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Guided resonance fluorescence of a single emitter after pulsed excitation
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We theoretically investigated a microtoroidal cavity quantum electrodynamics system in which radiation from
the emitter is nearly perfectly guided into a fiber mode, and analyzed the resonance fluorescence from the
emitter after pulsed excitation. We derived analytic formulas to rigorously evaluate the photon statistics of the
pulse emitted into the fiber, and clarified the conditions needed for the excitation pulse to generate single- and
two-photon pulses.
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I. INTRODUCTION

Photons can retain quantum coherence for a long time,
making them promising carriers of quantum information.
Therefore, technologies for the generation, manipulation, and
detection of single photons are being rapidly developed in
modern photonics. In particular, since the use of optical
fibers is practically inevitable, on-demand generation of
indistinguishable single photons directly into an optical fiber
is highly desired.

A natural idea for such a single-photon source is to
use the spontaneous emission of quantum emitters. The
representative candidates of single-photon emitters are atoms
[1–6], ions [7,8], and their solid-state counterparts such as
color centers in diamond [9–12] and semiconductor quantum
dots [13–15]. It has been confirmed that the fluorescence from
these emitters exhibits sub-Poissonian photon statistics, i.e.,
g(2)(0) < 1. Extensive efforts are being made to efficiently
guide the spontaneous emission from these emitters into a
target fiber. The collection efficiency is often quantified by
the β factor, which is the emission rate into the target mode
normalized by the total decay rate. It was recently found
that a considerable fraction of the emission can be guided
into the target mode simply by placing the emitters close
to a tapered fiber, but the collection efficiency was still far
below unity [16–24]. To achieve a collection efficiency close
to unity, the use of an optical cavity and the resultant Purcell
effect seems promising. Particularly, fiber-coupled cavity
quantum electrodynamics (QED) systems with microtoroidal
cavities [25–28] exhibit both a high β factor and coupling
efficiency to single-mode optical fibers.

In this article, we theoretically investigated a practical
cavity QED setup, the schematic of which is illustrated in
Fig. 1: A quantum dot is coupled to a microtoroidal cavity,
which is further coupled to a tapered fiber. The dot is driven
by an excitation pulse applied from the side. The two ends
of the fiber are mixed by a beam splitter to form a Sagnac
interferometer, which is adjusted so that the emission from the
dot is forwarded to one end of the fiber. We derived analytic
formulas to determine the photon statistics of a generated
pulse, and numerically evaluated the photon statistics with
realistic cavity QED parameters. It is shown that nearly ideal
single-photon pulses with a one-photon probability of 0.97
and a multiphoton probability of 0.01 can be generated by
optimizing the excitation pulse.

The rest of this paper is organized as follows. The
theoretical model is presented in Sec. II and the analytical
formulas used to determine the output photon statistics are
derived in Sec. III. Assuming realistic cavity QED parameters,
the photon statistics are numerically evaluated in Sec. IV. A
summary is given in Section V.

II. SYSTEM

The schematic of the setup is shown in Fig. 1. It is composed
of a quantum dot driven by an excitation pulse, a microtoroidal
cavity, and a tapered fiber forming a Sagnac interferometer.
Setting � = c = 1, the Hamiltonian of the overall system is

H = H1 + H2 + H3 + H4, (1)

H1 = ωdσ
†σ + ωc(a†a + b†b)

+ g[σ †(a + b) + (a† + b†)σ ], (2)

H2 = if (t)σ † − if ∗(t)σ, (3)

H3 =
∫

dk[ka
†
kak +

√
κ/2π (a†ak + a

†
ka)]

+
∫

dk[kb
†
kbk +

√
κ/2π(b†bk + b

†
kb)], (4)

H4 =
∫

dk[kc
†
kck +

√
γ /2π (σ †ck + c

†
kσ )], (5)

where H1 describes the coherent interaction between the dot
and the cavity vacuum modes, H2 describes the driving of the
dot by the excitation pulse, H3 describes the cavity leakage
into the fiber, and H4 describes the radiative decay of the
dot into free space. Note that the toroidal cavity supports
two degenerate counter-rotating modes. The parameters are
defined as follows. ωd and ωc respectively are the resonance
frequencies of the dot and the two cavity modes, g is the
coherent coupling between them, κ is the leak rate of the cavity
modes into the fiber, and γ is the radiative decay rate of the dot
into free space. The meanings of the operators are as follows.
σ , a, and b respectively denote the annihilation operators for
the dot excitation and the two counter-rotating modes of the
toroidal cavity. ak and bk respectively denote the field operators
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FIG. 1. (Color online) Schematic of the toroidal cavity QED
system considered. A quantum dot is coupled to a toroidal cavity
and then to a fiber. The dot is driven by an excitation pulse applied
from the side. The emitted photon is always forwarded to one of the
two fiber ends.

for two counter-propagating modes of the fiber with wave
number k, and ck denotes the field operator for a free-space
photon (Fig. 1). The real-space representation of ak is defined
by the Fourier transform as ãr = (2π )−1/2

∫
dkeikrak . In this

representation, the propagating fields interact with the cavity
at r = 0. The input and output field operators are defined by
ain(t) = ã−0(t) and aout(t) = ã+0(t), respectively. bin(t) and
bout(t) are defined similarly.

Throughout this study, we focus on the case of ωd = ωc.
Initially, the dot-cavity system is in its ground state. Its state
vector is given by

|ψi〉 = |0〉. (6)

The dot is excited at t = 0 by a resonant square pulse with pulse
length T and amplitude 	/2, where 	 is the Rabi frequency.
The excitation pulse is then given by

f (t) = (	/2)e−iωd t θ (t)θ (T − t), (7)

where θ (t) is the Heaviside step function.
Three comments are in order regarding this model. (i) A

typical frequency separation between two adjacent modes
of a microtoroidal resonator is larger than 10 GHz, which
is sufficiently larger than the cavity-enhanced decay rate of
the dot considered here (� = 4g2/κ = 2π × 160 MHz; see
Sec. IV). Therefore, the coupling to other cavity modes is
negligible. (ii) The coupling between the left-right modes
due to the surface roughness of the microtoroidal resonator
breaks the left-right symmetry of the model. However, a typical
left-right coupling is a few MHz, which is sufficiently smaller
than the cavity linewidth (κ = 2π × 1000 MHz; see Sec. IV).
Therefore, the broken left-right symmetry is also negligible.
(iii) We neglected the losses in the optical fiber and the beam
splitter, assuming typical experimental setups.

III. ANALYSIS

A. Heisenberg equations

Our analysis is based on the Heisenberg equations that are
derivable from the Hamiltonian of Eq. (1). Switching to a
frame rotating at ωd (=ωc), the Heisenberg equations for the
dot and cavity operators are given by

d

dt
σ = −γ

2
σ − f (t)[σ †,σ ] + ig[σ †,σ ](a + b)

+ i
√

γ [σ †,σ ]cin(t), (8)

d

dt
a = −κ

2
a − igσ − i

√
κain(t), (9)

d

dt
b = −κ

2
b − igσ − i

√
κbin(t), (10)

and the input-output relations for the propagating fields are
given by

aout(t) = ain(t) − i
√

κa(t), (11)

bout(t) = bin(t) − i
√

κb(t). (12)

We assume that our setup is in the weak-coupling regime (κ >

g), which is known to be advantageous for efficient guiding of
the radiation from the dot to the fiber [27]. In this regime, we
can eliminate the cavity operators adiabatically. Then we have

d

dt
σ = −�t

2
σ − f (t)[σ †,σ ] +

√
�[σ †,σ ][ain(t) + bin(t)]

+ i
√

γ [σ †,σ ]cin(t), (13)

aout(t) = −ain(t) −
√

�σ (t), (14)

bout(t) = −bin(t) −
√

�σ (t), (15)

where � = 4g2/κ is the decay rate of the dot into the fiber and
�t = 2� + γ is the overall decay rate of the dot.

In the present setup, the input and output ports of the fiber
are mixed by a beam splitter. Defining a′

in, b′
in, a′

out, and b′
out as

shown in Fig. 1, the beam splitter functions as(
ain

bin

)
= 1√

2

(
ieiθ 1

1 ie−iθ

)(
a′

in

b′
in

)
, (16)

(
a′

out

b′
out

)
= 1√

2

(
1 ieiθ

ie−iθ 1

)(
aout

bout

)
. (17)

The phase θ can be controlled using a phase shifter and we
hereafter set θ = −π/2. Then, Eqs. (13)–(15) become

d

dt
σ = −�t

2
σ − f (t)[σ †,σ ] +

√
2�[σ †,σ ]a′

in(t)

+ i
√

γ [σ †,σ ]cin(t), (18)

a′
out(t) = −a′

in(t) −
√

2�σ (t), (19)

b′
out(t) = b′

in(t). (20)
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The above equations, together with the initial state vector of
Eq. (6), form the basis of our analysis.

B. Photon statistics in the output port

In the present setup, the photons emitted by the dot into the
fiber are completely forwarded to the a′

out port, as indicated by
Eq. (19). We examine the photon statistics of the pulse emitted
into this port. We denote the probability that the emitted pulse
contains n photons by Pn (n = 0,1, . . . ). To determine the
photon statistics, we first evaluate the the quantity 〈Nm〉 (m =
1,2, . . . ) defined by

〈Nm〉 =
∫ ∞

0
dt1

∫ ∞

t1

dt2 · · ·
∫ ∞

tm−1

dtm

×〈a′†
out(t1) · · · a′†

out(tm)a′
out(tm) · · · a′

out(t1)〉, (21)

where 〈· · · 〉 = 〈ψi | · · · |ψi〉. Using the fact that a′
in(t) com-

mutes with σ (t ′) for t > t ′ due to the causality and that
〈a′

in(t)〉 = 0 because there is no input field from this port,
〈Nm〉 can be rewritten as

〈Nm〉 = (2�)m
∫ ∞

0
dt1

∫ ∞

t1

dt2 · · ·
∫ ∞

tm−1

dtm

×〈σ †(t1) · · · σ †(tm)σ (tm) · · · σ (t1)〉. (22)

The formula to determine Pn from 〈Nm〉 is obtained by con-
sidering a classical pulse in the output port (see Appendix A).
We have

Pn =
∞∑

m=n

(−1)m−n
mCn〈Nm〉, (23)

where mCn stands for the binomial coefficient.

C. Evaluation of 〈Nm〉
In order to evaluate 〈N1〉, we consider α1(t) = 〈σ (t)〉 and

β1(t) = 〈σ †(t)σ (t)〉. The equations of motion are derived from
Eqs. (6) and (18). Since 〈a′

in〉 = 〈cin〉 = 0 and α1 is real with
resonant driving, we obtain

d

dt

(
α1

β1

)
=

(−�t/2 −2f (t)
2f (t) −�t

) (
α1

β1

)
+

(
f (t)

0

)
. (24)

The initial condition is α1(0) = β1(0) = 0. For a rectangular
pulse of Eq. (7), f (t) vanishes for t > T . Therefore, β1(t) can
be written as

β1(t) =
{
h(t) (0 < t < T ),

h(T )e�t (T −t) (T < t),
(25)

where h(t) represents the population of the excited state at time
t under a continuous drive field. From Eq. (24), the Laplace
transform of h(t), Lh(z) = ∫ ∞

0 dte−zth(t), is given by

Lh(z) = 	2

2(z − λ1)(z − λ2)(z − λ3)
, (26)

where λ3 = 0 and λ1,2 are the two roots of

(z + �t/2)(z + �t ) + 	2 = 0. (27)

h(t) is determined by the inverse Laplace transform of Lh(z).
〈N1〉 is then given by 〈N1〉 = ∫ T

0 dt h(t) + h(T )
�t

.

As proven in Appendix B, higher-order quantities 〈Nm〉
(m = 1,2, . . . ) can be calculated similarly. 〈Nm〉 is obtained
using

〈Nm〉 =
∫ T

0
dt hm(t) + hm(T )

�t

, (28)

where hm(t) can be determined with the inverse Laplace
transform of Lhm

(z) = [Lh(z)]m. hm(t) is then given by

hm(t) =
m∑

k=1

[
C

(1)
mk tk−1eλ1t + C

(2)
mk tk−1eλ2t + C

(3)
mk tk−1eλ3t

]
,

(29)

C
(1)
mk = 1

(k − 1)!

(2E2)m

(λ1 − λ2)m(λ1 − λ3)m

×
m−k∑
j=0

⎛
⎝ j∏

μ=1

−m − μ + 1

μ(λ1 − λ2)

m−k−j∏
ν=1

−m − ν + 1

ν(λ1 − λ3)

⎞
⎠ . (30)

C
(2)
mk and C

(3)
mk are obtained by cyclic permutation of λ1, λ2, and

λ3 in C
(1)
mk .

IV. NUMERICAL RESULTS

In this section, we present the numerical results. Assuming
that a semiconductor quantum dot is used as an emitter, we em-
ploy the following parameters: (g,κ,γ )/2π = (200,1000,5)
MHz.

A. Excited-state population

First we investigate the excited-state population of the dot,
〈σ †σ 〉, assuming continuous driving. It is evaluated using
the inverse Laplace transform of Lh(z) from Eq. (26). The
temporal evolution is determined by the two roots of Eq. (27).
For a weak drive satisfying 	 < �t/4 (the overdamping
regime), where �t is the decay rate of the dot, the excited-
state population increases monotonically. In contrast, for
a strong drive satisfying 	 > �t/4 (the damped-oscillation
regime), the excited-state population exhibits damped Rabi
oscillations [29]. The stationary value is given for both regimes
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FIG. 2. (Color online) Excited-state population as a function of
time t and Rabi frequency 	. Thin dotted lines indicate 	t = π ,
3π , 5π , and 7π (left to right). The Rabi oscillations are damped for
t � �−1

t .
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FIG. 3. (Color online) (a) 〈N1〉, (b) 〈N2〉, and (c) 〈N3〉 as functions of the pulse length T and the Rabi frequency 	. White dashed lines
indicate 	T = π , 3π , 5π , and 7π (left to right).

by

〈σ †σ 〉s = 	2

2	2 + �2
t

. (31)

In Fig. 2, the excited-state population is plotted as a function
of the drive amplitude 	 and the time t . For a short time
(t � �−1

t ), the excited-state population is determined solely
by the pulse area, 	t . It is maximized (minimized) when 	t �
(2n + 1)π (2nπ ), exhibiting Rabi oscillations. For a long time
(t � �−1

t ), the oscillatory behavior is damped and approaches
the stationary value determined by Eq. (31).

B. 〈Nm〉 and Pn

In this section, we discuss the results for pulsed excitation.
In Fig. 3, 〈Nm〉 (m = 1,2,3) is plotted as functions of the pulse
length T and amplitude 	. 〈N1〉 represents the mean photon
number contained in the pulse emitted by the dot. Figure 3(a)
shows that 〈N1〉 exhibits oscillatory behavior in the short-pulse
region (T � �−1

t ): 〈N1〉 � 1 for 	T � (2n + 1)π and 〈N1〉 �
0 for 	T � 2nπ . This is because the dot excitation is almost
completely emitted into the target fiber mode and is a natural
result of the Rabi oscillation of the dot. Accordingly, Figs. 2(b)
and 3(a) almost coincide for T � �−1

t . In the long-pulse region
(T � �−1

t ), emission and reexcitation occur repeatedly in the
dot, and accordingly 〈N1〉 increases monotonically as the pulse
gets longer. For 〈N2〉 (〈N3〉), which take nonzero values when
the emitted pulse contains more than two (three) photons, clear

oscillatory behavior is unobservable. 〈N2〉 and 〈N3〉 increase
monotonically for longer and stronger pulses.

Next, we discuss the photon statistics of the output pulse.
As discussed in Appendix A, the n-photon probabilities Pn

(n = 0,1, . . . ) are determined from 〈Nm〉 (m = 1,2, . . . ). In
principle, infinite values of 〈Nm〉 (1 � m � ∞) are required
to determine Pn. However, reliable numerical results can be
obtained by restricting m to 1 � m � 8 in the following
numerical results. Figure 4 plots P0, P1, and P2 as functions of
the pulse length T and amplitude 	. In the short-pulse region
(T � �−1

t ), where the dot exhibits coherent Rabi oscillations,
P0 and P1 exhibit contrastive behavior: P0 � 0 and P1 � 1 for
	T � (2n + 1)π , whereas P0 � 1 and P1 � 0 for 	T � 2nπ .
P2 almost vanishes in this region, indicating the absence of
emission and reexcitation within the duration of the short pulse.
Thus, the output pulse functions as an ideal single photon
(P1 � 1 and the others vanish) by setting 	T = (2n + 1)π . In
the long-pulse region (T � �−1

t ), the zero-photon probability
P0 decreases whereas the multiphoton probability P2 increases
in general. This is because the possibility of emission and
reexcitation of the dot increases for long pulses. In contrast
with the multiphoton components of 〈Nm〉 [Figs. 3(b) and 3(c)],
clear oscillatory behavior is observable even for the multipho-
ton probability: P2 is maximized (minimized) for 	T � 2nπ

[(2n + 1)π ], reflecting the oscillatory behavior of P1.
In Fig. 5 the dependences of Pn (n = 0, . . . ,3) on the pulse

length T are shown, fixing the pulse area 	T at π , 2π , and
3π . It is observed that similar photon statistics result for π
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FIG. 4. (Color online) (a) P0, (b) P1, and (c) P2 as functions of the pulse length T and the Rabi frequency 	. White dashed lines indicate
	T = π , 3π , 5π , and 7π (left to right).
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FIG. 5. (Color online) Plots of P0 (red solid line), P1 (green dotted line), P2 (blue dashed line), and P3 (magenta dashed-dotted line) fixing
the pulse area 	T at (a) 	T = π , (b) 	T = 2π , and (c) 	T = 3π .

and 3π pulses [Figs. 5(a) and 5(c)]. In light of single-photon
generation, shorter drive pulses are advantageous. The ideal
single-photon state (P1 � 1 and the others vanish) is realized
for T � �−1

t . P1 is gradually lost for longer drive pulses.
Instead, P0 becomes dominant in the case of the π pulse,
whereas the multiphoton probabilities become dominant in the
case of the 3π pulse. For a 2π pulse [Fig. 5(b)], P0 is dominant
for small T and P2 is dominant for large T . Interestingly, P2 is
always larger than P1 and exceeds 0.5 with a proper drive pulse
length. Therefore, the 2π -pulse excitation using a relatively
long drive pulse is applicable to the generation of two-photon
pulses.

In Fig. 6, g(2)(0) = (〈n2〉 − 〈n〉)/〈n〉2 is plotted as a function
of the pulse length T , where 〈n〉 = ∑∞

n=0 nPn (mean photon
number in the pulse) and 〈n2〉 = ∑∞

n=0 n2Pn. g(2) < 1 indi-
cates the sub-Poissonian photon statistics and therefore the
nonclassicalness of the generated pulse. When the pulse length
is short (T � �−1

t ), we observe contrastive dependence of the
photon statistics on the pulse area: The photon statistics is
sub-Poissonian (super-Poissonian) when the pulse area is odd
(even) multiples of π . In contrast, as the pulse length becomes
longer (T � �−1

t ), the photon statistics gradually approaches
the Poissonian regardless of the pulse area.
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π

FIG. 6. (Color online) Plots of g(2)(0) as a function of the pulse
length T . The pulse area 	T is fixed at π (red solid line), 2π (green
dotted line), and 3π (blue dashed line).

V. SUMMARY

In this article, we theoretically investigated resonance
fluorescence from a single emitter after pulsed excitation.
We considered a microtoroidal cavity QED system in the
weak-coupling regime, where radiation from the emitter is
guided nearly perfectly into a target fiber mode. We derived
analytic formulas to rigorously evaluate the photon statistics
of the output pulse. By applying a π or 3π pulse to the emitter
whose pulse length is shorter than the lifetime of the emitter,
we can deterministically generate a nearly ideal single photon
propagating in a fiber. In contrast, by applying a 2π pulse
whose pulse length is comparable to the lifetime, we can
generate a photon pulse in which the two-photon component
is dominant. The current results are useful for the estimation
of the photon statistics of practical single-photon sources.
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APPENDIX A: RELATION BETWEEN 〈Nm〉 AND Pn

First, we derive a formula to express 〈Nm〉 in terms of
Pn. Throughout this Appendix, we denote a′

out(t) by at for
simplicity. We define the photon number operator in the
output port by n̂ = ∫ ∞

0 dt a
†
t at . Then N̂1 = n̂. N̂2 can be

written as N̂2 = ∫ ∞
0 dt

∫ ∞
0 dt ′a†

t a
†
t ′at ′at/2 = ∫ ∞

0 dt a
†
t n̂at /2.

Using [n̂,at ] = −at , N̂2 can be rewritten as N̂2 = n̂(n̂ − 1)/2.
Similarly, we have N̂m = n̂ · · · (n̂ − m + 1)/m!. Therefore,

〈Nm〉 =
∞∑

n=m

nCmPn, (A1)

where nCm stands for the binomial coefficient.
Next, we derive a formula to express Pn in terms of

〈Nm〉. For this purpose, we consider a classical pulse |α〉.
Since it is an eigenstate of the field annihilation operator,
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we immediately have 〈Nm〉 = |α|2m/m!. On the other hand,
the photon statistics of a classical pulse obey the Poissonian,
Pn = e−|α|2 |α|2n/n!. Expanding the exponential, it becomes
Pn = ∑∞

m=n(−1)m−n
mCn

m!
n!(m−n)! |α|2mm!. Therefore,

Pn =
∞∑

m=n

(−1)m−n
mCn〈Nm〉. (A2)

We note that a more general derivation of this formula is
presented in Ref. [29].

APPENDIX B: EVALUATION OF 〈N2〉
Here, we discuss the method to evaluate 〈N2〉. For

this purpose, we investigate α2(t1,t2) = 〈σ †(t1)σ (t2)σ (t1)〉
and β2(t1,t2) = 〈σ †(t1)σ †(t2)σ (t2)σ (t1)〉, where t1 < t2.
Since σ (t1) commutes with a′

in(t2) and cin(t2),

we obtain

d

dt2

(
α2

β2

)
=

(−�t/2 −2f (t2)

2f (t2) −�t

) (
α2

β2

)

+
(

β1(t1)f (t2)

0

)
. (B1)

The initial condition is α2(t1,t1) = β2(t1,t1) = 0. Comparing
Eqs. (24) and (B1), β2(t1,t2) is given by

β2(t1,t2) =

⎧⎪⎨
⎪⎩

h(t1)h(t2 − t1) (t1 < t2 < T ),

h(t1)h(T − t1)e�t (T −t2) (t1 < T < t2),

0 (T < t1 < t2).

(B2)

Then, 〈N2〉 is given by

〈N2〉 =
∫ T

0
dth2(t) + h2(T )

�t

, (B3)

where h2(t) = ∫ t

0 dt1h(t1)h(t − t1). Since h2 is a convolution
of h, its Laplace transform is given by Lh2 (z) = [Lh(z)]2.
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[13] P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson,

G. F. Strouse, and S. K. Buratto, Nature (London) 406, 968
(2000).

[14] P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff,
L. Zhang, E. Hu, and A. Imamoğlu, Science 290, 2282 (2000).
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