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Entangling homogeneously broadened matter qubits in the weak-coupling cavity-QED regime
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In distributed quantum information processing, flying photons entangle matter qubits confined in cavities.
However, when a matter qubit is homogeneously broadened, the strong-coupling regime of cavity QED is
typically required, which is hard to realize in actual experimental setups. Here, we show that a high-fidelity
entanglement operation is possible even in the weak-coupling regime in which dampings (dephasing, spontaneous
emission, and cavity leakage) overwhelm the coherent coupling between a qubit and the cavity. Our proposal
enables distributed quantum information processing to be performed using much less demanding technology
than previously.

DOI: 10.1103/PhysRevA.86.020305 PACS number(s): 03.67.Bg, 03.67.Lx, 42.50.Ex, 42.50.Pq

Distributed architecture is a promising approach for real-
izing scalable quantum computation [1–6]. Elementary nodes
composed of a few qubits are networked to achieve scalability.
The node separation can potentially suppress decoherence
induced by uncontrollable interactions between qubits. More-
over, since the nodes are spatially separated, individual qubits
can be easily addressed by the optical field.

A critical operation for realizing distributed quantum
computation is the entanglement operation (EO) [1–9]. To
construct an entire network, qubits in distant nodes have to be
coupled by EOs. Most EOs are based on photon interference,
and the successful execution of an EO can be heralded by
detecting a photon at the target port. This approach has been
experimentally demonstrated using an ion trap system [10]. If
the EO fails, the two qubits involved should be initialized,
which risks destroying the entanglement of other qubits
generated by previous EOs. Although EOs typically have such
probabilistic properties, previous studies have revealed that
only polynomial steps are required to construct large entangled
states [2,11–14], such as a cluster state [15]. Moreover,
by introducing a quantum memory to each node, EOs can
be repeatedly performed until they are successful without
destroying prior entanglement [16].

EOs involve optical excitations of matter qubits. However,
excited states of optically active solid-state systems are inher-
ently noisy and significantly degrade the target entanglement.
For example, nitrogen vacancy (NV) centers in diamond have
promising properties such as a long coherence time at room
temperature and optical addressability. Entanglement between
an NV center and an emitted photon has been demonstrated at
a low temperature of about 7 K [17]. However, at room tem-
perature, this otherwise attractive system suffers from strong
environmental dephasing originating from interactions with
phonons when the system is optically excited. Consequently,
it acquires a large homogeneous broadening of the order of
THz [18]. Therefore, in such an approach, NV centers can
be used for distributed quantum computation only at low
temperatures.

One way to overcome homogeneous broadening is to
employ high-Q cavities. Previous theoretical proposals of EOs
require strong coupling between a matter qubit and the cavity
when the matter qubit has large homogeneous broadening

[19–21]. However, despite rapid advances in cavity fabrication
technology, it is still very difficult to experimentally generate
strong coupling between a matter qubit and a high-Q cavity.
To realize distributed quantum computation, it is thus essential
to examine the possibility of performing an EO in the weak-
coupling regime of cavity QED, where damping parameters
such as the pure dephasing rate, the spontaneous emission rate,
and the cavity decay rate overwhelm the coherent coupling
between the cavity and the qubit.

Here, we report that high-fidelity entanglement can be
generated between homogeneously broadened matter qubits
even in the weak-coupling regime of cavity QED. Remarkably,
both spontaneous emission of the qubit and detuning between
the photon and the qubit suppress environmental noise even for
low-Q cavities, and enable distributed quantum computation
to be performed using much less demanding technology than
previously. Moreover, since appropriate use of detuning has
the potential to overcome the huge homogeneous broadening,
which is the main obstacle in using optically active solid-
state systems such as color centers and GaAs quantum dots.
Especially, our analysis provides the possibility of using NV
centers for EOs at much higher temperatures than those of
current experiments [17,22].

An outline of the proposed scheme is as follows. The matter
qubit is the two ground states (|0〉 and |1〉) of an L-type three-
level system confined in a two-sided cavity. |0〉 is optically
inactive, whereas |1〉 is radiatively coupled to an excited state
|e〉 that is subject to level fluctuations due to environmental
noise. Two such qubits in cavities are placed symmetrically in
a Mach-Zehnder interferometer (Fig. 1). Initially, both qubits
are prepared in (|0〉 + |1〉)/√2 and a single photon tuned to
the cavity frequency is input from the left port of the first beam
splitter (BS1). The state vector of the system is given by

a
†
L(|00〉 + |01〉 + |10〉 + |11〉)/2, (1)

where |mn〉 = |m〉L|n〉R denotes the two-qubit state vector
and a

†
L (a†

R) creates a photon in the left (right) path. The
beam splitters divide a photon as a

†
L → (a†

R + ia
†
L)/

√
2 and

a
†
R → (a†

L + ia
†
R)/

√
2. For the interaction between the photon

and the qubit, when the qubit is in |0〉 (empty cavity), the
input photon is perfectly transmitted through the cavity due to
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FIG. 1. (Color online) Schematic view of the optical circuit. A
single photon is split by a beam splitter (BS1) and is sent to cavities
that confine matter qubits with an L-type structure. After interacting
with the matter qubits, the photon is combined by another beam
splitter (BS2). When the photon reaches the target port and the
detector clicks, entanglement is generated between the remote matter
qubits.

resonance tunneling. In contrast, when the qubit is in |1〉, the
matter qubit modifies the transmitted photon. For example,
as we show later, the matter qubit may completely prevent
transmission of the photon under some conditions. Then, the
photon-qubit interaction removes the terms a

†
L|10〉, a

†
L|11〉,

a
†
R|01〉, and a

†
R|11〉. In other words, the qubit state |1〉 acts

as a “bomb” in the interaction-free measurement [23] in this
case. After the photon passes through the second beam splitter
(BS2), the state vector is given by

− 1√
8
a
†
L|φt 〉 + i

2
a
†
R|00〉 + i√

8
a
†
R|φ1〉, (2)

where |φt 〉 = (|01〉 − |10〉)/√2 and |φ1〉 = (|01〉 + |10〉)/√2.
A photodetector is set to count the photons that exit from the
left port of BS2. The detector clicks with a maximum success
probability of 1/8, and the two qubits are then projected onto
the target entangled state, |φt 〉.

We investigate the interaction between the photon and the
qubit in a more quantitative manner. Although the master
equation has been used in previous analyses [20,21], it is
valid in principle only when the damping parameters can
be regarded as perturbations [24]. In contrast, here, we solve
the Heisenberg equations of the overall system including the
environment in a nonperturbative manner. Consequently, our
results are applicable to highly dissipative cases that include
the weak-coupling regime. We investigate a cavity QED
system in which a two-level matter qubit (|1〉,|e〉) is confined
in a two-sided cavity (Fig. 2). The photon dynamics for the
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FIG. 2. (Color online) Schematic view of the cavity QED system
that we adopted. It consists of a matter qubit and a cavity. The
incoming (outgoing) photon fields are denoted by âin and â′

in (âout

and â′
out). Three types of damping are considered: environmental

pure dephasing (γp), spontaneous emission (γ ), and cavity photon
leakage (κ).

qubit state |0〉 is obtained by removing the matter qubit. This
system is characterized by the following parameters: the cavity
frequency ωc, the qubit transition frequency ωq , the coherent
coupling between the cavity and the qubit g, the cavity decay
rate κ , the spontaneous emission rate of the qubit to noncavity
modes γ , and the pure dephasing rate of the qubit γp. The
complex frequencies of the cavity and the qubit are defined
by ω̃c = ωc − iκ/2 and ω̃q = ωq − i(γ /2 + γp). We denote
the destruction operators for the cavity photon and qubit by c

and σ (=|1〉〈e|), respectively. Their Heisenberg equations are
given by

dc

dt
= −iω̃cc − igσ − i

√
κ/2[ain(t) + a′

in(t)], (3)

dσ

dt
= −iω̃qσ − igc − i

√
γ din(t)

− i
√

2γp[e†in(t)σ + σein(t)], (4)

where din and ein denote the noise operators respectively
associated with spontaneous emission and pure dephasing, and
ain and a′

in are the incoming photon fields toward the cavity
(see Fig. 2). The outgoing field operators are given by

aout(t) = −a′
in(t) + i

√
κ/2c(t), (5)

a′
out(t) = −ain(t) + i

√
κ/2c(t). (6)

We are interested in the transmission of a single input
photon. The transmitted photon consists of elastic and inelastic
components. So the state vector evolves on transmission as

a†|1〉 → tea
†|1〉 + tia

†e†|1〉, (7)

where e† denotes an environmental excitation near the qubit.
As we show in the Supplemental Material [25], the fidelity and
success probability of our EO are maximized when the spectral
width of the input photon is much narrower than the cavity
linewidth (i.e., the long pulse limit). We thus assume the long
pulse limit in the remainder of this Rapid Communication. The
coefficients te and ti are then determined by considering the
linear response to a classical continuous wave. Setting ain =
Ee−iωct and a′

in = din = ein = 0, the dimensionless system
variables (xc = i

√
κ/2 〈c〉/ain, xσ = −√

κ/2 〈σ 〉/ain, and
xc†c = κ〈c†c〉/2|ain|2) are given by

xc = κ(γ /2 + γp + i�)

κ(γ /2 + γp + i�) + 2g2
, (8)

xσ = κg

κ(γ /2 + γp + i�) + 2g2
, (9)

xc†c = κ
[γ + 2g2 Re(1/ξ )]Re(xc) − gγ Re(xσ /ξ )

κγ + 2g2(κ + γ )Re(1/ξ )
, (10)

where � = ωq − ωc is the detuning between the qubit and
the input photon and ξ = (κ + γ )/2 + γp + i�. te and ti
are related to the amplitude and flux transmissivities by
te = 〈aout〉/ain and |te|2 + |ti |2 = 〈a†

outaout〉/|ain|2. Thus, we
have

te = xc, (11)

|ti |2 = xc†c − |xc|2. (12)

We can confirm that inelastic transmission originates from pure
dephasing, since ti = 0 when γp = 0. The photon dynamics
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for the qubit state |0〉 is obtained by taking the g → 0 limit,
where we can confirm that te = 1 and ti = 0. Therefore, the
counterpart of Eq. (7) is

a†|0〉 → a†|0〉. (13)

Using these rigorous photon-qubit interactions [Eqs. (7) and
(13)], we reconsider the time evolution of the initial-state
vector [Eq. (1)]. Since environmental excitation inhibits
photon interference at BS2, the state vector that clicks the
detector is given by

|ψ〉 = a
†
L

(
te − 1√

8
|φt 〉 + ti√

8
e
†
R|φ2〉 − ti√

8
e
†
L|φ3〉

)
, (14)

where |φ2〉 = (|01〉 + |11〉)/√2 and |φ3〉 = (|10〉 + |11〉)/√2.
The click probability P , the reduced density matrix ρ̂,
and fidelity F are respectively defined by P = 〈ψ |ψ〉, ρ̂ =
Tra,b{|ψ〉〈ψ |}/〈ψ |ψ〉, and F = 〈φt |ρ̂|φt 〉. We obtain

F = |1 − te|2 + |ti |2/2

|1 − te|2 + 2|ti |2 , (15)

P = |1 − te|2/8 + |ti |2/4. (16)

We first examine the effects of homogeneous broadening
by assuming that both detuning and spontaneous emission are
absent (� = γ = 0). In this case, the transmission probability
through the cavity is given by |te|2 + |ti |2 = κγp/(κγp + 2g2).
Therefore, when κγp/g2 � 1, the cavity nearly completely
suppresses transmission of the photon and the present scheme
functions with a high fidelity. To achieve F > 0.9 (0.95),
κγp/g2 should be less than 0.15 (0.07). Consequently, high-Q
cavities satisfying κγp/g2 � 1 are required to achieve high-
fidelity EOs under a large homogeneous broadening. This
is qualitatively consistent with another scheme that employs
resonant input photons [19].

Spontaneous emission usually degrades the figure of merits
of quantum devices. In contrast, spontaneous emission makes
our protocol more robust against environmental noise and
relaxes the cavity conditions, so that a high-fidelity EO
becomes possible between homogeneously broadened matter
qubits even in the weak-coupling regime (g < κ,γ,γp), as
we show in the Supplemental Material [25]. The origin of
infidelity here is inelastic scattering (i.e., entanglement with
the environment) that occurs while the matter qubit is being
excited. Spontaneous emission reduces the lifetime of the
excited state and thus hinders inelastic scattering. However,
in actual experiments, it is difficult to artificially increase the
spontaneous emission rate and thus this does not provide a
practical solution. So we look for another way to suppress
environmental noise by using existing technology, namely,
use of detuning.

We explain the physical mechanism of an EO employing
a detuned photon. When there is large detuning �, Eqs. (8)
and (11) give te � e−iθ , where θ = g2/�κ . Namely, when the
qubit state is |1〉, the input photon acquires a phase shift that is
determined by the product of the dispersive interaction (g2/�)
and the cavity photon lifetime (κ−1) [20]. This mechanism
contrasts with that of resonant cases (� = 0), where the
transmitted wave is attenuated (te < 1) through scattering or
reflection. The fidelity can be drastically improved by detuning
� because detuning hinders real excitation of the matter qubit
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FIG. 3. (Color online) Contour plots of (a) fidelity and (b) success
probability as functions of the cavity decay rate κ and the detuning
� in units of the cavity coupling strength g. γp = γ = 2g. Even
when κ = 2g, high-fidelity operation (F = 0.9) is possible by setting
� = 9g. The success probability will then be P = 0.13%.

and the resultant inelastic scattering. Figure 3 shows a plot of
the fidelity (F) and the success probability (P) as functions
of κ and �, assuming γ = γp = 2g. The cavity condition for
achieving F = 0.9 is κ = 0.59g when � = 0. However, this
condition is relaxed to κ = 2g by setting � = 9g. Surprisingly,
high-fidelity entanglement generation is possible between
homogeneously broadened matter qubits even in the weak-
coupling regime satisfying g < κ,γ,γp. Figure 3(b) shows
that detuning reduces the success probability. Namely, there
is a trade-off between the fidelity and the success probability.
However, the success probability is P = 0.13% when κ = 2g

and � = 9g, which is sufficiently large for practical use. The
dark count rate is typically less than 10−7 per nanosecond so
that this success probability can exceed the dark count rate
even within current technology.

Finally, we discuss possible experimental realization of
our scheme. Color centers are attractive candidates. Nitrogen
vacancy (NV) centers in diamond have a long electron
dephasing time of about a millisecond at a room temperature
[26] and their optically excited states are heavily broadened
due to strong phonon interactions [18]. Therefore, this system
is highly relevant to the present scheme. Silicon-vacancy
(SiV) centers are also attractive [27,28], since their dipole
moments are an order of magnitude larger than those of
NV centers and a larger qubit-cavity coupling g would be
available [29]. Quantum dots (QD) also have promising
properties. Especially, for p-type GaAs QDs, a long spin
relaxation time has been experimentally observed [30], the
spin dephasing time is predicted to be comparable with the
relaxation time [31], and the optical emission has a large
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spectral width [30]. Therefore, this is also a relevant class of
system for our scheme. To be more quantitative, we consider a
cavity QED setup composed of an NV center in diamond and
a microtoroidal cavity. Here, the parameters g, κ , and γ have
comparable values of the order of tens of MHz [32], while
γp is highly sensitive to temperature [18]. The linewidth of
the NV center will be almost lifetime limited and thus γp will
be negligible at low temperatures such as 7 K, whereas γp

will dominate the other parameters at higher temperatures. At
a low temperature (γp = 0.1g and γ = g), F = 0.96 can be
attained with P = 0.13% even by a low-Q cavity (κ = 4g and
� = 5g). If we use SiV centers, stronger qubit-cavity coupling
can be achieved due to a large dipole moment. By assuming
for simplicity that g is enhanced by five times while other
parameters remain unchanged, we can achieve F = 0.99 with
a high success probability of P = 10.0%. Thus, by using our
scheme, it would be possible to realize an EO using current
technology. Moreover, even at higher temperatures, it would
be possible to perform an EO by our scheme with modest
requirements that are expected to be achievable in the near
future. Here, we set the parameters as γp/2π = 300 MHz
(which corresponds to a temperature of about 30 K [18]),
γ /2π = 20 MHz, g/2π = 250 MHz, κ/2π = 150 MHz,
and �/2π = 3 GHz. Entanglement can be generated with
F = 0.90 and P = 0.96%. In principle, once this amount
of remote entanglement is achieved between distant nodes,

one can realize scalable distributed quantum computation
by using purification techniques inside the nodes [33,34].
Therefore, without using liquid helium, distributed quantum
computation may become possible at temperatures of tens of
kelvins. This can be attained readily by a conduction-cooled
system with high cooling power, which could overcome heat
effects [35].

In conclusion, we performed a nonperturbative analysis of
an EO using a detuned photon as a mediator between optically
active matter qubits. We demonstrated that this scheme is
robust against environmental noise so that entanglement can
be generated between homogeneously broadened matter qubits
even in the weak-coupling regime, where damping parameters
overwhelm the coherent coupling between the cavity and the
qubit. Our scheme provides a practical way to overcome the
main obstacle of optically active solid-state systems, namely,
large homogeneous broadening. This result is particularly
relevant for realizing distributed quantum computation by
using NV centers at high temperatures.
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We present here mathematical details on time evolution of a single input photon in the proposed
optical circuit. Numerical results are presented to discuss the effects of a finite pulse length and
spontaneous emission.

I. CAVITY-QED ANALYSIS OF SINGLE-PHOTON DYNAMICS

A. Hamiltonian and initial state vector

We present here mathematical details on time evolution of a single input photon in the proposed optical circuit.
To begin with, we analyze transmission of a photon through a cavity. The physical setup is illustrated in Fig. A1. It
is composed of (i) a matter qubit, which has three levels (|0〉, |1〉, |e〉), (ii) a two-sided cavity, (iii) leak fields from the
cavity (b and b′ fields), (iv) noncavity radiation modes (d field), and (v) environmental modes causing pure dephasing
of the qubit (e field). Since the state |0〉 is optically inactive, we may regard the qubit as a two-level system (|1〉, |e〉)
when investigating its optical response. Putting h̄ = c = 1, the Hamiltonian is given by

H = ωqσ
†σ + ωcc

†c+ g(σ†c+ c†σ)

+

∫
dk

[
kb†kbk +

√
κ/4π(c†bk + b†kc)

]
+

∫
dk

[
kb′†k b

′
k +

√
κ/4π(c†b′k + b′†k c)

]

+

∫
dk

[
kd†kdk +

√
γ/2π(σ†dk + d†kσ)

]
+

∫
dk

[
ke†kek +

√
γp/πσ

†σ(ek + e†k)

]
, (A1)

where σ(= |1〉〈e|) and c are the destruction operators of qubit and cavity photon, and αk (α = b, b′, d, e) is the
destruction operator of α field in the wavenumber representation. The meanings of the parameters are given in the
main text. The field operator in the real-space representation is defined by α̃r = (2π)−1/2

∫
dkeikrαk. The r < 0

(r > 0) region corresponds to the incoming (outgoing) field.
At the initial moment (t = 0), we assume that a single photon is input from the b field and all other components

are in their ground state. The initial state vector is then written as

|Ψin〉 =
∫
drf(r)̃b†r |1〉, (A2)

where f(r) is the wavefunction of the input photon. It is assumed to be

f(r) =
√
2/l θ(−r) exp(iωpr + r/l), (A3)

where θ(r) is the Heavyside step function. Namely, the input photon has a pulse length l and a central frequency ωp.

(   )1

e

dr er

b’rbr
κ/2κ/2

γ γp

FIG. A1: The cavity-QED setup considered. A matter qubit is confined in a two-sided cavity, and a single photon is input
from the left-hand side.
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B. Heisenberg equations

From the Hamiltonian of Eq. (A1), the raw Heisenberg equation for bk is given by dbk/dt = −ikbk−i
√
κ/4π c. This

can be formally solved as bk(t) = bk(0)e
−ikt − i

√
κ/4π

∫ t

0
dτc(τ)e−ik(t−τ). As the Fourier transform of this equation,

b̃r(t) is given by

b̃r(t) = b̃r−t(0)− i
√
κ/2θ(r)θ(t − r)c(t − r). (A4)

Similarly, we have

b̃′r(t) = b̃′r−t(0)− i
√
κ/2θ(r)θ(t − r)c(t − r), (A5)

d̃r(t) = d̃r−t(0)− i
√
γθ(r)θ(t − r)σ(t − r), (A6)

ẽr(t) = ẽr−t(0)− i
√
2γpθ(r)θ(t − r)σ†(t− r)σ(t − r). (A7)

These equations are known as the input-output relations. The Heisenberg equations for σ and c are given by

d

dt
σ = −iω̃qσ − ig(1− 2σ†σ)c− i

√
γ(1− 2σ†σ)d̃−t(0)− i

√
2γp[ẽ

†
−t(0)σ + σẽ−t(0)], (A8)

d

dt
c = −iω̃cc− igσ − i

√
κ/2[̃b−t(0) + b̃′−t(0)], (A9)

where ω̃q = ωq − i(γ/2 + γp) and ω̃c = ωc − iκ/2.
In the main text, the input and output fields (ain, a

′
in, aout, a

′
out) are defined as shown in Fig. 2. They are related

to the b and b′ fields as ain(t) = b̃−t(0), a
′
in(t) = b̃′−t(0), aout(t) = b̃+0(t) and a′out(t) = b̃′+0(t). After making these

replacements, Eqs. (3)–(6) of the main text are derived.

C. Correlation functions

We discuss here the following one-time correlation functions, αq(t) = 〈1|σ(t)σ†|1〉, αc(t) = 〈1|c(t)σ†|1〉, βq(t) =
〈1|σ(t)|Ψin〉 and βc(t) = 〈1|c(t)|Ψin〉. Their initial conditions are given by αq(0) = 1 and αc(0) = βq(0) = βc(0) = 0.
From Eqs. (A8) and (A9), their equations of motion are given by

d

dt

[
αq(t)
αc(t)

]
=

[
−iω̃q −ig
−ig −iω̃c

] [
αq(t)
αc(t)

]
, (A10)

d

dt

[
βq(t)
βc(t)

]
=

[
−iω̃q −ig
−ig −iω̃c

] [
βq(t)
βc(t)

]
+

[
0

−i
√

κ
2f(−t)

]
. (A11)

We denote the Laplace transform of αq(t) by Lαq
(z) =

∫∞

0 dte−ztαq(t). Then, the Laplace transforms of the above
equations are given by

[
Lαq

(z)
Lαc

(z)

]
=

1

(z − λ1)(z − λ2)

[
z + iω̃c

−ig

]
, (A12)

[
Lβq

(z)
Lβc

(z)

]
=

−i
√
κ/l

(z − λ1)(z − λ2)(z − λ3)

[
−ig

z + iω̃q

]
, (A13)

where λ1 and λ2 are the two roots of (z + iω̃q)(z + iω̃c) + g2 = 0 and λ3 = −1/l − iωp. The one-time correlation
functions are obtained by analyzing the poles of the above Laplace transforms.

Next, we proceed to discuss the two-time functions such as β
(2)
q (t1, t2) = 〈1|σ(t1)σ†(t2)σ(t2)|Ψin〉 and β(2)

c (t1, t2) =
〈1|c(t1)σ†(t2)σ(t2)|Ψin〉, where t1 > t2. Their equations of motion with respect to t1 are the same as Eq. (A10), and

the initial conditions (t1 → t2) are given by β
(2)
q (t2, t2) = βq(t2) and β

(2)
c (t2, t2) = 0. Therefore, we have

β(2)
q (t1, t2) = αq(t1 − t2)βq(t2), (A14)

β(2)
c (t1, t2) = αc(t1 − t2)βq(t2). (A15)

Repeating the same logic, general multi-time functions are written as the products of one-time functions as

β(n)
q (t1, · · · , tn) = αq(t1 − t2)αq(t2 − t3) · · ·βq(tn−1 − tn), (A16)

β(n)
c (t1, · · · , tn) = αc(t1 − t2)αq(t2 − t3) · · ·βq(tn−1 − tn). (A17)
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D. Wavefunctions of transmitted photon

After interaction with the qubit-cavity system, the input photon is reflected into the b field, transmitted into the
c field, or scattered into the d field. Time evolution of the input photon is determined by |Ψ(t)〉 = e−iHt|Ψin〉. The
state vector of the transmitted component of photon is written as

|Ψc(t)〉 =
[∫

drg0(r, t)̃b
′†
r +

∫
drdx1g1(r, x1, t)̃b

′†
r ẽ

†
x1

+ · · ·
]
|1〉. (A18)

Note that 0 < r < x1 < · · · < t. g0 describes the elastic component, whereas gn (n ≥ 1) describes the
inelastic component that is entangled with the environmental modes (e†x). We can determine g0 as follows:

g0(r, t) = 〈1|̃b′r|Ψc(t)〉 = 〈1|̃b′r(t)|Ψin〉 = −i
√
κ/2βc(t−r), where Eq. (A5) is used to derive the last equality. Repeating

the same arguments, we have

g0(r, t) = −i
√
κ/2βc(t− r), (A19)

g1(r, x1, t) = (−i
√
κ/2)(−i

√
2γp)βq(t− x1)αc(x1 − r), (A20)

gn(r, x1, · · · , xn, t) = (−i
√
κ/2)(−i

√
2γp)

nβq(t− xn)αq(xn − xn−1) · · ·αc(x1 − r). (A21)

On the other hand, when the qubit is in |0〉, the photon does not interact with the qubit and inelastic processes
are absent accordingly. The state vector of the transmitted photon is then written as

|Ψc(t)〉 =

∫
drg0(r, t)̃b

′†
r |0〉, (A22)

where g0(r, t) = limg→0 g0(r, t).

E. Fidelity and success probability

Here we investigate the density matrix of matter qubits after an entanglement operation. Throughout this section,
we denote the photon field operator in the left (right) arm of the interferometer by aLr (aRr). The initial state vector

is |ψi〉 = 2−1
∫
drf(r)a†Lr [|00〉+ |01〉+ |10〉+ |11〉]. The beamsplitters divide a photon as a†Lr → (ia†Lr + a†Rr)/

√
2 and

a†Rr → (ia†Rr + a†Lr)/
√
2, and the qubit-cavity system transforms a photon as Eqs. (A18)–(A22). When the photon is

output in the left port of BS2, the state vector of the overall system is given by

|ΨL〉 =
1√
8

∫
dr [g0(r, t)− g0(r, t)] ã

†
Lr|φt〉, (A23)

− 1√
8

∞∑

n=1

∫
drdx1 · · · dxngn(r, x1, · · · , xn, t)ã†Lrẽ

†
Rx1

· · · ẽ†Rxn
|φe1〉, (A24)

+
1√
8

∞∑

n=1

∫
drdx1 · · · dxngn(r, x1, · · · , xn, t)ã†Lrẽ

†
Lx1

· · · ẽ†Lxn
|φe2〉, (A25)

where |φt〉 = (|01〉 − |10〉)/
√
2 is the target entangled state, |φe1〉 = (|01〉+ |11〉)/

√
2, and |φe2〉 = (|10〉+ |11〉)/

√
2.

The success probability P of the entanglement operation, namely, the probability to click the detector, is given by
P = 〈ψL|ψL〉. Denoting the norm of a function f by N (f), we have

P = N (g0 − g0)/8 +
∞∑

n=1

N (gn)/4. (A26)

The reduced density matrix ρ of matter qubits is defined by ρ = Tra,e|ψL〉〈ψL|/〈ψL|ψL〉. Therefore,

ρ =
N (g0 − g0)|φt〉〈φt|+

∑∞
n=1 N (gn)(|φe1〉〈φe1|+ |φe2〉〈φe2|)

N (g0 − g0) + 2
∑∞

n=1 N (gn)
. (A27)

The fidelity F between ρ and the target state |φt〉〈φt| is given by

F =
N (g0 − g0) +

∑∞
n=1 N (gn)/2

N (g0 − g0) +
∑∞

n=1 2N (gn)
. (A28)
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It is of note that the infinite sum of
∑∞

n=1 N (gn) can be carried out analytically. Using the Laplace transforms of
|αc|2, |αq|2 and |βq|2, we have

∞∑

n=1

N (gn) = κγp
L|βq|2(0)L|αc|2(0)

1− 2γpL|αq|2(0)
. (A29)

In the long pulse limit of l → ∞, N (g0 − g0) and
∑∞

n=1 N (gn) respectively reduce to |1 − te|2 and |ti|2 as discussed
in the main text.

II. NUMERICAL RESULTS

In this section we present the numerical results that are not presented in the main text. We assume ωp = ωc

throughout this supplementary material and denote the qubit-cavity detuning ωq − ωc by ∆.

A. Pulse Length

First, we observe the effects of a finite pulse length l of an input photon. Assuming a dissipation-free (γ = γp = 0)
and resonant (∆ = 0) case, the success probability P is plotted as a function of l for several values of κ in Fig. A2(a).
We can observe there that P becomes independent of l for l ≫ κ−1 and reaches the limit value given by Eq. (16) of
main text. This implies that the long-pulse limit, where the input photon can enter the cavity perfectly, is achieved
when the spectral width of input photon (l−1) is much narrower than that of cavity (κ). For shorter pulses, the cavity
filters out the off-resonant components of input photon and the success probability is decreased accordingly. In the
short-pulse region, the success probability becomes proportional to l since it is determined by the overlap between
the spectra of input photon and cavity.
Figure A2(b) shows the l-dependence of fidelity. As expected, F becomes independent of l in the long-pulse limit

and the limit value is given by Eq. (15) of the main text. However, in contrast with Fig. A2(a), the fidelity is insensitive
to l also in the short pulse region. This can be understood intuitively as follows. Once the photon enters the cavity,
its property is determined by the cavity linewidth and becomes irrelevant to the original linewidth determined by l.
We can observe that both the success probability and the fidelity are maximized in the long pulse limit.
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FIG. A2: Dependences of (a) success probability and (b) fidelity on the input pulse length l. γ = γp = 0 and ∆ = 0. The
values of κ are indicated in the figure.

B. Spontaneous Emission

Here we observe the effects of nonzero γ. Assuming a noisy environment (γp = 2g) and a resonant input photon
(∆ = 0), the fidelity F is plotted as a function of κ and γ in Fig. A3(a). We can confirm that the cavity condition
is substantially relaxed by a nonzero γ. In order to achieve F = 0.9 for example, κ = 0.08g is required when γ is
absent, whereas this condition is relaxed to κ = 0.59g when γ = 2g. Usually, spontaneous emission into irrelevant
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modes leads to dissipation of quantum devices and lowers their figure of merits. However, this is not the case with the
present scheme. The origin of infidelity here is inelastic scattering (in other words, entanglement with environment),
which occurs while the qubit is being excited. Spontaneous emission makes the lifetime of excited state shorter and
thus hinders inelastic scattering. The success probability P is shown in Fig. A3(b). It is observed that P is lowered
by γ. Thus, a high-fidelity operation becomes possible at the expense of a lower success probability.
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FIG. A3: Contour plots of (a) fidelity and (b) success probability, as functions of κ and γ. γp = 2g and ∆ = 0.
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