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In one-dimensional optical setups, light-matter interaction is drastically enhanced by the interference

between the incident and scattered fields. Particularly, in the impedance-matched �-type three-level

systems, a single photon deterministically induces the Raman transition and switches the electronic state

of the system. Here, we show that such a� system can be implemented by using dressed states of a driven

superconducting qubit and a resonator. The input microwave photons are perfectly absorbed and are

down-converted into other frequency modes in the same waveguide. The proposed setup is applicable to

the detection of single microwave photons and the swapping of the photon and matter qubits.

DOI: 10.1103/PhysRevLett.111.153601 PACS numbers: 42.50.Pq, 03.67.Lx, 85.25.Cp

In one-dimensional optical setups, radiation from a
quantum emitter is guided completely to specified one-
dimensional propagating modes. We can realize such set-
ups in a variety of physical systems, such as optical cavity
quantum electrodynamics (QED) systems using atoms or
quantum dots [1–3] and circuit QED systems using super-
conducting qubits [4–6]. When we apply a field to excite
the emitter through the one-dimensional mode in these
setups, the incident field inevitably interferes with the field
scattered by the emitter due to the low dimensionality [7].
As a result, we can realize unique optical phenomena that
are not achievable in three-dimensional free space. A
classical example is the complete transmission of a reso-
nant field through a two-sided cavity, in which reflection
from the cavity is forbidden due to the destructive inter-
ference between the incident field and the cavity emission
in the reflection direction. Such one-dimensional optical
setups in which reflection from the emitter is forbidden are
called impedance matched, in analogy with properly ter-
minated electric circuits [8,9]. Recently, perfect reflection
of the incident field by a single emitter has been confirmed
in both optical cavity QED and circuit QED systems [2,4].
Here, transmission is forbidden by the destructive interfer-
ence occurring in the transmission direction.

In this study, we investigate a three-level � system
interacting with a semi-infinite one-dimensional field in a
reflection geometry (Fig. 1). We denote the three levels of
the � system by jgi, jmi, and jei from the lowest. We
assume that jmi decays to jgi with a finite lifetime and
therefore that the system is in jgi when stationary. When a
single photon resonant to the jgi ! jei transition is input,
there are three possible processes: (a) simple reflection
without exciting the system, (b) elastic scattering, induc-
ing the jgi ! jei ! jgi transitions, and (c) inelastic scat-
tering, inducing the jgi ! jei ! jmi ! jgi transitions.
Destructive interference occurs here between processes

(a) and (b). In particular, they cancel each other completely
when the two decay rates from the top level jei are iden-
tical (�eg ¼ �em) and the coherence length of the input

photon is sufficiently long. As a result, the input photon is
down-converted deterministically, inducing the Raman
transition in the system [Fig. 1(c)] [10]. This is the imped-
ance matching in the � system. The charm of such
impedance-matched systems is the deterministic electronic
dynamics induced by single photons, which enables novel
quantum technologies. Based on such � systems, single-
photon transistors, quantum memories, and optical quan-
tum gates have been theoretically proposed [11–16].
In superconducting qubits, we use several discrete levels

formed at the bottom of the anharmonic potential as an
artificial atom. We usually make the potential symmetric in
order to suppress dephasing. Then, each eigenstate has a
definite parity and the qubit functions as a ladder-type
multilevel system. We can also make the potential asym-
metric, for example, by introducing flux bias in flux qubits.
The lowest three levels then function as a � system, which
has been used to demonstrate, for example, lasing and
cooling of qubits [17–19]. However, it is difficult to satisfy
the impedance-matching condition, i.e., identical decay
rates from the second excited state, in the � systems thus
created.
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FIG. 1 (color online). Interaction between a � system and a
photon propagating in a semi-infinite one-dimensional wave-
guide: (a) simple reflection, (b) elastic scattering, and
(c) inelastic scattering. �ij (i, j ¼ e, m, g) denotes the radiative

decay rate for the jii ! jji transition.
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In this study, we propose a practical scheme for imple-
menting an impedance-matched� system by using dressed
states of a qubit and a resonator. The schematic of the
considered setup is shown in Fig. 2. A superconducting
qubit is coupled to a resonator, which is further coupled to
a semi-infinite waveguide (waveguide 1). Through another
waveguide (waveguide 2), a drive fieldEðtÞ is applied to the
qubit. The qubit functions as a two-level system (j0i and
j1i). Setting @ ¼ v ¼ 1, where v is the microwave velocity
in the waveguides, the Hamiltonian of the system is

H ðtÞ ¼ H sysðtÞ þH damp; (1)

H sysðtÞ ¼ !q�
y�þ!ra

yaþ gð�yaþ ay�Þ
þ ffiffiffiffi

�
p ½EðtÞ�y þ E�ðtÞ��; (2)

H damp ¼
Z

dk½kbyk bk þ
ffiffiffiffiffiffiffiffiffiffiffiffi
�=2�

p ðaybk þ byk aÞ�

þ
Z

dk½kcyk ck þ
ffiffiffiffiffiffiffiffiffiffiffiffi
�=2�

q
ð�yck þ cyk�Þ�: (3)

The meanings of the operators are as follows: � (a) is the
annihilation operator of the qubit (resonator), and bk (ck) is
the photon annihilation operator in waveguide 1 (2) with
wave number k. The meanings of the parameters are as
follows: !q (!r) is the resonance frequency of the qubit

(resonator), g is the qubit-resonator coupling, and � (�) is
the decay rate of the resonator (qubit) into waveguide 1 (2).
For simplicity, � is assumed to include the nonradiative
decay of the qubit. We consider the case in which the qubit
and the resonator are highly detuned (j!r �!qj � g) and

are coupled dispersively. The drive field is monochromatic
EðtÞ ¼ Ee�i!dt and is close to the resonance of the qubit.

By switching to the frame rotating at the drive frequency
!d, the Hamiltonian becomes static. Then, H sys ¼
ð!q � !dÞ�y� þ ð!r � !dÞaya þ gð�ya þ ay�Þ þ
ffiffiffiffi
�

p ðE�y þ E��Þ�. H damp remains unchanged, except

that the photon frequency is measured from!d. We denote
the eigenstates of H sys by j~ji and their energies by ~!j

(j ¼ 1; 2; . . . ) from the lowest. Using the qubit-resonator
eigenstates, the Hamiltonian is rewritten as

H ¼ H sys þH damp; (4)

H sys ¼
X

j

~!j ~�jj; (5)

H damp¼
Z
dk

�
kbyk bkþ

X

i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�ij=2�

q
ð~�ijbkþbyk ~�jiÞ

�

þ
Z
dk

�
kcyk ckþ

X

i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�ij=2�

q
ð~�ijckþcyk ~�jiÞ

�
;

(6)

where ~�ij ¼ j~iih~jj and ~�ij (~�ij) is the radiative decay rate

into waveguide 1 (2) for the j~ii ! j~ji transition. ~�ij and ~�ij

are, respectively, given by

~�ij ¼ �jh~ijayj~jij2; (7)

~�ij ¼ �jh~ij�yj~jij2: (8)

For g ¼ E ¼ 0, the eigenstates of H sys are simply the

product Fock states of the qubit and the resonator jm; ni ¼
jmiqjnir (m ¼ 0, 1 and n ¼ 0; 1; . . . ). The qubit-resonator

coupling g mixes these states only slightly due to the large
detuning and brings about dispersive level shifts.Within the
second-order perturbation, the eigenenergies are given by

!j0;ni ¼ nð!r �!d þ �Þ; (9)

!j1;ni ¼ !q �!d � �þ nð!r �!d � �Þ; (10)

where � ¼ g2=ð!r �!qÞ. In this study, we investigate the
case in which a weak probe field is input fromwaveguide 1.
Therefore, only the four lowest levels (j0; 0i, j1; 0i, j0; 1i,
and j1; 1i) are relevant. Their energy diagrams are shown in
Fig. 3 forE ¼ 0. Because of the dispersive level shifts, with
the proper choice of the drive frequency !d (!q � 3�<

!d <!q � �), the level structure becomes nested, i.e.,

!j0;0i <!j1;0i <!j1;1i <!j0;1i [Fig. 3(a)]. When !d is

out of this range, the level structure becomes un-nested
[Fig. 3(b)].We refer to the former (latter) case as the nesting
(un-nesting) regime hereafter.
Next, we discuss the effects of driving. The drive field

mixes the two lower (higher) levels in Fig. 3 to form

dressed states j~1i and j~2i (j~3i and j~4i). Therefore, neglect-
ing the slight mixing originating in the dispersive coupling,

dressed states are roughly written as j~1i ’ cos�j0; 0i �
sin�j1; 0i, j~2i ’ sin�j0; 0i þ cos�j1; 0i, j~3i’ cos�j0;1i�
sin�j1;1i, and j~4i ’ sin�j0; 1i þ cos�j1; 1i, where � and
� depend on the frequency !d and the power jEj2 of the
drive field. From Eq. (7), the radiative decay rates ~�ij into

waveguide 1 are given by ~�31 ’ ~�42 ’ �cos2ð�� �Þ, and
~�32 ’ ~�41 ’ �sin2ð�� �Þ, and others vanish. For weak
drive, ð�;�Þ ’ ð0; �=2Þ, and accordingly, ~�32 ’ ~�41 ’ �
in the nesting regime [Fig. 3(a)], whereas ð�;�Þ ’ ð0; 0Þ,
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FIG. 2 (color online). Schematic of the considered setup. A
qubit is coupled dispersively to a resonator, which is further
coupled to a semi-infinite waveguide (waveguide 1). The qubit is
driven by a microwave field propagating along another wave-
guide (waveguide 2).
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and accordingly, ~�31 ’ ~�42 ’ � in the un-nesting regime
[Fig. 3(b)]. In contrast, for strong drive, where the Rabi
splittings overwhelm the dispersive level shifts, ð�;�Þ ’
ð�=4; �=4Þ and therefore ~�31 ’ ~�42 ’ � in both nesting
and un-nesting regimes. In Figs. 4(a) and 4(b), ~�31, ~�32,
~�41, and ~�42 are evaluated rigorously from Eq. (7), using
the Rabi frequency �R ¼ ffiffiffiffi

�
p jEj as a measure of the drive

power. We observe that ~�31 ’ ~�42 and ~�32 ’ ~�41 at any
drive power in accordance with the above discussion.
Remarkably, inversion of these decay rates occurs in the
nesting regime [Fig. 4(a)], and the two radiative decay

rates from j~3i or j~4i become identical with the proper
choice of the drive power (�R=2� � 19 MHz). At this
drive power, the qubit-resonator system functions as an

impedance-matched � system, with jgi ¼ j~1i, jmi ¼ j~2i,
and jei ¼ j~3i or j~4i.

In this work, we set the drive frequency close to the
lower edge of the nesting regime, i.e., !d � !q � 3�.

Then, the two upper bare states in Fig. 3 are nearly degen-
erate and are mixed strongly by the drive, whereas the two
lower bare states remain almost unmixed due to the large
detuning about 2�: jgi ’ j0; 0i (qubit ground state) and
jmi ’ j0; 1i (qubit excited state). Therefore, the decay rate
�mg is of the qubit origin and �mg ’ �, while �eg and �em

are of the cavity origin and �eg ¼ �em ’ �=2. If the drive

frequency is closer to the center of the nesting regime, i.e.,
!d � !q � 2�, a stronger drive is required to generate the

dressed states, since both the lower and upper states have
large detunings about �. When !d=2� ¼ 4:9 GHz, for
example, the impedance-matching condition is satisfied
at �R=2� � 26 MHz.

In the following, we analyze the microwave response of
this qubit-resonator system to a probe field applied through
waveguide 1. From the Hamiltonian of Eq. (4), the
Heisenberg equation for ~�ij is

d

dt
~�ij ¼ i ~!ij ~�ij � ð��

ij þ ��
ijÞ=2þ i½	�yij binðtÞ

þ 	�yij cinðtÞ� � i½byinðtÞ	�ji þ cyinðtÞ	�ji�; (11)

where S
 ¼ P
m;n

ffiffiffiffiffiffiffiffiffi
~
mn

p
~�nm (
 ¼ �, �), �



ij¼ ~�ijS

y

S
þ

Sy
S
 ~�ij�2Sy
 ~�ijS
, and 	
ij ¼ ½~�ji; S
�. The input and

output field operators binðtÞ and boutðtÞ are connected by

boutðtÞ ¼ binðtÞ � iS�ðtÞ: (12)

We assume that a monochromatic probe field with ampli-
tude F and frequency !p is applied from waveguide 1,

while no probe field is applied from waveguide 2, i.e.,

hbinðtÞi ¼ Fe�ið!p�!dÞt and hcinðtÞi ¼ 0. Note that the
probe frequency !p is measured from the drive frequency

!d since we are working in the rotating frame.
We define the reflection coefficient by the ratio of

output and input amplitudes, i.e., r ¼ hboutðtÞi=hbinðtÞi.
For a weak probe, the system exhibits linear response,
and therefore r is independent of the probe power. In
Figs. 4(c) and 4(d), jrj is plotted as a function of the drive
power and the probe frequency, together with the relevant
transition frequencies between dressed states. We observe
considerable attenuation of jrj, which results from inelastic
scattering. In particular, the reflected field amplitude nearly
vanishes in the nesting regime [Fig. 4(c)] as a result of the
impedance matching. The conditions are that (i) the decay
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FIG. 3. Structure of the four lowest levels of the qubit-
resonator system for E ¼ 0: (a) Nesting and (b) un-nesting
regimes. The nesting regime is realized when the drive frequency
satisfies !q � 3�<!d < !q � �. Arrows indicate the direc-

tion of the cavity decay. Oblique decay paths (gray arrows) are
generated by the drive field (E � 0).
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FIG. 4 (color online). (a) Dependences of ~�31, ~�32, ~�41, and
~�42 on the drive power. The drive frequency is in the nesting
regime (!d=2� ¼ 4:87 GHz). The drive power is expressed in
terms of the Rabi frequency �R ¼ ffiffiffiffi

�
p jEj. The curves for ~�31

and ~�42 (~�32 and ~�41) are mostly overlapping. (b) The same plot
as (a) in the un-nesting regime (!d=2� ¼ 4:83 GHz).
(c) Reflection coefficient jrj as a function of the drive power
and the probe frequency in the nesting regime (!d=2� ¼
4:87 GHz). (d) Same plot as (c) in the un-nesting regime
(!d=2� ¼ 4:83 GHz). In (c) and (d), the probe field is weak
(jFj2 ¼ 102 photons=s) and is in the linear-response regime.
The following parameters are assumed: !q=2� ¼ 5 GHz,

!r=2� ¼ 10 GHz, g=2� ¼ 500 MHz, �=2� ¼ 20 MHz, and
�=2� ¼ 0:1 MHz.
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rates from j~3i (j~4i) to j~1i and j~2i are identical [�R=2� ’
19 MHz in Fig. 4(a)] and that (ii) the probe frequency is

tuned to ~!31 ( ~!41). Since level j~2i is almost unoccupied for
a weak probe power, no specific signal appears at ~!32 or
~!42. We observe in Fig. 4(d) that impedance matching
never occurs in the un-nesting regime.

Although the probe amplitude vanishes, this does not
imply dissipation of the probe power. Figure 5(a) plots the
power spectrum density of the output field (reflected field

in waveguide 1) Sð!Þ ¼ @!Re
R1
0 d�e�ið!�!dÞ�h~byoutðtþ

�Þ~boutðtÞi=� under the impedance-matching condition.
The input probe is tuned to ~!41ð� 2�� 10:066 GHzÞ.
However, upon the interaction with the � system, the
probe field is down-converted nearly completely and
forms a dominant peak at ~!42ð� 2�� 9:977 GHzÞ. We
define the down-conversion efficiency as the probability
to detect the down-converted photons in waveguide 1,
i.e.,

R
!H
!L

d!ð@!Þ�1Sð!Þ=jF2j, where!L;H ¼ ~!42 � 2��
30 MHz. Figure 5(b) plots the down-conversion efficiency.
We observe that, at low probe power, most input photons
are down-converted. The conversion efficiency is slightly
less than unity even in theweak-probe limit, which is due to

the j~4i ! j~3i decay. The conversion efficiency decreases as
the probe power increases. This is due to saturation of the�
system: The bottleneck process in the down-conversion

cycle j~1i ! j~4i ! j~2i ! j~1i is the j~2i ! j~1i decay, the
rate of which is approximately�. Therefore, when the input

flux exceeds��1 (jFj2 * 106 photons=s), j~2i is more popu-

lated than j~1i. Then, the probe field tuned at ~!41 tends to be
reflected without interacting with the � system. The con-
ditions to approach the unit conversion efficiency are that

(i) the j~4i ! j~2i decay dominates the j~4i ! j~3i decay,
which requires � � �, and (ii) the input field does not
saturate the � system, which requires � * jF2j.

Four final comments are in order. (i) For impedance
matching, achieving the nested energy diagram [Fig. 3(a)]
is essential, and therefore a large dispersive shift � is
advantageous [20]. In this regard, the systems in the
so-called straddling regime are promising, in which
the dispersive shift is enhanced by the presence of the
second excited state of the qubit [21,22]. Numerical
results are qualitatively unchanged if we extend the model
in this direction. (ii) When a resonant photon with
pulse length � is input from waveguide 1, it induces the
jgi ! jei ! jmi transition nearly deterministically, pro-
vided that � * ��1. For example, assuming a square pulse
with � ¼ 0:33ð0:67Þ 
s, this probability amounts to 0.9
(0.95) for �=2� ¼ 20 MHz [10]. This deterministic
Raman transition induced by single photons has wide
applications [10–16]. For example, this can be used as a
down-converter of single microwave photons [10]. Down-
conversion of single visible or infrared photons has also
been achieved as the weak-signal limit of the classical
nonlinear optics [23,24]. There, a high-power pump beam
propagates collinearly with the target photon in order to
fulfill the phase-matching condition and to maximize the
conversion efficiency. In contrast, in this work, we
apply a low-power drive field which has little spatial
overlap with the target photon. The large cooperativity of
the qubit-resonator system assures that the target photon
propagates along waveguide 1. (iii) As discussed, jgi and
jmi, respectively, correspond to the qubit’s ground and
excited states. Therefore, a single photon excites the
qubit nearly deterministically. Combining this with the
dispersive quantum-nondemolition readout of the qubit
[25,26], we can apply this setup to the detection of single
microwave photons [27–29]. A large dispersive shift is
advantageous also in this regard. The principle of photon
detection in Refs. [27–29] is also the impedance matching.
Therefore, similar detection efficiencies are expected in
both schemes after optimizing the input pulse. The practical
merit of the present scheme is the small energy dissipation
from the system upon detection, which would substantially
reduce the backaction noise and/or the dead time of the
detector. (iv) The present system functions as a SWAP

gate between the photon qubit (encoded in frequency
j ~!41i and j ~!42i) and the matter qubit (encoded in jgi
and jmi) [12,14,15]. In other words, the � system memo-
rizes the input photon qubit, and the output photon carries
the initial state of the � system. This resembles the atomic
quantum memories used in the light storage experiments
[30–32]. A characteristic of the present phenomenon is
the bidirectional nature of the quantum-state transfer. A
practical problem would be the finite lifetime of the
qubit excited state. However, we can overcome this
problem by improving the qubit’s lifetime [33]. Such swap-
ping between the photon and matter qubits would be a
crucial step for the realization of a scalable quantum
network.
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FIG. 5 (color online). (a) Power spectrum density of the output
field (reflected field in waveguide 1) under the impedance-
matching condition (!d=2� ¼ 4:87 GHz and �R=2� �
19 MHz). The input probe frequency is tuned to ~!41

(2�� 10:066 GHz), whereas the dominant peak appears at ~!42
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(b) Down-conversion efficiency as a function of the probe power.
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In summary, we proposed a circuit QED implementation
of an impedance-matched � system. We considered a
setup composed of a driven superconducting qubit, a reso-
nator, and a waveguide. The four lowest eigenstates of the

qubit-resonator system j~1i, j~2i, j~3i, and j~4i are relevant in
this study. With the proper choice of the drive frequency

and power, two radiative decay rates from j~3i or j~4i
become identical; the system then functions as an

impedance-matched � system, where jgi ¼ j~1i, jmi ¼
j~2i, and jei ¼ j~3i or j~4i. When a probe field tuned to the
jgi ! jei transition is applied from the waveguide, the
probe field loses its coherent amplitude and is down-
converted nearly completely. The present setup is appli-
cable to the detection of single microwave photons and the
swapping of the photon and matter qubits.
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