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We investigate the properties of a single photon generated by a solid-state emitter subject to strong pure dephasing.
We employ a model in which all the elements of the system, including the propagating fields, are treated quantum
mechanically. We analytically derive the density matrix of the emitted photon, which contains full information about
the photon, such as its pulse profile, power spectrum, and purity. We visualize these analytical results using realistic
parameters and reveal the conditions for maximizing the purity of generated photons.
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1. Introduction

Cavity quantum electrodynamics (QED) is currently one
of the hottest research topics in atomic physics. In particular,
quantum–mechanical interactions between atoms and cavity
photons have been intensively studied.1) Solid-state cavity
QED systems composed of semiconductor quantum dots and
cavities have recently been attracting much attention since
they are suitable for creating compact optical devices.2)

Strong coupling between a single dot and a cavity has been
confirmed through a large vacuum Rabi splitting.3–5) This
strong coupling has been applied to fabricate a single-dot
laser6) and to generate nonclassical light including single
photons.7–11) Excellent performances have been reported in
generating indistinguishable photons12,13) and entangled
photon pairs,14) both of which are useful for quantum
information processing.15)

In contrast to real atoms, semiconductor quantum dots are
strongly influenced by environmental noise sources such as
phonons and background carriers. The fluorescence spectra
of solid-state and atomic cavity QED systems are qualita-
tively different. When a solid-state system is excited by
pump light of the dot frequency, a spectral peak appears at
the cavity frequency in spite of the large detuning between
them.3–5) This phenomenon has not been reported for atomic
cavity QED systems. Further experimental studies have
characterized this peak more thoroughly16–22) and have
revealed that the fluorescence at the cavity frequency is due
to radiative decay of the dot. Subsequent theoretical studies
accounted for the pure dephasing of the dot through the
stochastic Schrödinger equation23,24) or the Master equa-
tion25–27) and successfully explained the peak at the cavity
frequency. The influence of pure dephasing on the radiative
decay of the dot can be understood in terms of the quantum
Zeno and anti-Zeno effects.25,28)

Therefore, when designing a single-photon source using
solid-state cavity QED systems, it is crucial to quantitatively
consider the pure dephasing of the dot. The performance of
such photon sources should be evaluated from two aspects.

One is the collection efficiency, namely, the probability that
the emitted photon is transferred to the intended spatial
mode (i.e., the radiation pattern of the cavity). This has been
discussed in several studies in terms of the ratio of radiative
decay rates.23,26,27) The other is the indistinguishability of
generated photons, which can be measured by two-photon
interference experiments and is evaluated by the purity.
Single photons with high purity are required for quantum
information processing, particularly for constructing scal-
able quantum circuits.

In this study, we investigate the properties of a single
photon emitted by a solid-state cavity QED system and
quantitatively observe the effects of pure dephasing. In order
to obtain full information including the indistinguishability
of generated single photons, we treat the five elements of the
overall system (the dot, the cavity, radiation leaking from the
cavity, non cavity radiation modes, and the environment
causing the pure dephasing of the dot) as active quantum–
mechanical degrees of freedom, and analytically derive the
density matrix of the emitted photon in the real-space
representation. This density matrix contains full information
about the emitted photon, including its pulse profile,
frequency spectrum, and purity. These quantities are
observed as functions of the pure dephasing rate of the
dot. We reveal the optimum condition for maximizing the
purity of the emitted photon.

2. Model

We investigate the radiative decay of an excited quantum
dot placed inside a cavity, as illustrated in Fig. 1. This solid-
state cavity QED system consists of the following five
components: (i) a quantum dot, (ii) a cavity, (iii) a photon
field leaking from the cavity (referred to as b field hereafter),
(iv) non-cavity radiation modes (c field), and (v) a reservoir
field, which causes the pure dephasing of the dot (d field).29)

The annihilation operators corresponding to these compo-
nents are respectively denoted as �, a, bk, ck, and dk, where
k is a one-dimensional wave number. Note that � is a
Pauli operator, whereas the other operators are bosonic.
Setting h� ¼ c ¼ 1, the Hamiltonian of the overall system is
given byyPresent address: Department of Physics, Tohoku University, Sendai 980-
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H ¼ H0 þH1 þH2 þH3; ð1Þ
H0 ¼ !d�

y� þ !ca
yaþ gð�yaþ ay�Þ; ð2Þ

H1 ¼
Z

dk½kbykbk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð2�Þ

p
ðaybk þ bykaÞ�; ð3Þ

H2 ¼
Z

dk½kcykck þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð2�Þ

p
ð�yck þ cyk�Þ�; ð4Þ

H3 ¼
Z

dk½kdykdk þ
ffiffiffiffiffiffiffiffiffiffi
�p=�

p
�y�ðdyk þ dkÞ�: ð5Þ

The parameters are defined as follows (see Fig. 1). !d and
!c respectively denote the resonance frequencies of the dot
and cavity, g represents the coupling between them, � is the
escape rate of cavity photons, � is the radiative decay rate of
the dot into non-cavity modes, and �p is the pure dephasing
rate of the dot. H0 describes the Rabi oscillation between the
dot and the cavity (Jaynes–Cummings Hamiltonian), H1

describes the leakage of a cavity photon to its radiation
pattern, H2 describes the radiative decay of the dot in
unintended directions, and H3 describes the pure dephasing
of the dot. We can confirm that N � �y� þ ayaþR
drebyrebr þ R

drecyrecr commutes with the Hamiltonian.
Therefore, the number of excitations is conserved in the
dot, cavity, and b and c fields.

We assume that the dot is initially (t ¼ 0) in the excited
state while the other fields are in their vacuum states. Then,
denoting the overall vacuum state by j0i, the initial state
vector is given by

j¼ii ¼ �yj0i: ð6Þ
The Hamiltonian of Eq. (1) and the initial state vector of
Eq. (6) form the basis of our analysis.

For later convenience, we introduce the real-space
representation of the b field (cavity leakage). It is defined by

ebr ¼ ð2�Þ�1=2

Z
dk eikrbk: ð7Þ

The r < 0 (r > 0) region represents the incoming (outgoing)
field.ecr and edr can be formally defined in a similar manner.
Our main concern lies in the properties of a single photon
emitted in the b field.

To model the pure dephasing of the dot, the d field
interacts with the dot so as to conserve the dot excitation.
Using Eqs. (2) and (5), the dot Hamiltonian can be rewritten
as ½!d þ f ðtÞ��y�, where f ðtÞ ¼ ffiffiffiffiffiffiffiffi

2�p

p ½ed0ðtÞ þ edy0ðtÞ� is the
fluctuation of the dot resonance frequency induced by the

d field. Using Eqs. (6) and (10), we can confirm that
h f ðtÞf ðt0Þii ¼ 2�p�ðt � t0Þ, where h� � �ii ¼ h¼ij � � � j¼ii.
Therefore, the present model assumes a white noise
spectrum for the fluctuation of the dot resonance.

3. Analysis

In this section, we present analytical results that are
rigorously derivable from the model described in Sect. 2.
We solve the time evolution of the overall system within the
input–output formalism30,31) and derive several formulae to
characterize the emitted single photon (density matrix, pulse
shape, spectrum, and purity). These analytical results are
visualized in the next section for specific parameters.

3.1 Heisenberg equations
Here, we present the Heisenberg equations for the system

ð�; aÞ and field ðbk; ck; dkÞ operators. Deriving the raw
Heisenberg equations for the field operators from Eq. (1)
and transforming them into real-space representations, we
obtain the following relations that connect the incoming
(r < 0) and outgoing (r > 0) fields:ebrðtÞ ¼ ebr�tð0Þ � i

ffiffiffi
�

p
�ðrÞ�ðt � rÞaðt � rÞ; ð8ÞecrðtÞ ¼ecr�tð0Þ � i

ffiffiffi
�

p
�ðrÞ�ðt � rÞ�ðt � rÞ; ð9ÞedrðtÞ ¼ edr�tð0Þ � i

ffiffiffiffiffiffiffiffi
2�p

p
�ðrÞ�ðt � rÞ�yðt � rÞ�ðt � rÞ; ð10Þ

where �ðxÞ is the Heaviside step function. From the raw
Heisenberg equations for the system operators and the above
input–output relations, the Heisenberg equations for system
operators are given by

d

dt
� ¼ �ie!d� � igð1� 2�y�Þa� ið1� 2�y�ÞNcðtÞ

� i½Ny
dðtÞ� þ �yNdðtÞ�; ð11Þ

d

dt
a ¼ �ie!ca� ig� � iNbðtÞ; ð12Þ

where e!d ¼ !d � ið�=2þ �pÞ and e!c ¼ !c � i�=2 respec-
tively are the complex frequencies of the dot and cavity,
and the noise operators are defined by NbðtÞ ¼

ffiffiffi
�

p eb�tð0Þ,
NcðtÞ ¼ ffiffiffi

�
p ec�tð0Þ, and NdðtÞ ¼

ffiffiffiffiffiffiffiffi
2�p

p ed�tð0Þ. Note that the
noise operators are the initial-time operators and, conse-
quently, NjðtÞj0i ¼ 0 ( j ¼ b; c; d).

3.2 State vector
The state vector of the overall system at an arbitrary time t

is determined by j¼ðtÞi ¼ e�iHtj¼ð0Þi. Since the initial dot
excitation is conserved in the dot, cavity, and b and c fields,
the state vector can be written as

j¼ðtÞi ¼
�
�0ðtÞ�y þ 	0ðtÞay þ

Z
dr �0ðr; tÞebyr

þ
Z

dr �0ðr; tÞecyr�j0i
þ

X1
m¼1

Z
dmx

�
�mðx; tÞ�y þ 	mðx; tÞay

þ
Z

dr �mðr; x; tÞebyr
þ

Z
dr �mðr; x; tÞecyr�edyx1 � � �edyxm j0i; ð13Þ

where m denotes the number of excitations in the d field andR
dmx denotes a multi-dimensional integral with respect to

Fig. 1. (Color online) Schematic illustration of the solid-state cavity QED

system considered. It consists of a quantum dot, a cavity, photon leakage

from the cavity (b field), non-cavity radiation modes (c field), and a

reservoir field, which causes the pure dephasing of the dot (d field).
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x ¼ ðx1; x2; . . . ; xmÞ. We can set x1 � � � � � xm without loss
of generality. As we show later, these coefficients are
nonzero only when 0 � r � x1 � � � � � xm � t.

First, we discuss �0 and 	0. From Eq. (13), we can
confirm that �0ðtÞ ¼ h�ðtÞ�yð0Þi and 	0ðtÞ ¼ hcðtÞ�yð0Þi,
where h� � �i ¼ h0j � � � j0i. From Eqs. (11) and (12), their
equations of motion are given by

d

dt

�0ðtÞ
	0ðtÞ

� �
¼ �ie!d �ig

�ig �ie!c

� �
�0ðtÞ
	0ðtÞ

� �
; ð14Þ

with the initial conditions �0ð0Þ ¼ 1 and 	0ð0Þ ¼ 0. The
solutions are given by

�0ðtÞ ¼ A1e

1t þ A2e


2t; ð15Þ
	0ðtÞ ¼ B1e


1t þ B2e

2t; ð16Þ

where 
1 and 
2 are the two eigenvalues of the 2� 2 matrix
in Eq. (14) (see Fig. 2), A1 ¼ ð
1 þ ie!cÞ=ð
1 � 
2Þ, A2 ¼
ð
2 þ ie!cÞ=ð
2 � 
1Þ, and B1 ¼ �B2 ¼ �ig=ð
1 � 
2Þ. The
real parts of 
1 and 
2 are always negative and,
consequently, �0 and 	0 vanish as t ! 1. Equation (13)
also implies that �0ðr; tÞ ¼ hebrðtÞ�yð0Þi and �0ðr; tÞ ¼
hecrðtÞ�yð0Þi. From Eqs. (8) and (9), we have

�0ðr; tÞ ¼ �i
ffiffiffi
�

p
	0ðt � rÞ; ð17Þ

�0ðr; tÞ ¼ �i
ffiffiffi
�

p
�0ðt � rÞ: ð18Þ

Rigorously, �ðrÞ�ðt � rÞ should appear on the right-hand
sides of these equations. However, below, we implicitly
assume 0 � r � x1 � � � � � xm � t and omit the Heaviside
functions.

Next, we proceed to investigate higher-order quantities
including reservoir (d field) excitations. We consider �1 and
	1 as examples. Applying the same reasoning as that for
�0 and �0, we have �1ðx; tÞ ¼ �i

ffiffiffiffiffiffiffiffi
2�p

p h�ðtÞ�yðt � xÞ�ðt �
xÞ�yð0Þi and 	1ðx; tÞ ¼ �i

ffiffiffiffiffiffiffiffi
2�p

p haðtÞ�yðt � xÞ�ðt � xÞ�yð0Þi.
Thus, we must evaluate the three-time correlation functions
h�ðt2Þ�yðt1Þ�ðt1Þ�yð0Þi and haðt2Þ�yðt1Þ�ðt1Þ�yð0Þi with t2 >
t1 > 0. Their equations of motion with respect to t2
have the same form as Eq. (14) and their initial values
(t2 ! t1) are �0ðt1Þ and 0, respectively. This implies that
the two-time correlation functions can be fac-
torized as h�ðt2Þ�yðt1Þ�ðt1Þ�yð0Þi ¼ �0ðt2 � t1Þ�0ðt1Þ and
haðt2Þ�yðt1Þ�ðt1Þ�yð0Þi ¼ 	0ðt2 � t1Þ�0ðt1Þ. Thus, we have

�1ðx; tÞ ¼ �i
ffiffiffiffiffiffiffiffi
2�p

p
�0ðt � xÞ�0ðxÞ; ð19Þ

	1ðx; tÞ ¼ �i
ffiffiffiffiffiffiffiffi
2�p

p
�0ðt � xÞ	0ðxÞ: ð20Þ

Repeating the same arguments, all coefficients can be
written as products of �0 and 	0, as follows:

�mðx; tÞ ¼ ð�i
ffiffiffiffiffiffiffiffi
2�p

p
ÞmKmðx; tÞ�0ðx1Þ; ð21Þ

	mðx; tÞ ¼ ð�i
ffiffiffiffiffiffiffiffi
2�p

p
ÞmKmðx; tÞ	0ðx1Þ; ð22Þ

�mðr; x; tÞ ¼ ð�i
ffiffiffi
�

p Þð�i
ffiffiffiffiffiffiffiffi
2�p

p
ÞmKmðx; tÞ	0ðx1 � rÞ; ð23Þ

�mðr; x; tÞ ¼ ð�i
ffiffiffi
�

p Þð�i
ffiffiffiffiffiffiffiffi
2�p

p
ÞmKmðx; tÞ�0ðx1 � rÞ; ð24Þ

where

Kmðx; tÞ ¼ �0ðt � xmÞ�0ðxm � xm�1Þ � � ��0ðx2 � x1Þ: ð25Þ

3.3 Decay of dot excitation
The state vector of Eq. (13) fully describes the dynamics

of the overall system, including both its transient and
asymptotic behaviors. In this section, as an example of a
transient phenomenon, we analyze the decay of dot
excitation. The survival probability of dot excitation is
defined as PðtÞ ¼ h¼ðtÞj�y�j¼ðtÞi. From Eqs. (13) and (21),
we have

PðtÞ ¼ j�0ðtÞj2 þ 2�p

Z
dxj�0ðt � xÞj2j�0ðxÞj2 þ � � � : ð26Þ

We here introduce the Laplace transform of j�0j2, which is
defined by Lj�0j2 ðzÞ ¼

R1
0

dt e�ztj�0ðtÞj2. It is given by

Lj�0j2 ðzÞ ¼
X

m;n¼1;2

AmA
�
n

z� 
m � 
�
n

; ð27Þ

where 
1;2 and A1;2 are defined in Sect. 3.2. The Laplace
transform of PðtÞ is then given by

LPðzÞ ¼
Lj�0j2 ðzÞ

1� 2�pLj�0j2 ðzÞ
: ð28Þ

PðtÞ is obtained by analyzing the poles of this function in
the z-plane. We denote the four roots of the equation
1� 2�pLj�0j2ðzÞ ¼ 0 by �j ( j ¼ 1; . . . ; 4) (see Fig. 3). PðtÞ is
then given by

PðtÞ ¼
X4
j¼1

Eje
�jt; ð29Þ

Ej ¼

Y
m0;n0¼1;2

ð�j � 
m0 � 
�
n0 ÞY

ið6¼ jÞ
ð�j � �iÞ

X
m;n¼1;2

AmA
�
n

�j � 
m � 
�
n

: ð30Þ

Fig. 2. 
1 and 
2 in the complex plane. 
1 ¼ �ie!d and 
2 ¼ �ie!c when

g ¼ 0. Dotted lines show their traces as g increases.

Fig. 3. �j ( j ¼ 1; . . . ; 4) in the complex plane. When �p is absent, �1 ¼

1 þ 
�

1 , �2 ¼ 
1 þ 
�
2 , �3 ¼ 
2 þ 
�

1 , and �4 ¼ 
2 þ 
�
2 . Dotted lines

indicate their traces as �p increases. Real parts of �j are always negative for

any �p.
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Note that the real parts of �j are always negative and that the
survival probability PðtÞ vanishes in the t ! 1 limit, as
expected.

3.4 Density matrix of emitted photon
In the t ! 1 limit, the initial dot excitation is completely

transformed into a photon propagating in the intended mode
(b field) or in unintended directions (c field). In the following
subsections, we analyze the photon emitted in the b field. It
is fully characterized by its density matrix �̂ðtÞ. In the real-
space representation, the matrix element �ðr; r0; tÞ is given by

�ðr; r0; tÞ ¼ h¼ðtÞjebyr0ebrj¼ðtÞi: ð31Þ
We make the following three comments regarding this
quantity: (i) �̂ðtÞ is Hermitian, namely, �ðr0; r; tÞ ¼
��ðr; r0; tÞ. Therefore, we need consider only the r < r0

region in this subsection. (ii) As we will see later,
�ðr; r0; tÞ ¼ �ðr � t; r0 � tÞ in the t ! 1 limit. This reflects
the translational motion of the emitted photon. (iii) Tr �̂ðtÞ ¼R
dr �ðr; r; tÞ represents the probability of finding the emitted

photon in the b field. This is unity when � ¼ 0.
Using Eqs. (13) and (23), the matrix element can be

rewritten as

�ðr; r0; tÞ ¼ �	0ðt � rÞ	�
0ðt � r0Þ

þ 2�p�

Z
dx 	0ðx� rÞ	�

0ðx� r0Þj�0ðt � xÞj2

þ � � � : ð32Þ
We here introduce the Laplace transform of 	0	

�
0, which is

defined by L	0	
�
0
ðr; r0; zÞ ¼ R1

0
dt e�zt	0ðt � rÞ	�

0ðt � r0Þ. It is
given by

L	0	
�
0
ðr; r0; zÞ ¼

X
m;n¼1;2

BmB
�
n

z� 
m � 
�
n

e
mðr0�rÞ�r0z; ð33Þ

where 
1;2 and B1;2 are defined in Sect. 3.2. The Laplace
transform of �ðr; r0; tÞ is then given by

L�ðr; r0; zÞ ¼
�L	0	

�
0
ðr; r0; zÞ

1� 2�pLj�0j2 ðzÞ
: ð34Þ

By analyzing the poles of this function in the z-plane,
�ðr; r0; tÞ is obtained as follows:

�ðr; r0; tÞ ¼
X4
j¼1

X2
m¼1

�jme

mðr0�rÞþ�jðt�r0Þ; ð35Þ

�jm ¼

Y
m0 ;n0¼1;2

ð�j � 
m0 � 
�
n0 ÞY

ið6¼ jÞ
ð�j � �iÞ

X2
n¼1

BmB
�
n

�j � 
m � 
�
n

; ð36Þ

where 0 < r < r0 < t and �j ( j ¼ 1; . . . ; 4) are defined in
Sect. 3.3. We can check that this quantity depends on only
two variables, r � t and r0 � t.

3.5 Pulse shape
The pulse shape of the emitted photon is characterized

by the intensity distribution f ðr; tÞ ¼ h¼ðtÞjebyrebrj¼ðtÞi ¼
�ðr; r; tÞ, which is the diagonal element of the density
matrix. This quantity is real and positive for 0 < r < t. By
setting r0 ¼ r in Eq. (35), we have

f ðr; tÞ ¼
X4
j¼1

fje
�jðt�rÞ; ð37Þ

fj ¼

Y
m0;n0¼1;2

ð�j � 
m0 � 
�
n0 ÞY

i6¼j

ð�j � �iÞ
X2
m;n¼1

BmB
�
n

�j � 
m � 
�
n

: ð38Þ

3.6 Frequency spectrum
The frequency spectrum of the emitted photon is defined

by Sðk; tÞ ¼ h¼ðtÞjbykbkj¼ðtÞi. Apparently, Sðk; tÞ becomes
independent of t in the t ! 1 limit, and we are interested
in SðkÞ ¼ limt!1 Sðk; tÞ. By definition, Sðk; tÞ is the Fourier
transform of the density matrix element:

Sðk; tÞ ¼ 1

2�

ZZ
dr dr0 eikðr

0�rÞ�ðr; r0; tÞ: ð39Þ

We consider the Laplace transform of Sðk; tÞ defined by
LSðk; zÞ ¼

R1
0

dt e�ztSðk; tÞ. Using Eqs. (34) and (39), it is
given by

LSðk; zÞ ¼ �

2�

L0
	0	

�
0
ðk; zÞ

1� 2�pLj�0j2 ðzÞ
; ð40Þ

where

L0
	0	

�
0
ðk; zÞ ¼

Z 1

0

dt

ZZ
dr dr0 eikðr

0�rÞ�zt	�
0ðt � r0Þ	�

0ðt � rÞ

¼
Z 1

0

dt e�zt
X2
m¼1

Bm


m þ ik
ðe�ikt � e
mtÞ

�����
�����
2

: ð41Þ

Note that L0
	0	

�
0
has a pole at z ¼ 0. Since our interest lies

in the t ! 1 limit of Sðk; tÞ, we must investigate the pole
of LSðk; zÞ at z ¼ 0 only. Therefore, SðkÞ ¼ ð�=2�Þ½1�
2�pLj�0j2 ð0Þ��1 Resz¼0½L0

	0	
�
0
ðk; zÞ�. After some calculations,

we obtain

SðkÞ ¼ N
jðk �e!dÞðk �e!cÞ � g2j2 ; ð42Þ

where N ¼ ð�g2=2�Þ½1� 2�pLj�0j2 ð0Þ��1 is a factor that is
independent of k. This spectral shape was predicted by
Glauber,32) and it was confirmed in recent theoretical studies
based on the quantum Langevin equations23,24) and the
Master equations.25–27) The relation to the Master equation
approach is summarized in Appendix A.

3.7 Purity
Quantum information processing requires high indis-

tinguishability between single photons. A popular measure
of the indistinguishability of photons is the coincidence
probability Pco in two-photon interference experiments
(see Fig. 4). Two solid-state emitters simultaneously emit
single photons into two input ports of a beam splitter.
These two photons are mixed by the beam splitter and
are counted by photo detectors. When two indistinguish-
able photons are simultaneously input to a beam splitter,
they always appear at the same output port (Hong–Ou–
Mandel interference), namely, Pco ¼ 0. However, pure
dephasing generates entanglement between an emitted
photon and the environment of its source, making
two-photon interference imperfect (Pco > 0). The coin-
cidence probability is related to the purity P of a
photon by Pco ¼ ð1�PÞ=2 (see Appendix C for the
derivation).

The purity is defined in terms of the density matrix �̂ðtÞ by
P ¼ Tr½�̂2ðtÞ�. As expected, this quantity becomes indepen-
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dent of t when t is sufficiently large. Using the real-space
matrix element, the purity can be rewritten as

P ¼ lim
t!1

Z
dr dr0 �ðr; r0; tÞ�ðr0; r; tÞ

¼ lim
t!1

Z
dr dr0j�ðr; r0; tÞj2: ð43Þ

Using Eq. (36), we have

P ¼
X4
j; j0¼1

X2
m;m0¼1

2�jm�
�
j0m0

ð�j þ ��
j0 Þð
m þ 
�

m0 Þ : ð44Þ

4. Numerical Results

The analytical results derived in the previous section
are rigorous and applicable to any set of parameters,
ð!d � !c; g; �; �; �pÞ. In this section, we visualize these
results by employing specific parameters. Throughout this
section, we assume, for simplicity, that radiative decay to
unintended modes does not occur (� ¼ 0).

4.1 Zeno and anti-Zeno effects
First, we observe the effects of pure dephasing on the

decay of dot excitation. We focus on the weak-coupling
regime (� ¼ 6g) in this subsection, where the dot decays
monotonically without revival and obeys the exponential
decay law with high accuracy. The decay rate of the dot
is well defined in this case and is given by � ¼
limt!1½� logPðtÞ=t�. This reduces to min j jRe�jj, where

�j is defined in Sect. 3.3. Figure 5 shows the temporal
behavior of the survival probability PðtÞ. In Fig. 5(a), where
the dot is in resonance with the cavity (!d ¼ !c), the decay
becomes slower as pure dephasing increases. In contrast,
in Fig. 5(b), where the dot is detuned from the cavity
(!d � !c ¼ 600 �eV), the decay becomes faster under small
pure dephasing (�p ¼ 200 �eV), whereas the decay becomes
slower under larger pure dephasing (�p ¼ 12800 �eV).

Measurements to check the survival of dot excitation
destroy the quantum coherence between the excited and
ground states that preserves the population of these two
states. Therefore, pure dephasing has the same effect on the
dot as continuous measurements, if the measurement results
are unquestioned. The changes in the decay rates induced by
pure dephasing are often interpreted as the quantum Zeno and
anti-Zeno effects.25,33,34) Previous analyses indicated that the
anti-Zeno effect can be observed only when the dot–cavity
detuning is large and pure dephasing is small.28) This agrees
with the present numerical results. Figure 6 shows the
dependence of the radiative decay rate � on the pure
dephasing rate �p. To clearly observe the Zeno and anti-Zeno
effects, �ð�pÞ is normalized by the free decay rate of
�ð0Þ; �ð�pÞ=�ð0Þ < 1 indicates the Zeno effect, whereas
�ð�pÞ=�ð0Þ > 1 exhibits the anti-Zeno effect. Non mono-
tonic behavior of �ð�pÞ is clearly observed for large detuning.

4.2 Pulse shape and spectrum
In this subsection, we examine the pulse shape and

emitted
photon

source

detector

beam
splitter

Fig. 4. (Color online) Schematic illustration of two-photon interference

experiment. The coincidence probability vanishes when the two input

photons are completely indistinguishable.
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!d � !c ¼ 0 (solid), 66 (dotted), and 150�eV (dashed).

E. IYODA et al.J. Phys. Soc. Jpn. 82 (2013) 014301 FULL PAPERS

014301-5 #2013 The Physical Society of Japan



frequency spectrum of the emitted photon using the same
parameters as those used in the previous subsection. First,
we observe the results for the resonant (!d ¼ !c) case. The
pulse shapes f ðr; tÞ of the emitted photon are shown in
Fig. 7(a) for three pure dephasing rates �p. Each pulse shape
is normalized [

R t
�1 dr f ðr; tÞ ¼ 1] since � ¼ 0 is assumed

here and a single photon is necessarily generated in the b
field. The pulse becomes longer as pure dephasing increases.
This is consistent with the quantum Zeno effect discussed in
the previous subsection: in the resonant case, the decay of
the dot becomes monotonically slower with increasing pure
dephasing. Figure 7(b) shows the spectra SðkÞ of the photon
for the same parameters as those in Fig. 7(a). These spectra
have a single peak at k ¼ !d (¼ !c) and are normalized
[
R1
�1 dk SðkÞ ¼ 1]. The spectrum broadens with increasing

pure dephasing. This is confirmed by Fig. 7(c), in which the
spectral width (defined as � ¼ ½R dkðk � !dÞ2SðkÞ�1=2) is
plotted as a function of the pure dephasing rate. Thus, the
pulse broadens in both the real and frequency spaces with
increasing �p and it is thus not Fourier-limited. This implies

that the emitted photon is in a mixed state when �p 6¼ 0. The
purity of the photon is discussed later in Sect. 4.3.

Next, we observe the results for the detuned case.
Figure 8(a) shows the pulse shapes of the photon. The pulse
shape is approximately exponential, except for the oscilla-
tory behavior at the very initial stage. The pulse length
is inversely proportional to the decay rate of the dot.
Figure 8(b) shows the photon spectra for the same parame-
ters as those in Fig. 8(a). A notable difference from the
resonant case is that the spectra are doubly peaked with
peaks at both the dot frequency !d and the cavity frequency
!c. The widths of these peaks are determined by j Ime!dj ¼
�=2þ �p and j Ime!cj ¼ �=2. Therefore, the width of the
peak at !d is sensitive to pure dephasing. When pure
dephasing is weak (�p 	 �), as in atomic cavity QED
systems, the dominant peak of SðkÞ appears at !d. In
contrast, when pure dephasing is strong (�p 
 �), as in
solid-state systems, the dominant peak of SðkÞ appears at !c.
This behavior can be seen more clearly in an approximate
form of the spectrum,

SðkÞ ¼ 2�p
2�p þ �

ScavðkÞ þ �

2�p þ �
SdotðkÞ; ð45Þ

ScavðkÞ ¼ �=2�

ðk � !cÞ2 þ ð�=2Þ2 ; ð46Þ

SdotðkÞ ¼
�p=�

ðk � !dÞ2 þ �2
p

; ð47Þ

which is valid for j!d � !cj 
 g. From this expression, it is
proved that the cavity spectrum Scav is dominant for �p 
 �,
whereas the dot spectrum Sdot is dominant for �p 	 �. This
result partly explains the detuned peaks observed in the
resonance fluorescence spectrum in solid-state cavity QED
systems, as discussed in previous theoretical works.23–25)
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The mean energy of the emitted photon is evaluated by
Ep ¼

R
dk kSðkÞ. Owing to energy conservation, the mean

photon energy is expected to always be identical to the dot
frequency (i.e., Ep ¼ !d). However, Fig. 8(b) clearly shows
that the mean photon energy is sensitive to pure dephasing
and may deviate from the dot frequency when pure
dephasing is present. This discrepancy can be resolved by
considering the energy released to the environment during
decay, which is given by Ee ¼

R
dk khdykdki. It can be shown

that (see Appendix D for derivation)

Ep ¼
2�p

�þ 2�p

!c þ �

�þ 2�p

!d; ð48Þ

Ee ¼
2�p

�þ 2�p

ð!d � !cÞ: ð49Þ

Thus, energy conservation is satisfied when the environ-
mental energy is included (Ep þ Ee ¼ !d). It should be
noted that while pure dephasing coupling never induces a
transition in the dot, this coupling enables energy exchange
between the dot and the environment. When the cavity
frequency exceeds the dot frequency, Eq. (49) indicates
that the dot may absorb environmental energy during
decay.29)

4.3 Purity
As discussed in Sect. 3.7, the coincidence probability in

two-photon interference Pco, which is a popular measure
of indistinguishability, is related to the purity as Pco ¼
ð1�PÞ=2. In this subsection, we show numerical results
for the purity P for various parameter regions. Qualitative
features in some limiting cases are discussed in Appendix B
on the basis of perturbation calculation.

We first consider the resonant case (!c ¼ !d). In
Fig. 9(a), the purity P is plotted as a function of � and �p.
The purity becomes large for �p < minð�=2; 2g2=�Þ (the
region below ‘‘Line 1’’ in the figure). From the figure, we
can see that for the generation of coherent photons, pure
dephasing should be reduced as much as possible, and that
for fixed pure dephasing, � should be taken near the point of
critical damping (� ¼ 2g). In addition to this main region
appropriate for highly coherent photon generation, there is
a line on which the purity has a small peak (denoted
as ‘‘Line 2’’ in the figure) in the region of �p 
 g. By
perturbation calculation (see Appendix B), we can show
that the purity takes a maximum value of Pmax ¼ 3�
2

ffiffiffi
2

p ’ 0:17 at �p ¼ 2
ffiffiffi
2

p
g2=�.

Next, we consider the strongly detuned case
(j!d � !cj 
 g). In Fig. 9(b), the purity is shown as a
function of � and �p for !d � !c ¼ 8g. The purity has a
large value below the line �p < minð"�=2; 2g2=�Þ (the region
below ‘‘Line 1’’ in the figure), where " ¼ g2=ð!d � !cÞ2 is a
small parameter dependent on detuning. In Fig. 9(b), we can
see that the purity for the detuned case is suppressed
compared with the resonant case, and that the high-purity
region is narrowed. From the figure, we can see that for
coherent photon emission, dephasing should be reduced as
much as possible, and that for fixed pure dephasing, � should
be taken to be around � ¼ ð2 ffiffiffi

2
p

g2="Þ1=2. In addition to
the main high-purity region, the purity has a small peak
(denoted as ‘‘Line 2’’) similarly to the resonant case. By
perturbation calculation, we can show that the purity has

a maximum value of Pmax ¼ 3� 2
ffiffiffi
2

p ’ 0:17 at �p ¼
�=ð2 ffiffiffi

2
p

"Þ; 2 ffiffiffi
2

p
g2=�.

4.4 Time filtering
A strategy for improving the purity of emitted photons

is to use photons emitted at the early stage of decay,
because such photons are subject to the environment only for
a short time. The density matrix of photons filtered in the
temporal region 0 � t � r � T is written as �T ðr; r0; tÞ ¼
�ðr; r0; tÞ�ðT � t þ rÞ�ðT � t þ r0Þ. From �T ðr; r0; tÞ, the
purity and efficiency of filtered photons are given as

PðT Þ ¼ Trð�2T Þ
PdðT Þ ¼ 1

Pd

Z t

t�T

dr

Z t

t�T

dr0j�ðr; r0; tÞj2; ð50Þ

PdðT Þ ¼ ½Trð�T Þ�2 ¼
Z t

t�T

dr �ðr; r; tÞ
� �2

; ð51Þ
where PdðT Þ is the square of the probability that a single
photon is emitted during 0 � t � T . PdðT Þ is also the square
of the probability that a single photon is obtained after time
filtering. By time filtering, the effective purity PðT Þ is
improved at the expense of the square of the probability
PdðT Þ.

We first discuss the resonant (!d ¼ !c) case. In
Fig. 10(a), we show the T -dependence of PðT Þ and PdðT Þ
for �=g ¼ 2 and �p=g ¼ 0:5. In the T ! 1 limit, PðT Þ
approaches 0.61, which is the purity without time filtering.
As T is shortened, the purity PðT Þ increases, whereas the
square of the probability PdðT Þ decreases. If we allow the
reduction of the square of the probability to 1/2, one can set
the filtering time at T ¼ 2
g [see the vertical dashed line
in Fig. 10(a)], and obtain an improved purity of 0.85.
Improvement of the purity is also possible in the detuned
case. In Fig. 10(b), we show the T -dependence of PðT Þ and
PdðT Þ for �=g ¼ ffiffiffi

2
p

=50, �p=g ¼ 100, and !d � !c ¼ 8g,
which is on the upper line of ‘‘Line 2’’ in Fig. 9(b). If we
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allow the reduction of the square of the probability to 1/2,
the purity is improved from 0.17 to 0.28.

We can improve the purity further by choosing a shorter
filtering time. The efficiency, however, decreases exponen-
tially in the limit T ! 0.

5. Summary

We analyzed the radiative decay of an excited dot in a
solid-state cavity QED system and investigated the quan-
tum–mechanical properties of the emitted photon, stressing
the effects of pure dephasing. Our analysis is based on a
model in which all the elements of the system (including
environmental ones) are treated as active quantum–mechan-
ical degrees of freedom. We rigorously solved the time
evolution of the overall system and derived analytical

expressions for the density matrix, pulse shape, spectrum,
and purity of the emitted photon. These analytical results
were visualized under realistic parameters. The main results
are summarized as follows. (i) Changes in the dot decay rate
owing to pure dephasing can be explained in terms of the
quantum Zeno and anti-Zeno effects. The emitted photon
pulse length is approximately given by the inverse of the dot
decay rate. (ii) The emitted photon spectrum agrees with the
Glauber formula. The mean energy of an emitted photon is
not necessarily identical to that of the dot and energy
conservation is seemingly broken. However, the present
analysis revealed that the dot can exchange energy with the
environment through pure dephasing coupling. Energy
conservation holds when the environmental energy is
included. (iii) The purity of the emitted photon is calculated
as a measure of indistinguishability. To generate pure single
photons, dephasing should be reduced as much as possible
and the escape rate of cavity photons � should be taken
near the optimal value (� ¼ 2g for the resonant case and
� ¼ ð2 ffiffiffi

2
p

g2=�Þ1=2 for the strongly detuned case). (iv) Time
filtering improves the purity of the emitted photon at
the expense of a lower probability of single photon
generation.

In our approach, we have assumed white noise for the
level fluctuation of the QD. For a detailed comparison with
results of experiments, we must consider more realistic
models taking into account phonons35,36) and background
carriers.25) The extension of the present approach to these
extended models is an important problem left for future
study.
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Appendix A: Relation to the Master Equation and
Perturbation Method

To analyze the properties of emitted photons, one can
employ the Master equation approach as an alternative
method. The Master equation is derived for the present
model as

d

dt

���

��a

�a�

�aa

0BBBB@
1CCCCA ¼ �

� ig �ig 0

ig
� þ �

2
þ �p þ i�! 0 �ig

�ig 0
� þ �

2
þ �p � i�! ig

0 �ig ig �

0BBBBBB@

1CCCCCCA
���

��a

�a�

�aa

0BBBB@
1CCCCA; ðA�1Þ

where ��� ¼ h�y�i, ��a ¼ hay�i, �a� ¼ h�yai, �aa ¼ hayai, and �! ¼ !d � !c. Using the solution of the master equation,
the density matrix �ðr; r0; tÞ of emitted photons can be written as

�ðr; r0; tÞ ¼ ��aðt � r0Þ	0ðr0 � rÞ þ �aaðt � r0Þ ~	0ðr0 � rÞ ðr < r0 < tÞ;
�a�ðt � rÞ	0ðr � r0Þ þ �aaðt � rÞ ~	0ðr � r0Þ ðr0 < r < tÞ:

(
ðA�2Þ

Here, we have defined ð ~�0ðtÞ; ~	0ðtÞÞ as the solutions of Eq. (14) under the initial condition ð ~�0ð0Þ; ~	0ð0ÞÞ ¼ ð0; 1Þ.
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Fig. 10. (Color online) Effective purity PðT Þ and efficiency PdðT Þ of

photons emitted to the output port during 0 < t < T shown as a function of

T . (a) On-resonant case (!d ¼ !c) for �=g ¼ 2 and �p=g ¼ 0:5, and (b)

detuned case (!d � !c ¼ 8g) for �=g ¼ ffiffiffi
2

p
=50 and �p=g ¼ 100. The time

T1=2 giving half-efficiency PdðT1=2Þ ¼ 1=2 is also shown by a green line.

The unit of time is given as 
g ¼ h�=g and is about 25 ps for g ¼ 25�eV.
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The four eigenvalues of the matrix in Eq. (A�1)
correspond to the values of �i. Therefore, numerical
calculation of the eigenvalues of this matrix is a convenient
method for obtaining the values of �i. It is also useful to
treat the matrix in Eq. (A�1) in the perturbation calculation
given in Appendix B. Because the matrix in Eq. (A�1) is
a normal matrix, it is diagonalized by a unitary matrix.
Therefore, the perturbation method used in quantum
mechanics can be applied to obtain the small shift of the
values of �i with respect to small parameters.

Appendix B: Expressions for Purity in Limiting Cases

A simple expression for P can be obtained in some
limiting cases. We first discuss the strongly detuned case
(j!d � !cj 
 g). The purity can then be expressed by a sum
of two contributions as P ¼ Pdot þPcav, where Pdot and
Pcav are the purities of photons whose frequencies are
!d and !c, respectively.37) The former contribution Pdot

becomes large only below ‘‘Line 1’’ in Fig. 9(b), whereas
Pcav has a maximum on ‘‘Line 2’’ in the figure. For
�p; � 	 g, perturbation calculation gives

Pdot ¼ �

2�p þ �
� �"

2�p þ �"
: ðB�1Þ

The first factor is the weight of the spectrum peak at k ¼ !d

[see Eq. (45)], and the second one is that due to spectrum
broadening by pure dephasing. For large detuning (" 	 1),
Pdot takes a value of 1/2 around �p ¼ "�=2, which
corresponds to the left line of ‘‘Line 1’’ in Fig. 9(b). For
�p 	 g 	 �, perturbation calculation with respect to g is
effective. Then, one can consider the effective continuum
constructed by mixing between the cavity mode and the
output mode (b field), and one can define the photon
emission rate � from the dot into the effective continuum.
By using Fermi’s golden rule, the photoemission rate
is estimated as � ¼ 2�g2Dð!dÞ, where Dð!dÞ ¼ ð�=�Þ=
½ð!d � !cÞ2 þ ð�=2Þ2� is the density of states of the effective
continuum. In the presence of pure dephasing, the purity of
photons emitted from a dot with the rate � is calculated as
Pdot ¼ 1=ð1þ 2�p=�Þ. Thus, we finally obtain

Pdot ¼ 2g2

2g2 þ �p�
ðB�2Þ

for � 
 j!d � !cj. One can see that the purity takes a value
of 1/2 at �p ¼ 2g2=�, which corresponds to the right line of
‘‘Line 1’’ in Fig. 9(b). For �p; � 	 g, perturbation calcula-
tion of Pcan gives

Pcav ¼
2�p"�

ð�þ 2�p"Þð�þ 4�p"Þ
: ðB�3Þ

From this expression, it is proved that the purity takes a maxi-
mum value of 3� 2

ffiffiffi
2

p
at �p ¼ �=ð2 ffiffiffi

2
p

"Þ, which corresponds
to the lower line of ‘‘Line 2’’ in Fig. 9(b). For � 	 g 	 �p,
the dynamics of the cavity-dot system becomes completely
incoherent and can be described by the rate equations

_���ðtÞ ¼ ��0���ðtÞ þ �0�aaðtÞ; ðB�4Þ
_�aaðtÞ ¼ þ�0���ðtÞ � �0�aaðtÞ � ��aaðtÞ; ðB�5Þ

where ���ðtÞ ¼ h�yðtÞ�ðtÞi, �aaðtÞ ¼ hayðtÞaðtÞi, and �0 ¼
2g2=�p is the transition rate calculated from Fermi’s golden
rule. By solving these rate equations, we obtain

Pcav ¼ ��0

ð�þ 2�0Þð�þ �0Þ : ðB�6Þ

From this expression, it is proved that the purity takes
a maximum value of 3� 2

ffiffiffi
2

p
at �p ¼ 2

ffiffiffi
2

p
g2=�, which

corresponds to the upper line of ‘‘Line 2’’ in Fig. 9(b).
Next, we consider the resonant case (!c ¼ !d). Some of

the features are common to the strongly detuned case; the
purity is reduced for � � 2g2=�p [the right-side line of
‘‘Line 1’’ in Fig. 9(a)] and takes a maximum value of
3� ffiffiffi

2
p

at �p ¼ 2
ffiffiffi
2

p
g2=� [‘‘Line 2’’ in Fig. 9(a)]. For

�p; � 	 g, the purity P is approximately calculated as

P ¼ �ð2�þ �pÞ
2ð�þ �pÞð�þ 2�pÞ

: ðB�7Þ

From this expression, it is proved that P � 1=2 is realized
for the condition � � ð1þ ffiffiffi

3
p Þ�p ’ 2:73�p, which corre-

sponds to the left line of ‘‘Line 1’’ in Fig. 9(a).

Appendix C: Relation between Coincidence
Probability and Purity

Here, we derive the relation Pco ¼ ð1�PÞ=2 between the
coincidence probability Pco and the purity P. We consider
the following situation (see Fig. 4). Two solid-state emitters
(S1 and S2) simultaneously and deterministically emit single
photons (assuming � ¼ 0 for simplicity) into two input ports
(P1 and P2) of a beam splitter. These two photons are mixed
by the beam splitter and are output to ports P3 and P4. We
denote the photon field operators for port P j by ebð jÞr
( j ¼ 1; . . . ; 4), and the pure dephasing reservoir operators for
emitter S j by edð jÞr ( j ¼ 1; 2). Assuming t ! 1 and � ¼ 0

(and thus �m ¼ 0) in Eq. (13), the state vector of the photon
at P1 is given by

j¼1i ¼
X1
m¼0

Z
dr dmx �mðt; r; xÞebyð1Þrjxi; ðC�1Þ

where jxi ¼ edyð1Þx1 � � �edyð1Þxm j0i. Thus, the emitted photon is
entangled with the environment of its source. The input state
vector including the photons at both P1 and P2 is then given
by

j¼12i ¼
X1
m;n¼0

Z
dr dr0 dmx dnx0 �mðt; r; xÞ�nðt; r0; x0Þ

�ebyð1Þrebyð2Þr0 jx; x0i; ðC�2Þ
where jx; x0i ¼ edyð1Þx1 � � �edyð1Þxmedyð2Þx01 � � �edyð2Þx0n j0i.

The beam splitter mixes the two photons as ebyð1Þr !
½ebyð3Þr þebyð4Þr�= ffiffiffi

2
p

and ebyð2Þr ! ½ebyð3Þr �ebyð4Þr�= ffiffiffi
2

p
, but it

obviously does not affect the environmental degrees of
freedom. The output state vector is then given by j¼outi ¼
j¼33i þ j¼44i þ j¼34i, where

j¼33i ¼
X1
m;n¼0

Z
dr dr0 dmx dnx0

�mðt; r; xÞ�nðt; r0; x0Þ
2

�ebyð3Þrebyð3Þr0 jx; x0i; ðC�3Þ

j¼44i ¼ �
X1
m;n¼0

Z
dr dr0 dmx dnx0

�mðt; r; xÞ�nðt; r0; x0Þ
2

�ebyð4Þrebyð4Þr0 jx; x0i; ðC�4Þ
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j¼34i ¼
X1
m;n¼0

Z
dr dr0 dmx dnx0

� �mðt; r; xÞ�nðt; r0; x0Þ � �mðt; r0; xÞ�nðt; r; x0Þ
2

�ebyð3Þrebyð4Þr0 jx; x0i: ðC�5Þ
It is readily confirmed that h¼33j¼33i þ h¼44j¼44i þ
h¼34j¼34i ¼ 1 and h¼33j¼33i ¼ h¼44j¼44i. The coincidence
probability Pco (i.e., the probability of finding single photons
at both P3 and P4), is given by Pco ¼ h¼34j¼34i. Since
the density matrix element is given by �ðr; r0; tÞ ¼P1

m¼0

R
dmx ��mðr0; x; tÞ�mðr; x; tÞ, Pco is recast in the follow-

ing form:

P11 ¼ 1

2
� 1

2

Z
dr dr0 �ðr; r0; tÞ�ðr0; r; tÞ ¼ 1�P

2
: ðC�6Þ

When pure dephasing is present, the purity of the emitted
photon will be less than unity and the coincidence
probability will be nonzero.

Appendix D: Proof of Eqs. (48) and (49)

Here, we analytically evaluate Ep ¼
R
dk khbykðtÞbkðtÞii

and Ee ¼
R
dk khdyk ðtÞdkðtÞii in the t ! 1 limit, where

h� � �ii ¼ h¼ij � � � j¼ii. Switching to real-space representa-
tions, we have

Ep ¼ i

2

Z
drhð@rebyr Þebr �ebyr ð@rebrÞii; ðD�1Þ

Ee ¼ i

2

Z
drhð@redyr Þedr � edyr ð@redrÞii: ðD�2Þ

From Eq. (8), we obtain hð@rbyr Þbrii ¼ ���ðt � 
Þ �
�ð
Þhð d

d
 a
yÞaii, where 
 ¼ t � r. Using similar equations,

we have

Ep ¼ � i�

2

Z 1

0

d

d

d

ay

� �
a� ay

d

d

a

� �� 	
i

; ðD�3Þ

Ee ¼ �i�p

Z 1

0

d

d

d

�y�

� �
�y� � �y�

d

d

�y�

� �� 	
i

: ðD�4Þ
Using Eqs. (11) and (12) and their conjugates, we have

Ep ¼ �!c

Z 1

0

d
hayai þ g�

2

Z 1

0

d
ðhay�i þ h�yaiÞ; ðD�5Þ

Ee ¼ g�p

Z 1

0

d
ðhay�i þ h�yaiÞ: ðD�6Þ

Thus, we must evaluate I1 ¼
R1
0

d
h�y�i, I2 ¼
R1
0

d
hayai,
and I3 ¼

R1
0

d
h�yai.
The equations of motion for h�y�i, hayai, and h�yai are

given by
d

dt
h�y�i ¼ ��h�y�i � igðh�yai � c:c:Þ; ðD�7Þ

d

dt
hayai ¼ ��hayai þ igðh�yai � c:c:Þ; ðD�8Þ

d

dt
h�yai ¼ iðe!�

d �e!cÞh�yai þ igðhayai � h�y�iÞ: ðD�9Þ
Integrating these equations with respect to 
, we obtain
1 ¼ �I1 þ igðI3 � I�3 Þ, 0 ¼ �I2 � igðI3 � I�3 Þ, 0 ¼ iðe!�

d �e!cÞI3 þ igðI2 � I1Þ. When � ¼ 0, these equations are solved
to yield I2 ¼ 1=� and I3 ¼ ði=gÞ � ðe!�

c �e!dÞ=ðe!c þe!d �e!�
c �e!�

dÞ. Since Ep ¼ �!cI2 þ ðg�=2ÞðI3 þ I�3 Þ and
Ee ¼ g�pðI3 þ I�3 Þ, we obtain Eqs. (48) and (49).
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