βl/2. For βl/2 < t < tf , through

an adiabatic |1̃〉 → |g, 0〉 transition the system is reset to the ground state. The excitation probability Pe at the end
of the stage is 0.015 (0.007) for 〈n〉 = 10 (20). This is in clear contrast with the slow natural decay of the qubit,
where the excitation probability remains 0.83 at t = tf .
In Fig. 9(c), Pe is plotted as a function of the drive amplitude Ωd and the reset pulse frequency ωr. We observe

that the impedance-matching condition (Ωd = Ωimp
d ) is not necessarily required in the reset stage. The system is reset

efficiently when ωr ≃ ω̃32 and Ωd > Ωimp
d , which implies κ̃31 > κ̃32 from Fig. 2(a). Although the reset efficiency per

one reset photon is lowered by the unbalanced decay rate, many photons (〈n〉 & 10) involved in the pulse enables
highly efficient resetting.
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VII. SUMMARY

We theoretically analyzed the microwave response of a driven qubit-resonator system and demonstrated its excellent
performance as a detector of itinerant microwave photons. The detection of microwave photon proceeds by switching
two modes adiabatically: Under a proper qubit drive, the system functions as an impedance-matched Λ system, which
efficiently absorbs itinerant photons (Λ mode). Due to the destructive interference between the incident and elastically
scattered photons, a high efficiency close to unity is attained for temporally long pulses, regardless of their shapes.
In contrast, without a qubit drive, the system functions as an oscillator whose resonance frequency depends on the
qubit state (I mode). We can perform dispersive readout of the qubit state in this mode. The detector is operated
in the following cycle: In the capture stage, we set the system in the Λ mode and map the presence (absence) of
a photon in the signal pulse to the excited (ground) state of the qubit. In the readout stage, we set the system in
the I mode and measure the qubit state. In the reset stage, in order to shorten the dead time of the detector, we
restore the system to its ground state through microwave transitions. The detection efficiency readily exceeds 0.9 for
realistic parameters and the dark counts are suppressed nearly completely. The present scheme provides a long-sought
single-photon detector in the microwave domain and widens the options in microwave quantum-optics experiments.
It could be used for the characterization of photon number statistics in nonclassical itinerant microwave fields and
the measurement of flying qubits encoded in propagating microwave photons.

Acknowledgment

The authors are grateful to C. Eichler, E. Solano, and J. Taylor for fruitful discussion. This work was partly
supported by MEXT KAKENHI (Grant Nos. 25400417 and 26220601), Project for Developing Innovation Systems
of MEXT, National Institute of Information and Communications Technology (NICT), and ImPACT Program of
Council for Science, Technology and Innovation.

Appendix A: Relation between coherent-state and Fock-state inputs

Here we derive Eq. (10), which connects the expectation values for a coherent-state input to those for a Fock-state
input [35]. We denote a coherent state by |α〉 and a Fock state by |m〉 (m = 0, 1, · · · ). We denote the expectation
value of an operator S(t) for the coherent-state input by 〈S〉c = 〈α|S|α〉 and its component proportional to (α∗)mαn

by 〈S〉mn
c . On the other hand, we denote the matrix elements in the Fock bases by 〈S〉mn = 〈m|S|n〉.

Using the Fock-state expansion of a coherent state, |α〉 = e−|α|2/2
∑∞

n=0 α
n|n〉/

√
n!, 〈S〉c is written as

〈S〉c = e−|α|2
∑

m,n

(α∗)mαn

√
m!n!

〈S〉mn. (A1)

Picking up the terms proportional to (α∗)0α0, (α∗)1α1 and (α∗)2α2, we have 〈S〉00c = 〈S〉00, 〈S〉11c = 〈S〉11 − 〈S〉00
and 〈S〉22c = 〈S〉22/2− 〈S〉11 + 〈S〉00/2. Therefore,

〈S〉00 = 〈S〉00c , (A2)

〈S〉11 = 〈S〉00c + 〈S〉11c , (A3)

〈S〉22 = 〈S〉00c + 2〈S〉11c + 2〈S〉22c . (A4)
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[9] M. Arcari, I. Sollner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe,

and P. Lodahl, Phys. Rev. Lett. 113, 093603 (2014).



11

[10] R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, arXiv:1406.0896
[11] D. Pinotsi and A. Imamoglu, Phys. Rev. Lett. 100, 093603 (2008).
[12] K. Koshino, S. Ishizaka and Y. Nakamura, Phys. Rev. A 82, 010301(R) (2010).
[13] D. Witthaut and A. S. Sørensen, New J. Phys. 12, (2010) 043052.
[14] J. Gea-Banacloche and L. M. Pedrotti, Phys. Rev. A 86 052311 (2012).
[15] K. Koshino, K. Inomata, T. Yamamoto, and Y. Nakamura, Phys. Rev. Lett. 111, 153601 (2013).
[16] K. Koshino, K. Inomata, T. Yamamoto, and Y. Nakamura, New J. Phys. 15, 115010 (2013).
[17] K. Inomata, K. Koshino, Z. R. Lin, W. D. Oliver, J. S. Tsai, Y. Nakamura, and T. Yamamoto, Phys. Rev. Lett. 113,

063604 (2014).
[18] S. Rosenblum, S. Parkins, and B. Dayan, Phys. Rev. A 84, 033854 (2011).
[19] I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, Science 345, 903 (2014).
[20] O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov Jr., Yu. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S.

Tsai, Science 327 840 (2010).
[21] I.-C. Hoi, A. F. Kockum, T. Palomaki, T. M. Stace, B. Fan, L. Tornberg, S. R. Sathyamoorthy, G. Johansson, P. Delsing,

and C. M. Wilson, Phys. Rev. Lett. 111, 053601 (2013).
[22] A. F. van Loo, A. Fedorov, K. Lalumiere, B. C. Sanders, A. Blais, and A. Wallraff, Science 342, 1494 (2013).
[23] D. I. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff, J. M. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M.

H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Nature 445, 515 (2007).
[24] L. S. Bishop, E. Ginossar, and S. M. Girvin, Phys. Rev. Lett. 105, 100505 (2010).
[25] G. Kirchmair, B. Vlastakis, Z. Leghtas, S. Nigg, H. Paik, E. Ginossar, M. Mirrahimi, L. Frunzio, S. M. Girvin, and R. J.

Schoelkopf, Nature 495, 205 (2013).
[26] G. Romero, J. J. Garcia-Ripoll, and E. Solano, Phys. Rev. Lett. 102, 173602 (2009).
[27] B. Peropadre, G. Romero, G. Johansson, C. M. Wilson, E. Solano, and J. J. Garcia-Ripoll, Phys. Rev. A 84, 063834

(2011).
[28] Y.-F. Chen, D. Hover, S. Sendelbach, L. Maurer, S. T. Merkel, E. J. Pritchett, F. K. Wilhelm, and R. McDermott, Phys.

Rev. Lett. 107, 217401 (2011).
[29] Y. Yin, Y. Chen, D. Sank, P. J. J. O’Malley, T. C. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant,

C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Phys. Rev. Lett. 110, 107001
(2013).

[30] T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert, Nature 495, 210 (2013).
[31] J. Wenner, Y. Yin, Y. Chen, R. Barends, B. Chiaro, E. Jeffrey, J. Kelly, A. Megrant, J. Y. Mutus, C. Neill, P. J. J.

O’Malley, P. Roushan, D. Sank, A. Vainsencher, T. C. White, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Phys.
Rev. Lett. 112, 210501 (2014).

[32] E. Flurin, N. Roch, J.-D. Pillet, F. Mallet, and B. Huard, arXiv:1401.5622.
[33] K. Inomata, T. Yamamoto, P.-M. Billangeon, Y. Nakamura, and J. S. Tsai, Phys. Rev. B 86, 140508(R) (2012).
[34] T. Yamamoto, K. Inomata, K. Koshino, P.-M. Billangeon, Y. Nakamura, and J. S. Tsai, New J. Phys. 16, 015017 (2014).
[35] K. Koshino, Phys. Rev. Lett. 98 223902 (2007).
[36] R. Vijay, D. H. Slichter, and I. Siddiqi, Phys. Rev. Lett. 106, 110502 (2011).
[37] Z. R. Lin, K. Inomata, W. D. Oliver, K. Koshino, Y. Nakamura, J. S. Tsai, and T. Yamamoto, Appl. Phys. Lett. 103

132602 (2013).
[38] Z. R. Lin, K. Inomata, K. Koshino, W. D. Oliver, Y. Nakamura, J. S. Tsai and T. Yamamoto, Nat. Commun. 5 4480

(2014).

http://arxiv.org/abs/1406.0896
http://arxiv.org/abs/1401.5622

	I Introduction
	II System
	A Hamiltonian
	B Heisenberg equations
	C Microwave response

	III I and  modes
	IV Detection scheme
	V capture of signal photon
	A Zero-photon input
	B One-photon input
	C Two-photon input
	D Pulse-shape dependence

	VI reset of the system
	VII summary
	 Acknowledgment
	A Relation between coherent-state and Fock-state inputs
	 References

