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Abstract
We study the system where a superconducting flux qubit is capacitively coupled
to an LC resonator. In three devices with different coupling capacitance, the
magnitude of the dispersive shift is enhanced by the third level of the qubit and
quantitatively agrees with the theory. We show by numerical calculation that the
capacitive coupling plays an essential role for the enhancement in the dispersive
shift. We investigate the coherence properties in two of these devices, which
are in the strong-dispersive regime, and show that the qubit energy relaxation
is currently not limited by the coupling. We also observe the discrete ac-Stark
effect, a hallmark of the strong-dispersive regime, in accordance with the theory.

1. Introduction

Dispersive readout is widely used for superconducting qubits, because it potentially enables
high-fidelity, fast and non-destructive readout [1]. In this readout scheme, the superconducting
qubits are coupled to an electromagnetic resonator (LC resonator) or transmission line, and the
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type of coupling, i.e. what kind of degree of freedom to use, and its strength should be properly
chosen based on various aspects, such as readout fidelity and backaction on the qubits. Note
that even for the same type of qubit, we can still choose either capacitive (voltage) or inductive
(current) coupling. For example, in charge (or transmon) and phase qubits, both capacitive
and inductive couplings have been studied [2–6]. Transmon and phase qubits are (dc-) charge
insensitive devices. However, as pointed out by Koch et al [7], this does not mean they are
insensitive to the ac voltage field, and the strong coupling regime has indeed been achieved in
these devices using capacitive coupling [2, 8].

For the superconducting flux qubits, on the other hand, inductive coupling has typically
been used [9, 10]. This may be related to the fact that the states of the flux qubit are often
associated with the clockwise and the counterclockwise circulating currents, besides that the
flux qubits are also (dc-) charge insensitive devices. Again, however, this does not mean that
capacitive coupling is impossible for the flux qubits6. We demonstrated in [13] that we can
achieve strong coupling between a conventional flux qubit and an LC resonator coupled via a
capacitance. In the paper, we also reported an enhancement of the dispersive shift of the cavity
resonance induced by the third level of the flux qubit. This effect was first predicted for the
transmon qubit [7] to occur when a specific level configuration, ω01 < ωr < ω12, is realized,
where ωi j is the qubit transition frequency between the i th and the j th levels and ωr is the cavity
resonant frequency. They call this a straddling regime, in which cooperative interplay between
0–1 and 1–2 transitions gives rise to the enhancement of the dispersive shift. In [13], we show
that the magnitude of the observed dispersive shift, which was more than four times larger than
that estimated from a simple two-level approximation, is quite consistent with the theory which
takes into account the higher levels of the flux qubit. We note that the effect of the higher levels
of the artificial atom on the dispersive shift has recently been investigated in the fluxonium qubit
too [14, 15].

The present paper is an extension of our previous paper [13] and motivated mainly by
the following three questions related to the enhancement in the dispersive shift. (i) Why had
such a large enhancement never been observed in much more extensively studied devices with
inductive coupling? (ii) Does the enhanced dispersive shift affect the coherence of the qubit?
(iii) Can the enhanced dispersive shift be applied to anything besides the readout of the qubit?
To answer these questions, the rest of the present paper is organized as follows: in section 2,
we describe the details of the sample fabrication and the measurements. In the present paper,
we study three different devices. In all the devices, a flux qubit is coupled to an LC resonator, but
with different magnitude of the coupling capacitance. In section 3, we measure the dispersive
shift in the three devices, and compare it with the calculation using the device parameters
independently determined by the spectroscopy measurements. Section 4 is related to the first
question. We calculate the energy band of the two circuits in the straddling regime, where the
flux qubit is coupled to a resonator either via a capacitance or an inductance. Based on that,
we discuss the difference in the enhancement of the dispersive shift. Section 5 is to answer the
second question, in which we study the coherence property of our devices. The results show
that the energy relaxation time is not limited by the coupling at present. Section 6 is related to
the third question, where we clearly observe the discrete ac-Stark effect, which is a hallmark

6 Capacitive coupling for a capacitively shunted flux qubit has been demonstrated in [11]. Also, it has been
theoretically shown that high-frequency charge noise can induce substantial energy relaxation in flux qubits [12].
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Figure 1. (a) Schematic representation of the device. A 3JJ flux qubit, in which one
of the three junctions is smaller than the others by a factor of α, is coupled to a
center conductor of λ/2-type CPW resonator via a capacitance Cc. The magnetic flux
8 penetrates the loop of the flux qubit, which is inductively coupled to the control
line. The resonator is also coupled to an external transmission line for the readout via a
capacitance Cin. (b) Optical image of the device with Cc of 4 fF magnified for the qubit
part. (c) Scanning electron micrograph of the three-junction flux qubit. The areas shaded
by red represent the Josephson junctions.

of the strong-dispersive regime. We show that the data are well reproduced by the theory.
Finally, in section 7, we summarize our results.

2. Sample fabrication and measurements

In this work, we study the system where a superconducting flux qubit is capacitively coupled to
a superconducting coplanar waveguide (CPW) resonator (figure 1). The CPW resonator is made
of a 50 nm thick Nb film sputtered on a 300 µm thick undoped Si wafer covered by a 300 nm
thick thermal oxide. It is patterned by electron-beam (EB) lithography using the ZEP520A-7
resist and CF4 reactive ion etching. The flux qubit is a conventional three-Josephson-junction
(3JJ) flux qubit, in which one junction is made smaller than the other two by a factor of α.
It is fabricated by EB lithography and double-angle evaporation of Al using PMMA/Ge/MMA
trilayer resist. The thicknesses of the bottom and the top Al layers are 20 and 30 nm, respectively.
In order to realize a superconducting contact between Nb and Al, the surface of Nb is cleaned
by Ar ion milling before the evaporation of Al.

In this work, we study the three devices with different coupling capacitances Cc between
the qubit and the resonator. We call them devices A, B and C, which have designed Cc of 2, 3
and 4 fF, respectively. All of the devices have a λ/2-type CPW resonator of the same design.
They have the fundamental resonant frequency at around 10.25 GHz, and the loaded quality
factor Q of ∼650, which is limited by the input capacitance Cin designed to be 15 fF. The qubits
have almost the same design in all of the devices, but with small adjustment in α to compensate
for the effect of Cc on ω01. The loop has a size of ∼2.0 × 2.4 µm2, and is coupled to the control
line by a mutual inductance of ∼0.1 pH.
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Figure 2. Spectroscopy of the coupled system (device B). (a) Phase of the reflection
coefficient 0 as a function of the flux bias and the probe frequency. (b) |0| as a function
of the flux bias and the qubit excitation frequency. |0| is normalized by the value
measured at ωr without the qubit drive. The same data as in (a) are shown in the green
box for comparison. There are no data in the regions filled with the meshes. Panels (c)
and (d) are the same as (a) and (b), respectively, but the result of the fitting is overlaid by
the white dashed curves. Labels on the energy levels denote the corresponding excitation
from the ground state, namely, |q, r〉 indicates that the qubit and the resonator are in the
qth and the r th states, respectively.

The devices were mounted in a sample holder made of gold-plated copper, which is
thermally anchored to the mixing chamber of a dilution refrigerator and cooled to ∼10 mK.
The sample holder is covered by three-layer (one superconducting and two µ-metal) magnetic
shields, but we do not use radar-absorbent materials [16] in this work. For the spectroscopy
measurements, we used a vector network analyzer. For the measurements of the dispersive shift
and qubit coherence, we used a pulsed microwave and for the heterodyne detection of the time-
domain data we used a commercial analogue-to-digital converter [13].

3. Dispersive shift in the straddling regime

Before investigating the dispersive shift, we need to experimentally determine the device
parameters. As shown in [13], this was done by probing the energy bands of the system by
the spectroscopy measurements and fitting the result with the energy bands calculated from
the model Hamiltonian (equations (1)–(4) in the next section). Figure 2 shows an example of
the spectroscopy measurement for device B. In figure 2(a), we plot the phase of the reflection
coefficient 0 as a function of the probe frequency ωp and the flux bias for the qubit f ≡ 8/80,
where 8 is the flux through the qubit loop and 80 is the flux quantum. We observe clear vacuum
Rabi splitting indicating that the strong coupling regime is achieved. In figure 2(b), on the other
hand, we measure 0 at a fixed probe frequency ωp = ωr = 2π × 10.274 GHz, where ωr is the
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Figure 3. Dispersive shifts in all of the devices. The normalized reflection coefficient
|0′

| is plotted as a function of the frequency of the probe microwave field ωp. Blue (red)
traces represent |0′

| when the π pulse is turned off (on). The inset shows the sequence
of the pulses applied to measure |0′

|.

resonant frequency of the resonator when the qubit is in state |0〉, while applying an additional
continuous microwave field at ωd to the qubit control port. In the figure, |0| is plotted as a
function of ωd and f . Figures 2(c) and (d) are the same as figures 2(a) and (b), but the fitting
curves are plotted together. As seen in the figures, the data are well fitted by the Hamiltonian
(equation (1)), and from this fitting, we extracted the device parameters, which are listed in
table 1 for all the devices. In the table, we also listed the parameters of the device used in [13].
The obtained Cc are quite consistent with the designs.

Next, we investigate the dispersive shift. Using a pulsed readout, we measure 0 as a
function of ωp. By applying a π -pulse to the qubit before the readout, we can measure 0

corresponding to the qubit state |1〉. The pulse sequence is shown in the inset of figure 3.
We use 100 ns long time trace data of the reflected readout pulse, which starts after a delay
td from the termination of the π -pulse, to extract the amplitude and the phase. The delay td

is adjusted to give a maximum contrast between the qubit states |0〉 and |1〉. Figure 3 shows
the amplitude of the normalized reflection coefficient 0′ as a function of ωp. 0′ is defined
as 0′

≡ (0 − 0on)/|0off − 0on|, where 0on and 0off are the reflection coefficients obtained by
the on and the off resonance of the resonator, respectively [13]. For each device, we measure
|0′

| with and without the π -pulse, where the qubit is biased at f = 0.5. The shifts of the dip
frequency correspond to the dispersive shifts. The observed dispersive shifts 2χ and ωr are
summarized in table 2, together with ω01 determined by the spectroscopy measurements. In
the table, we also listed the theoretical parameters obtained from the energy band calculation
using the fitting parameters listed in table 1. The measured dispersive shifts are close to the
theoretical predictions which are obtained by calculating the difference between the cavity
resonant frequencies when the qubit is in state |0〉 and state |1〉. Their magnitudes are much
larger than the values estimated under the two-level approximation for the qubit, namely,
|g2

01/101|, where 101 = ω01 − ωr. Here, g01 represents the matrix element 〈1|Hc
cq|0〉, where

5
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Table 1. Parameters of the measured devices.

Designed Fitting parameters

Device Cc (fF) Cc (fF) EJ/h (GHz) Ec/h (GHz) α Er/h (GHz)

A 2 1.86 139 3.55 0.685 10.250
B 3 3.14 146 3.38 0.640 10.252
C 4 4.19 148 3.29 0.613 10.298

[13] 4 4.08 148 3.27 0.611 10.679

Table 2. Magnitude of the dispersive shift. All of the parameters are for the qubit bias
f = 0.5.

Measured Theory
ω01/2π ωr/2π 2χ/2π 2χ/2π ω01/2π ω12/2π g01/2π

Device (GHz) (GHz) (MHz) (MHz) (GHz) (GHz) (MHz)

A 3.730 10.236 −13 −10.7 3.727 17.61 76.0
B 4.728 10.232 −37 −35.9 4.725 15.58 143
C 5.350 10.274 −71 −71.8 5.361 14.46 201

[13] 5.504 10.656 −80 −71.5 5.513 14.54 197

|0〉 and |1〉 are the ground and the first-excited states of the uncoupled qubit Hamiltonian
(equation (2)), respectively, and Hc

cq is the coupling Hamiltonian Hc
c (equation (4)) restricted

onto the qubit subspace. This enhancement is due to the effect of the straddling regime [7].
As seen in table 2, the condition for the straddling regime ω01 < ωr < ω12 is satisfied in all the
devices.

4. Comparison between the capacitive and the inductive couplings

As shown in the previous section and in [13], we observed a large enhancement of the dispersive
shift of the cavity resonance due to the effect of the straddling regime [7]. It was observed in
the system shown in figure 4(a), where a flux qubit is coupled to an LC resonator. However,
a natural question is why this had not been reported before in much more extensively studied
flux-qubit circuits with inductive coupling (figure 4(b)). Since the flux qubits typically have
large anharmonicity, satisfying the condition for the straddling regime, namely, ω01 < ωr < ω12,
is quite easy. In fact, we even unintentionally satisfied this condition in our previous study using
inductive coupling, but we did not observe such a large enhancement [17]. The purpose here is
to answer this question.

The Hamiltonian of the system where a flux qubit is capacitively coupled to an LC
resonator as shown in figure 4(a) is given by

HC =Hc
q +Hc

r +Hc
c, (1)
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Figure 4. The circuit diagram of (a) a flux qubit capacitively coupled to an LC resonator
and (b) a flux qubit inductively coupled to an LC resonator.

which consists of the qubit part, the resonator part and the coupling part. Each term of the
Hamiltonian is given as below [13]:

Hc
q = 4Ec

[
V

X
(n2

1 + n2
2) + 2

W

X
n1n2

]
− EJ [cos δ1 − cos δ2 − α cos(δ1 − δ2 + 2π f )] , (2)

Hc
r = Er

√
Y

X

(
a†a +

1

2

)
, (3)

Hc
c = −2i

√
βcγ

Y 1/4 X 3/4

√
Er Ec(n1 − n2)(a

†
− a), (4)

where EJ = I080/2π , f = 8ex/80, 80 = h/2e, Ec = e2/2CJ, Er = h̄/
√

L rCr, V = (1 + α)(1 +
γ ) + βc, W = α(1 + γ ) + βc, X = (1 + 2α)(1 + γ ) + 2βc, Y = 1 + 2α + 2βc, βc = Cc/CJ and γ =

Cc/Cr. Here, I0 and CJ are the critical current and the capacitance of the larger Josephson
junction of the qubit, respectively. δi and ni (i = 1, 2) are the phase differences across the
larger junction, and its conjugate variable representing the charge number, respectively. a (a†)
is the annihilation (creation) operator of the photons in the resonator. Finally, L r and Cr are the
equivalent inductance and the capacitance of the resonator, respectively.

Next, we consider the Hamiltonian of the system where a flux qubit is inductively coupled
to an LC resonator as shown in figure 4(b). The derivation is given in appendices A and B. The
Hamiltonian is given by

HL =Hl
q +Hl

r +Hl
c, (5)

and each term is given as follows:

Hl
q = 2Ec

(
n2

a +
1

1 + 2α
n2

s +
2α

1 + 2α
n2

t

)
− EJ[cos(δa − δs − δt) + cos(δa + δs + δt)

+ α cos(2π f − δt/α + 2δs)] +
EJ(1 + 2α)

2αβL
δ2

t , (6)

where βL = αLq/[(2α + 1)L J], L J = 80/(2π I0) and Lq is the loop inductance of the flux qubit.
Here, we used the following variable transformations for δ (phase across the loop inductance of
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the qubit) and δi (i = 1, 2, 3 phases across the junction):

δt =
−α

1 + 2α
δ, (7)

δs =
1

2(1 + 2α)
[2α(δ3 − 2π f ) − δ1 − δ2], (8)

δa = (δ1 − δ2)/2, (9)

and nt, ns and na are the corresponding conjugate variables. Hl
r is given by

Hl
r = Er

(
a†a +

1

2

)
. (10)

Hl
c is given by

Hl
c = −

π

β

EJ

EM

√
Er ELr(â

† + â)δt, (11)

where EM = 82
0/(2M) and ELr = 82

0/(2L r).
Based on these, we compare the energy band structure of the two systems. Figures 5(a)–(c)

show the excitation energy from the ground state, the coupling strength |gi j | and the dispersive
shift χi j , respectively, for the capacitive coupling case. Here, gi j = 〈i |Hc

cq| j〉, where |i〉
represents the i th eigenstate of the uncoupled qubit Hamiltonian (equation (2)), and χi j =

|gi j |
2/(ωi j − ωr), where ωi j = ω j − ωi . The parameters are taken from device C, namely,

EJ = 148, Ec = 3.29 GHz, α = 0.613, Cc = 4.19 fF and ωr/2π = 10.298 GHz. Figures 5(d)–(f)
show the corresponding calculations for the inductive coupling case. The qubit parameters, EJ,
Ec and α, are kept the same as those for the capacitive coupling case. The mutual inductance
M = 8.90 pH and the resonator frequency ωr = 13.80 GHz are chosen in such a way that |g01|

and ω01 − ωr, and hence, χ01 become almost equal for both of the coupling cases. By comparing
figures 5(c) and (f), we see that the total dispersive shift χtotal for the inductive coupling case is
much smaller than that for the capacitive coupling case. Here, χtotal is obtained by calculating
χ01 − χ10 +

∑M
j=2(χ j1 − χ1 j − χ j0 + χ0 j)/2 with M = 4, and confirmed to be very close to the

result obtained by the energy band calculation [13]. χtotal at f = 0.5 is 8.6 MHz for the inductive
coupling, while that for the capacitive coupling is 35.9 MHz. Note that the condition for the
straddling regime, ω01 < ωr < ω12, is satisfied in both cases. Indeed, the magnitude of χtotal

is larger than that of χ01, meaning that it is enhanced by the effect of the straddling regime.
However, the degree of the enhancement is very different for the two cases.

There are two main reasons that make this difference. Firstly, by comparing figures 5(a) and
(c), we see that ω12 is much smaller for the capacitive coupling case. Since the qubit parameters
are the same, this reduction is due to Cc. This leads to smaller |112| = |ωr − ω12|, and hence
larger χ12. Secondly, by comparing figures 5(b) and (e), we see that |g12|/|g01| is larger for the
capacitive coupling case. The |g12|/|g01| at f = 0.50 is 2.4 for the capacitive coupling, while
that for the inductive coupling is 0.77. This also leads to larger χ12 in the capacitive coupling
case. Thus, we conclude that the capacitive coupling plays an essential role in the observed large
enhancement of the dispersive shift.

We can also choose the parameters in such a way that the qubit transition energies (ω01

or both ω01 and ω12) are similar in the capacitive and the inductive coupling cases. The results
are shown in appendix C. The conclusion that |g12|/|g01| and χtotal are larger for the capacitive
coupling case is the same.
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Figure 5. Comparison between the capacitive (a)–(c) and the inductive (d)–(f)
couplings. Panels (a) and (d) show the energy gap from the ground state, (b) and (e)
show the coupling strength |gi j | = |〈i |Hc| j〉|, and (c) and (f) show the dispersive shift
χi j . For all the figures, EJ = 148, Ec = 3.29 GHz and α = 0.613 are used. For (a)–(c),
Cc = 4.19 fF and ωr/2π = 10.30 GHz are used. For (d)–(f), Lq = 50.0 pH, M = 8.9 pH
and ωr/2π = 13.8 GHz are used.

5. Coherence times

We investigate the coherence properties of the flux qubit capacitively coupled to the resonator.
Figure 6 shows an example of the measurements of (a) the energy relaxation and (b) the echo
dephasing in device C, where the qubit is biased at f = 0.5004. The heterodyne voltage V0,
which is offset in such a way that it becomes zero when the qubit is in the ground state, is
plotted as a function of the delay time. The pulse sequence for each measurement is shown
in the inset of the figure. The data for the energy relaxation measurement are well fitted
by an exponential decay of exp (−t/T1) and give the qubit energy relaxation time T1. The
oscillation observed in the echo measurement is due to the fact that the rotation axis of the
second π/2 pulse is rotated at 100 MHz. It is not so clear whether the decay envelope is
exponential or Gaussian. In the figure, we fitted the data by an oscillating Gaussian, namely,
exp (−t/2T1) exp [−(t/τecho)

2] sin (ωt + φ) and extracted the echo decay time τecho.
We measured the flux bias dependence of T1 and τecho in devices B and C, and plot

them in figures 7(a) and (c), respectively. T1 is independent of f in the measured range, and
the magnitude is almost the same for both devices in spite of their difference in coupling
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Figure 6. Example of the qubit coherence measurements: (a) energy relaxation and (b)
echo decay in device C. The flux qubit is biased at f = 0.5004. The heterodyne voltage
V0 is plotted as a function of the delay time in the pulse sequence shown in the inset.
The open circles are experimental data and the black curves are the fitting curves.

capacitance. In the figure, we also plot the theoretical predictions based on the Purcell effect,
κ(g01/101)

2 [7]. The observed T1 are more than one order of magnitude below the Purcell
limit, and probably limited by something which commonly exists in both devices, such as the
two-level systems at the surface of the substrate [18, 19].

The observed τecho also looks very similar in the two devices. It becomes maximum at
f = 0.5 and rapidly decreases as we move away from this bias point. To account for this flux
dependence of τecho, we assumed the dephasing due to the 1/ν flux noise (ν is the frequency),
which was carefully studied for the flux-qubit circuit with the dc-SQUID (superconducting
quantum interference device) readout [20]. We fitted 1/τecho by the derivative of ω01 with respect
to f , namely,

1/τphoton =

√
A ln 2

h̄

∣∣∣∣∂ω01

∂ f

∣∣∣∣ , (12)

as shown in figures 7(b) and (d). In both devices, the fitting looks good, and the fitting parameter
A is determined to be 6.6 × 10−6 and 6.4 × 10−6 for devices B and C, respectively. These values
are of the same order as those reported previously [20–22], supporting the scenario of dephasing
due to the 1/ν flux noise.

As shown in the figure, τecho saturates at ∼1 µs at f = 0.5. Note that τecho is the pure
dephasing time and should not be limited by 2T1. One possible source of the limit is the
dephasing induced by the fluctuations of the photon number in the resonator [1, 23–25]. In
the present devices, the cavity decay rate (κ/2π = fr/Q) is about 15 MHz, and the qubit decay
rate (γ /2π = T −1

1 /2π ) is about 230 kHz. Thus, devices B and C are in the strong-dispersive
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Figure 7. Flux bias dependence of the coherence times. In (a) and (c), the energy
relaxation time T1 and the echo decay time τecho are plotted as a function of the flux bias
f for devices B and C, respectively. In the figures, qubit |0〉–|1〉 transition frequency
ω01/2π obtained by the spectroscopy measurement is plotted by the black curves.
Theoretical prediction for T1 limited by the single-mode Purcell effect is plotted by
the blue curves. In (b) and (d), 1/τecho is plotted as a function of f for devices B and C,
respectively. The red curves represent the |∂ω01/∂ f | fitting.

regime [26], which means that 2χ > κ, γ . As shown in [25], the dephasing rate due to the
photon number fluctuations in the strong-dispersive regime is given by

τ−1
photon = κ[(〈n〉 + 1)N + 〈n〉(N + 1)], (13)

where 〈n〉 is the mean photon number in the resonator and N corresponds to the N -photon
resonator state. Since the present data were measured using the fundamental qubit transition
frequency (N = 0),7 τ−1

photon is simply given by κ〈n〉, which does not depend either on χ or f .
To account for the τecho of 1 µs with given κ , 〈n〉 of 0.01 (or the effective temperature Teff of the
resonator of 0.1 K with the assumption that 〈n〉 = [exp (h̄ωr/kBTeff) − 1]−1) is needed, although
at present we do not precisely know the actual value of 〈n〉.

6. Observation of the discrete ac-Stark effect

As shown in the previous section, devices B and C are in the strong-dispersive regime [26].
The hallmark of this regime is the appearance of separate spectral lines of the qubit transition
frequency, each of which corresponds to a particular photon number state of the resonator.
This effect can be applied to characterize the photon statistics in the resonator [26]. Here, we
investigate this effect using device C.

We measured the reflection coefficient 0 of the probe field (frequency ωp/2π and power
Pp) applied via the readout port, by varying the frequency ωd/2π and the power Pd of the qubit

7 In the spectroscopy measurement, we observed separate qubit spectral lines corresponding to N = 0, 1 and 2 as
shown in the next section.
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Figure 8. Observation of the discrete ac-Stark effect. The magnitude of the reflection
coefficient 0 is plotted as a function of the power Pd and the frequency ωd of the qubit
drive. The frequency of the probe microwave is fixed at ωr/2π = 10.274 GHz, and its
power is fixed at (a) −140 dBm and (b) −130 dBm. Panels (c) and (d) are the numerical
simulations corresponding to (a) and (b), respectively. The white arrows indicate the
qubit frequency when the resonator contains N photons (N = 0, 1, 2).

drive field applied via the control port. Figure 8 shows |0| as a function of Pd and ωd, where ωp

is fixed at ωr/2π = 10.274 GHz. Pp is −140 dBm for figure 8(a) and −130 dBm for figure 8(b),
which correspond to the mean photon number in the resonators of 0.06 and 0.6, respectively.
In the strong-dispersive regime, the qubit transition frequency depends on the resonator photon
number N as ω01 − 2Nχ (N = 0, 1, 2, . . .), and we expect to observe separate spectral lines
at these frequencies. In figure 8(a), we observe a spectral line at ωd/2π = 5.350 GHz at low
Pd. This frequency is equal to ω01/2π (see table 2) and corresponds to the zero-photon state.
As we increase Pd, another spectral line at 5.279 GHz appears. This frequency is equal to
(ω01 − 2χ)/2π and corresponds to the one-photon state. The result of the same measurement
with 10 dB higher Pp is shown in figure 8(b). The larger Pp produces the population of higher
photon-number states. Indeed, we observe more spectral lines up to the two-photon state.

Note that the observed spectral lines are dips, not peaks. Without the qubit drive, a
shallow (< 1 dB) dip is observed at ωr (data not shown) due to the finite internal quality factor
(∼3 × 104) of the resonator. Thus, a small increase in |0| is naively expected when the qubit
excitation induces the dispersive shift of the cavity resonance, although the expected magnitude
of the signal (< 1 dB) is anyway much smaller than that observed here. The origin of these deep
dips is inelastic scattering [27], which is intuitively understood as follows.

Figure 9 shows the level structure of the qubit–resonator system in the dispersive regime
in a frame rotating at the qubit drive frequency ωd. Here, we consider only the lowest two levels
for the qubit, |0〉q and |1〉q: the higher levels do not play an essential role here, except that
they enhance the magnitude of the dispersive level shift [13]. Figure 9(a) represents the energy
diagram when the qubit drive is turned off. The label for each level |m, n〉 represents the state
where the qubit is in the mth state and the resonator is in the nth state. Note that |m, n〉 is not a
simple product of Fock states of the uncoupled qubit and the resonator due to the coupling gi j .
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Figure 9. Level structure of the driven qubit–resonator system in the frame rotating at
ωd. The blue arrows indicate the allowed microwave transitions. Since the cavity decay
rate is much larger than the qubit decay rate, only the transitions induced by the probe
field are indicated. (a) Without driving (E = 0). The microwave transitions occur only
vertically. (b)–(d) With driving (E 6= 0). The drive frequency is tuned at ωd = ω01 in (b),
ωd = ω01 − 2χ in (c) and ωd = ω01 − 4χ in (d). Oblique transition paths are generated
by the mixing induced by the resonant driving of the qubit. Yellow boxes indicate the
degenerate two levels, which are mixed strongly by the drive. The red arrow in (b)
represents the Raman transition induced by the probe microwave field tuned at ωr.

However, in the dispersive regime, gi j mixes the two states |i〉q|n + 1〉r and | j〉q|n〉r only slightly
and produces a dispersive level shift. As a result, the level spacings of the left ladder (|0〉q)
and the right ladder (|1〉q) in figure 9(a) become different. Since there is no qubit drive, the
microwave transition is of cavity origin and occurs vertically within each ladder. The probe
field, which is adjusted at the transition frequency of the left ladder, is then scattered elastically.

In contrast, when the qubit drive is turned on, state mixing between the two ladders can
happen. For example, when ωd = ω01, |0, 0〉 and |1, 0〉 become degenerate (figure 9(b), yellow
box), and these two states mix strongly. This gives rise to a new radiative decay path from the
first excited state of the left ladder (originally |0, 1〉) to the ground state of the right ladder
(originally |1, 0〉). Accordingly, the probe field can induce the Raman transition (red arrow in
figure 9(b)). This inelastic scattering results in the reduction of the reflection coefficient. We can
expect a similar reduction in |0| when ωd is adjusted to be ω01 − 2Nχ as shown in figures 9(c)
and (d) for N = 1 and 2, respectively. As we increase the probe power and accordingly the mean
photon number in the resonator, we are able to see the effect for larger N , which is what we
observed in figure 8(b).

To understand the experimental results more quantitatively, we analyzed the microwave
response of this system using a full-quantum theoretical model in which the qubit, the resonator
and the propagating microwave modes are treated quantum mechanically, and calculated the
reflection coefficient |0| (figures 8(c) and (d)) assuming the same parameter values in the
experiment. The details of the calculation are summarized in appendix D. We observe fairly
good agreement between the experiment and the theory.

7. Conclusion

In conclusion, we studied systematically the system where a superconducting flux qubit
is capacitively coupled to an LC resonator. In all three devices with different coupling

13



New J. Phys. 16 (2014) 015017 T Yamamoto et al

capacitances, the dispersive shifts are enhanced by the effect of the straddling regime, which is
quantitatively reproduced by the theory. We showed by numerical calculation that the capacitive
coupling has two effects on the dispersive shift, namely, to reduce the qubit anharmonicity and
to produce the large matrix element g12, both of which lead to the large enhancement in χ .
We investigated the coherence properties in these devices. Even in the device with the largest
Cc (device C) the observed T1 is one order below the Purcell limit. We also showed that the
flux dependence of the echo dephasing is consistent with the low-frequency flux noise. We also
demonstrated the discrete ac-Stark effect using the device in the strong-dispersive regime. The
results can be explained by the inelastic scattering of the microwave incident on the resonator,
and well reproduced by the numerical calculations.
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Appendix A. Single flux qubit with non-negligible loop inductance

Here, we derive the Hamiltonian and the central equation for a single flux qubit, where we
explicitly take into account the loop inductance. The derivation is based on [28], but with a
difference that the periodicity of the potential terms in the Hamiltonian is taken into account.
Probably because of this difference, the calculated energy bands do not have the doublet
structure reported in [28].

First, we consider a single 3JJ flux qubit with a loop inductance as shown in figure A.1(a).
From the flux quantization,

δ1 + δ2 + δ3 − δ = 2π f. (A.1)

We introduce a dimensionless parameter representing the ratio between the loop inductance and
the Josephson inductance

βL ≡
2π Lq

80

( 1

I0
+

1

I0
+

1

α I0

)−1
(A.2)

=
α

2α + 1

Lq

L J
, (A.3)

where

L J ≡
80

2π

1

I0
. (A.4)
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Figure A.1. The circuit diagram of (a) a single 3JJ flux qubit with non-negligible loop
inductance and (b) a flux qubit inductively coupled to an LC resonator.

Following [28], we perform the following variable transformations:

δt =
−α

1 + 2α
δ, (A.5)

δs =
1

2(1 + 2α)
[2α(δ3 − 2π f ) − δ1 − δ2], (A.6)

δa = (δ1 − δ2)/2, (A.7)

or equivalently

δ1 = δa − δt − δs, (A.8)

δ2 = −(δa + δt + δs), (A.9)

δ3 = 2π f − δt/α + 2δs. (A.10)

The potential energy of the JJs is expressed by

UJ = −EJ[cos(δa − δs − δt) + cos(δa + δs + δt) + α cos(2π f − δt/α + 2δs)] (A.11)

= −
EJ

2

[
ei(δa+δs)eiδt + e−i(δa−δs)eiδt + ei(δa−δs)e−iδt + e−i(δa+δs)e−iδt

]
− α

EJ

2

[
ei2δsei(2π f −δt/α) + e−i2δse−i(2π f −δt/α)

]
, (A.12)

where EJ = 80 I0/(2π). The energy of the loop inductance is

Ul =
1

2Lq

(80

2π

)2
δ2 (A.13)

=
EJ(1 + 2α)

2αβL
δ2

t . (A.14)

The kinetic energy of the JJs is

T =
CJ

2

(80

2π

)2
[δ̇1

2
+ δ̇2

2
+ αδ̇3

2
], (A.15)

where CJ is the capacitance of the larger JJ. Using equations (A.8) and (A.10)

T =
CJ

2

(80

2π

)2[
2δ̇a

2
+ 2(1 + 2α)δ̇s

2
+

1 + 2α

α
δ̇t

2
]
. (A.16)
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Note that there are no cross terms such as δ̇aδ̇s thanks to the variable transformation. The
Lagrangian of the system is

Lq = T − UJ − Ul (A.17)

and the canonical momentum is

pi =
∂Lq

∂δ̇i
, (A.18)

where i = a, s and t. Finally, the Hamiltonian is given by

Hq =

∑
i

pi δ̇i −Lq (A.19)

=
2Ec

h̄2

(
p2

a +
1

1 + 2α
p2

s +
2α

1 + 2α
p2

t

)
+ UJ + Ul, (A.20)

where Ec is defined for a single charge, namely Ec = e2/(2CJ). This Hamiltonian can be
regarded as a 3JJ flux qubit without the loop inductance interacting with a harmonic oscillator.
The harmonic oscillator part (third and fifth terms in equation(A.20)) can be transformed as

2Ec

h̄2

2α

1 + 2α
p2

t +
EJ(1 + 2α)

2αβL
δ2

t =
p2

t

2m t
+

1

2
m tω

2
t δ

2
t , (A.21)

m t =
h̄2

8Ec

1 + 2α

α
, (A.22)

ωt =
2Ec

h̄

√
2EJ

βL Ec
. (A.23)

As in [28], we choose for our basis functions the product states

|φklm〉 = |φa
k〉|φ

s
l 〉|φ

t
m〉, (A.24)

where the first two states are plane waves

|φa
k〉 = (2π)−1/2e−ikδa, (A.25)

|φs
l 〉 = (2π)−1/2e−ilδs (A.26)

and the third state is a harmonic oscillator wave function in δt

|φt
m〉 =

[ m tωt

22mπ h̄(m!)2

]1/4
Hm

[√m tωt

h̄
δt

]
exp

[
−m tωtδ

2
t

2h̄

]
, (A.27)

where Hm[δ] is the mth Hermite polynomial. The wavefunction of the Hamiltonian is given by

|φ〉 =

∑
(k,l)∈Eg

∑
m

C(k, l, m)|φklm〉, (A.28)

where the first sum of k and l is taken for the reciprocal lattice of UJ(k, l) [29]. The qubit
potential energy has the following translational symmetry with respect to δa and δs

δa → δa + 2π, (A.29)
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Figure A.2. (a) Real space lattice of UJ and (b) the reciprocal lattice. The arrows
represent the unit vectors.

δs → δs + 2π, (A.30)

δa, δs → δa + π, δs + π. (A.31)

Thus, its symmetry forms a two-dimensional face-centered lattice as shown in
figure A.2(a). It is not a simple square lattice, which is due to the variable transformation.
The corresponding reciprocal lattice is also a face-centered lattice shown in figure A.2(b). Thus,
the sum for (k, l) in equation (A.28) must be taken for this lattice, and how many points we
should take depends on what accuracy we need. Using pi = −ih̄ ∂

∂δi
, the Schrödinger equation

H|φklm〉 = ε|φklm〉 is written as∑
′
[
2Eck

2 +
2Ec

1 + 2α
l2 + mh̄ωt

]
C(k, l, m)|φklm〉 −

∑
′

UJC(k, l, m)|φklm〉

= ε
∑

′

C(k, l, m)|φklm〉, (A.32)

where
∑

′ means
∑

(k,l)∈Eg

∑
m . By multiplying 〈φk′l ′m′| on both sides, we obtain the following

central equation:[
2Eck

′2 +
2Ec

1 + 2α
l ′2 + m ′h̄ωt

]
C(k ′, l ′, m ′) −

EJ

2

∑
m

[
C(k ′

− 1, l ′
− 1, m)〈φt

m′|eiδt|φt
m〉

+ C(k ′ + 1, l ′
− 1, m)〈φt

m′|eiδt|φt
m〉 + C(k ′

− 1, l ′ + 1, m)〈φt
m′|e−iδt|φt

m〉

+C(k ′ + 1, l ′ + 1, m)〈φt
m′|e−iδt|φt

m〉
]
− α

EJ

2

∑
m

[
C(k ′, l ′

− 2, m)ei2π f

×〈φt
m′|e−iδt/α|φt

m〉 + C(k ′, l ′ + 2, m)e−i2π f
〈φt

m′|eiδt/α|φt
m〉

]
= εC(k ′, l ′, m ′).

(A.33)

To solve the above equation, we use the following formula [30]:

〈n|ecx̂
|m〉 = (m!n!)−1/2e

h̄c2
4mtωt

min(m,n)∑
j=0

j!

(
m
j

) (
n
j

) ( h̄

2m tωt

)(m+n−2 j)/2
cm+n−2 j , (A.34)
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where |m〉 is the mth eigenfunction of the harmonic oscillator and c is a constant which can be
a complex number. For example, to calculate 〈φt

m′|eiδt|φt
m〉, we use the above formula with

c = i (A.35)

h̄

2m tωt
=

2α

1 + 2α

√
βL Ec

2EJ
. (A.36)

By numerically solving the central equation (A.33) for (k ′, l ′) in the subset of the reciprocal
lattice and m ′ from 0 to a certain number, we obtain the energy band diagram for a flux qubit
with non-negligible loop inductance.

Appendix B. Flux qubit inductively coupled to an LC resonator

Next, we consider a flux qubit inductively coupled to an LC resonator as shown in figure 1(b).
The Hamiltonian consists of three parts, namely,

HL =Hl
q +Hl

r +Hl
c. (B.1)

Hl
q is already shown in equation (A.20). Hl

r is simply given by

Hl
r = Er

(
a†a +

1

2

)
, (B.2)

where Er = h̄/
√

L rCr, and a (a†) is the annihilation (creation) operator of the photons in the
resonator. Hl

c is given by

Hl
c =

M

L rLq

(80

2π

)2
δrδ. (B.3)

Using equations (A.3), (A.5) and

δr

L r
=

(2π

80

)√
Er

2L r
(â† + â), (B.4)

we obtain

Hl
c = −M

EJ

βL

(2π

80

)√
Er

2L r
(â† + â)δt (B.5)

= −
π

βL

EJ

EM

√
Er ELr(â

† + â)δt, (B.6)

where we defined

EM ≡
82

0

2M
, (B.7)

ELr ≡
82

0

2L r
. (B.8)

The matrix elements 〈φklm|δt|φk′l ′m′〉 are given by

〈φklm|δt|φk′l ′m′〉 = δk,k′δl,l ′〈φ
t
m|δt|φ

t
m′〉. (B.9)
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Figure C.1. Numerical calculations for the inductively coupled system of the qubit and
the resonator. Panels (a) and (d) show the energy gap from the ground state, (b) and
(e) show the coupling strength |gi j | = |〈i |Hc| j〉| and (c) and (f) show the dispersive
shift χi j . For (a)–(c), EJ = 148, Ec = 3.29 GHz, α = 0.671, Lq = 50.0, M = 10.2 pH
and ωr/2π = 10.3 GHz are used. For (d)–(f), EJ = 148, Ec = 1.80 GHz, α = 0.602,
Lq = 50.0, M = 12.0 pH and ωr/2π = 10.3 GHz are used.

And the last term is given by

〈φt
m|δt|φ

t
m′〉 =


√

m ′ + 1
√

2α

1+2α

(
βL Ec

2EJ

)1/4
(m = m ′ + 1),

√
m ′

√
2α

1+2α

(
βL Ec

2EJ

)1/4
(m = m ′

− 1),

0 (m 6= m ′
± 1).

(B.10)

In the calculation of figure 5(d), 121 reciprocal lattice points are used for k and l, while m
is taken from 0 to 2. The number of bases used for the resonator state is 5.

Appendix C. Numerical calculation with different parameters

In this appendix, we show the results of the numerical calculation for the inductively coupled
system of the qubit and the resonator, but with different parameters from those used in figure 5.
Figures C.1(a)–(c) show the flux bias dependence of the excitation energy from the ground
state, the coupling strength |gi j | and the dispersive shift χi j , respectively. Here, we adjusted the
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Figure D.1. Theoretical model. A qubit is coupled dispersively to a resonator, which is
further coupled to the readout line (waveguide 1). The qubit is driven by a microwave
field propagating along the qubit control line (waveguide 2).

qubit parameter α in such a way that ω01 is almost equal to that for the capacitive coupling case
(figures 5(a)). Also, the mutual inductance M is adjusted so that |g01| becomes almost equal to
that for the capacitive coupling case (figure 5(b)). Similar to the results shown in figures 5(e) and
(f), |g12|/|g01| and χtotal are much smaller than those for the capacitive coupling case. We can
also adjust the qubit parameters (Ec and α) such that both ω01 and ω12 are similar to those for
the capacitive coupling case. As shown in figures C.1(d)–(f), the overall behavior is the same,
which indicates that the smaller |g12|/|g01| is not due to the larger anharmonicity.

Appendix D. Theory of microwave response of the qubit–resonator system

In this appendix, we analyze the microwave response of the present qubit–resonator system.
Figure D.1 is a schematic of the theoretical model, which consists of a superconducting qubit,
a resonator and waveguides. The lowest two levels of the qubit (|0〉 and |1〉) are relevant here
in essence. However, to account for the dispersive level shift due to the second excited state
|2〉 [13], we incorporate this level in our model. We refer to the readout line coupled to the
resonator as waveguide 1, and the qubit control line as waveguide 2. We apply a monochromatic
field E(t) = Ee−iωdt to drive the qubit through waveguide 2. By defining v as the microwave
velocity in the waveguides, the Hamiltonian of the system is

H(t) =Hsys(t) +Hdamp, (D.1)

Hsys(t)/h̄ =

∑
j

ω̄ jσ j j + ω̄ra
†a +

∑
i, j

gi j(σ j ia + a†σi j) +
∑
i, j

√
γi j [E(t)σ j i + E∗(t)σi j ], (D.2)

Hdamp/h̄ =

∫
dk

[
vkb†

kbk +
√

vκ/2π(a†bk + b†
ka)

]
+

∫
dk

[
vkc†

kck +
∑

i, j

√
vγi j/2π(σ j i ck + c†

kσi j)
]
, (D.3)

where σi j = |i〉〈 j | is the transition operator of the qubit, a is the annihilation operator of the
resonator and bk (ck) is the annihilation operator of the photon propagating in waveguide 1
(2) with wavenumber k. ω̄ j is the bare eigenenergy of the j th qubit level with ω̄0 = 0 (the
eigenenergy of Hc

q, equation (2)), ω̄r is the bare resonator frequency (h̄ω̄r = Er
√

Y/X (see
equation (3))), gi j is the qubit–resonator coupling, κ is the resonator decay rate and γi j is the
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qubit decay rate for the | j〉 → |i〉 transition. From the parity selection rule and the rotating-wave
approximation, gi j and γi j are non-zero only for (i, j) = (0, 1) and (1, 2).

By switching to a frame rotating at the drive frequency ωd, the Hamiltonian becomes static.
Hsys is then given by

Hsys/h̄ =

∑
j

(ω̄ j − jωd)σ j j + (ω̄r − ωd)a
†a +

∑
i, j

[
gi j(σ j ia + a†σi j) +

√
γi j(Eσi j + E∗σi j)

]
.

(D.4)

Hdamp remains unchanged except that the photon frequency is measured from ωd. We define the
dressed states of the qubit–resonator system as the eigenstates of Hsys. We denote them by | j̃〉
and their energies by ω̃ j ( j = 1, 2, . . .) from the lowest. | j̃〉 corresponds to the states shown in
figures 9(b)–(d), or the states in figure 9(a) if E = 0. In the dressed-state basis, the Hamiltonian
of the overall system is rewritten as

H=Hsys +Hdamp, (D.5)

Hsys/h̄ =

∑
j

ω̃ j σ̃ j j , (D.6)

Hdamp/h̄ =

∫
dk

[
vkb†

kbk +
∑

i, j

√
vκ̃i j/2π(σ̃i j bk + b†

k σ̃ j i)
]

+
∫

dk
[
vkc†

kck +
∑

i, j

√
vγ̃i j/2π(σ̃i j ck + c†

k σ̃ j i)
]
, (D.7)

where σ̃i j = |ĩ〉〈 j̃ |, κ̃i j (γ̃i j ) is the radiative decay rate into waveguide 1 (2) for the | j̃〉 → |ĩ〉
transition. They are, respectively, given by

κ̃i j = κ|〈 j̃ |a†
|ĩ〉|2, (D.8)

γ̃i j =

∣∣∣∑m,n
√

γmn〈 j̃ |σmn|ĩ〉
∣∣∣2

. (D.9)

We work in the dressed-state basis to analyze the microwave response of the system to a
probe field applied from waveguide 1. From equation (D.5), the Heisenberg equation for σ̃i j is

d

dt
σ̃i j =

∑
m,n

[
ηi jmnσ̃mn + ξ κ

i jmnσ̃mnbin(t) + ξ κ
j inmb†

in(t)σ̃mn + ξ
γ

i jmnσ̃mncin(t) + ξ
γ

j inmc†
in(t)σ̃mn

]
,

(D.10)

where bin (cin) is the input field operator for waveguide 1 (2). By denoting Sµ =
∑

i, j

√
µ̃i j σ̃ j i

(µ = κ, γ ), the coefficients ηi jmn and ξ
µ

i jmn are given by

ηi jmn = i(ω̃i − ω̃ j)δimδ jn −

∑
µ=κ,γ

〈m̃|[σ̃i j , S†
µ]Sµ + S†

µ[Sµ, σ̃i j ]|ñ〉/2, (D.11)

ξ
µ

i jmn = i
√

v〈m̃|[S†
µ, σ̃i j ]|ñ〉. (D.12)

We apply a probe field with amplitude F and frequency ωp from waveguide 1, while we apply
no probe field from waveguide 2. Therefore, 〈bin(t)〉 = Fe−i(ωp−ωd)t and 〈cin(t)〉 = 0. Note that
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the probe frequency ωp is measured from the drive frequency ωd in the rotating frame. The
stationary solution of the equation (D.10) is then written as

〈σ̃i j〉 =

∑
m=0,±1,...

Am
i j e

im(ωp−ωd)t . (D.13)

Substituting equation (D.13) into equation (D.10) and solving the linear simultaneous equations
together with the condition that Tr(σ̃ ) = 1, i.e.

∑
j Am

j j = δm0, we numerically determine Am
i j .

Reliable numerical results are obtained by setting −26 m 6 2 and 16 i, j 6 8. The output field
amplitude 〈bout(t)〉 for waveguide 1 is related to the input one by 〈bout(t)〉 = 〈bin(t)〉 − i〈Sκ(t)〉.
The reflected field contains high-order harmonics due to the nonlinear effect. However, in the
reflectivity measurement, only the field at the fundamental frequency (m = −1) is relevant. The
reflection coefficient is defined by 0 = 〈bout(t)〉m=−1/〈bin(t)〉m=−1. Therefore,

0 = 1 − i
∑
i, j

√
κ̃i j A−1

j i /F. (D.14)

In the numerical simulation, we have chosen the bare parameters of the qubit–cavity
system (ω̄1, ω̄2, g01 and g12) to reproduce the following experimentally measured parameters,
ω01/2π = 5.35 GHz, ωr/2π = 10.27 GHz and 2χ/2π = 71 MHz. We have set κ/2π = 15 MHz
as stated in the main text. We employed the qubit radiative decay rate into waveguide 2 as γ10,
which is estimated to be γ10/2π = 88 Hz from the Rabi oscillation measurement. We determined
F based on the experimental parameter Pp. γ21 has almost no effect on the numerical results.
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