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Abstract. We investigate the dynamics of a superconducting qubit strongly
coupled to a semi-infinite one-dimensional microwave field having a variable
boundary condition. The radiative level shift and linewidth of the qubit are
controllable through the boundary condition of the field, and the spectral
properties of the output microwave are modified accordingly. The current
scheme provides a compact method for controlling the radiative characteristics
of quantum few-level systems that is useful in single-photon engineering.
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1. Introduction

In the early days of quantum mechanics, the transition frequencies and the spontaneous emission
rates of atoms were regarded as inherent properties of individual atoms determined by their
valence electrons. However, these quantities are sensitive to the dielectric environment such as
the spatial profile of the field modes and their density of states, since the optical transitions
occur as a result of interaction between the electrons and the light field. When an atom is in a
free space, its transition frequencies are shifted slightly through the vacuum fluctuation of the
field, which is known as the radiative (Lamb) shift [1, 2]. On the other hand, when an atom is
placed in a cavity, its radiative decay can be enhanced or suppressed drastically, which is known
as the Purcell effect [3–7]. The changes in the transition frequency and the radiative decay rate
are inseparable in general, since they are determined by the real and imaginary parts of the
complex frequency of the atom renormalized by interaction with the light field.

In recent years, atoms (including artificial ones) coupled to one-dimensional (1D)
photon fields have been realized in a variety of physical systems: trapped atoms [8–13]
and molecules [14], quantum dots [15, 16], color centers [17, 18] and superconducting
qubits [19–23]. They are classified into two types by their spatial configuration: the direct-
coupling type, in which the atom interacts directly with the 1D field [8–11, 14, 15, 17–19], and
the cavity quantum electrodynamics (QED) type, in which the atom is coupled with a cavity
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mode and then to the propagating field indirectly. The cavity QED systems are further classified
by their internal dynamics into the weak-coupling regime [12, 13, 16] and the strong-coupling
regime [20–23]. The former (latter) regime is characterized by a shorter (longer) lifetime of
a cavity photon than the period of the vacuum Rabi oscillation. The weak-coupling cavity
QED systems exhibit essentially the same dynamics as those of the direct-coupling systems,
since the degrees of freedom of cavity photons may be eliminated adiabatically [12]. The
charm of the strong-coupling cavity QED systems lies in the coherent quantum phenomena
played by the atoms and cavity photons, which can be applied to various areas of quantum-state
engineering. On the other hand, the charm of the direct-coupling systems lies in their peculiar
optical response that originates from inevitable interference between the incident light and the
radiation from the atom due to one dimensionality of the field. Recent studies revealed that (i)
incident light can be reflected perfectly by a single atom [19, 24], (ii) the nonlinear interaction
between single photons can be enhanced drastically [25] and (iii) the Raman-type transitions
may become nearly deterministic [26–28].

In this study, we investigate a circuit QED system in which a superconducting qubit is
coupled directly to a semi-infinite microwave transmission line and analyze the microwave
response of the qubit to stationary pumping. A similar situation was realized by a single ion
trapped near a mirror, and the interference of radiation from the ion and its mirror image was
confirmed [8, 29]. Compared to this, the current situation has the following three merits in
the light of quantum-state engineering. (i) The spontaneous emission into the transmission line
overwhelms that into other spatial modes6. Therefore, the excitation in the qubit is transformed
into a microwave photon nearly perfectly. In other words, the radiation mode of the qubit is
matched with the incident wave. (ii) The qubit is motionless and its position can be controlled
precisely (typically, 10−4 of the wavelength of relevant photons). (iii) The radiative decay rate
overwhelms the pure-dephasing rate. Therefore, the radiative decay of the qubit occurs cleanly.
In this study, we treat three kinds of dissipation of the qubit (radiative decay, pure dephasing,
non-radiative decay) in a non-perturbative manner and observe their interplay.

The physical setup considered here is schematically illustrated in figure 1. The microwave
transmission line is terminated by a superconducting quantum interference device (SQUID).
This enables us to change the boundary condition at the terminal through the magnetic flux
threading the SQUID ring [30–32] and therefore to vary the effective position of the qubit
continuously. We theoretically show that the radiative level shift and linewidth of the qubit
can be controlled through the boundary condition, and that they are reflected in the properties of
the output radiation. This scheme will offer an experimentally compact method for controlling
the radiative properties of the qubit and will be useful in future single-photon engineering.

The rest of this paper is organized as follows. The theoretical model is presented in
section 2, and the Heisenberg equations are derived in section 3. The microwave response of
the qubit is discussed in section 4. The properties of the output microwave radiation, such as the
coherent amplitude and the power spectrum, are respectively discussed in sections 5 and 6. The
boundary condition of the microwave transmission line is derived for the self-containedness
of the paper in appendix A, and the details of the calculation are presented in appendices B
and C.
6 The ratio between the radiative decay rate into the target mode (0t) and the overall decay rate (0o) can be
inferred from the dip in the transmission spectrum. 0t/0o is less than 10% in atomic experiments, whereas this
value exceeds 90% in circuit QED experiments.
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Figure 1. (a) Schematic illustration of the physical setup. A microwave
transmission line is terminated by a SQUID ring. The boundary condition can
be varied by the amount of magnetic flux threading the ring. A superconducting
qubit is coupled to the line at r = l. (b) Shape of the microwave eigenmode at
the qubit frequency: mod(ωbl + θb, π)/π = 0 and ±1/2.

2. The system

2.1. The Hamiltonian

The experimental setup considered is illustrated schematically in figure 1. The system is
composed of a semi-infinite microwave transmission line terminated by a SQUID ring and a
superconducting two-level system (qubit). The transmission line extends in the r > 0 region and
is terminated at r = 0 by the ring, and the qubit is coupled to the line at r = l. The eigenmodes
of the transmission line in the absence of the qubit are given by

fk(r)=
√

2/π cos(kr + θb), (1)

where k is the wave number and θb is the phase shift determined by the magnetic flux threading
the ring (see appendix A). We may set −π/2< θb < π/2 without loss of generality, since
θb + nπ with integer n yields the same mode function as equation (1). Although θb is dependent
on k rigorously, we can neglect this dependence in the narrow frequency range near the
resonance of the qubit. Furthermore, to account for pure dephasing and non-radiative decay
induced by environmental degrees of freedom, the qubit is coupled to two independent bosonic
reservoirs, both of which are assumed to have the same dispersion relation as the microwave
photon for simplicity. Setting h̄ = v = 1, where v is the microwave velocity, the Hamiltonian of
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the overall system is given by

H= ωbσ
†σ +

∫
∞

−∞

dk
[
kb†

kbk + gk(σ
†bk + b†

kσ)
]

+
∫

∞

−∞

dk
[
kc†

kck + hkσ
†σ(c†

k + ck)
]

+
∫

∞

−∞

dk
[
kd†

k dk + ik(σ
†dk + d†

kσ)
]
, (2)

where σ is the lowering operator of the qubit, bk is the annihilation operator of the microwave
photon with wave number k and ck and dk are the annihilation operators of the reservoir
excitations: ck accounts for pure dephasing and dk for non-radiative decay. The qubit–photon
coupling gk and the qubit–reservoir couplings hk and ik are given by

gk =
√
0r/2 fk(l)=

√
0r/π cos(kl + θb), (3)

hk =
√
0p/π, (4)

ik =
√
0n/2π. (5)

The meanings of the parameters are as follows.ωb is the transition frequency of the qubit, and0r,
0p and 0n, respectively, denote the rates for radiative decay, pure dephasing and non-radiative
decay.

For later convenience, we introduce the field operator in the real-space representation.
Dividing the eigenmode function of equation (1) into incoming and outgoing components,
the input and output field operators are given by bin,r = (2π)−1/2

∫
∞

0 dk e−i(kr+θb)bk and bout,r =

(2π)−1/2
∫

∞

0 dk ei(kr+θb)bk , respectively. Since only high-energy excitations (k ∼ ωb) are relevant,
we can formally introduce the negative-energy excitations and extend the lower limit of k to
−∞. Then we have

bin,r = e−iθb b̃−r , (6)

bout,r = eiθb b̃r , (7)

where b̃r is the Fourier transform of bk , as given by

b̃r =
1

√
2π

∫
∞

−∞

dk eikr bk. (8)

Note that the index r in b̃r runs over −∞< r <∞, and the r < 0 (r > 0) region represents the
incoming (outgoing) field. We can formally define c̃r and d̃r in the same manner.

Several remarks should be made regarding this model. (i) Regarding the b and d fields,
high-energy excitations (k ∼ ωb) are relevant in the dynamics. Although negative-energy
excitations are introduced in the Hamiltonian, they are highly out of resonance with the qubit
and do not affect its microwave response [33]. (ii) In contrast, regarding the c field, low-
energy excitations (k ∼ 0) are relevant, and the generation of negative-energy excitations implies
absorption of energy from the environment. hk would depend not only on the bare interaction
strength and the density of states but also on the Boltzmann factor. One may approximately treat
hk as a constant when the energy of relevant excitations is much smaller than the background
temperature. This condition is satisfied in circuit QED experiments: since the energy exchange
with the c field occurs as a result of inelastic scattering, the relevant energy is determined by the
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detuning between the pump photon and the qubit, which is usually of the order of 0r ∼ 0.5 mK.
In contrast, the background temperature is typically at 50 mK. (iii) When one realizes the
setup of figure 1 by using real atoms, the radiative decay into the lateral direction becomes
significant [8]. This damping plays the same role as the non-radiative decay employed here.
Therefore, the present model can cover the optical cases by interpreting the non-radiative decay
as the radiative decay into the lateral direction.

2.2. Initial state vector

In this study, we investigate the microwave response of the qubit to stationary pumping. At the
initial moment (t = 0), we assume that the qubit is in the ground state, no excitation exists in
both reservoirs and the input microwave has not arrived at the qubit. The initial state vector is
then written as

|ψi〉 =N exp

(∫
dr Ein(r)b

†
in,r

)
|0〉, (9)

where |0〉 is the overall vacuum state and N = exp(−
∫

dr |Ein(r)|2/2) is a normalization
constant. Ein(r) represents the input classical microwave at the initial moment, as given by

Ein(r)=

{
E e−iωpr (l < r),
0 (otherwise),

(10)

where E and ωp are the amplitude and frequency of the pump, respectively. Note that |ψi〉

is in a coherent state and is therefore an eigenstate of the initial field operators, satisfying
b̃r(0)|ψi〉 = eiθb Ein(−r)|ψi〉 and c̃r(0)|ψi〉 = d̃r(0)|ψi〉 = 0. Throughout this paper, we denote
〈ψi|A(t)|ψi〉 by 〈A(t)〉, where A may be any operator.

3. Heisenberg equations

From the Hamiltonian of equation (2), we can rigorously derive the following equations (see
appendix B for derivation):

b̃r(t)= b̃r−t(0)− ie−iθb

√
0r

2
2r∈(l,t+l)σ(t − r + l)− ieiθb

√
0r

2
2r∈(−l,t−l)σ(t − r − l), (11)

c̃r(t)= c̃r−t(0)− i
√

20p2r∈(0,t)σ
†(t − r)σ (t − r), (12)

d̃r(t)= d̃r−t(0)− i
√
0n2r∈(0,t)σ(t − r), (13)

d

dt
σ =

(
−iωb −

0r + 20p +0n

2

)
σ −

0re2iθb

2
2t∈(2l,∞)

(
1 − 2σ †σ

)
σ(t − 2l)

−i
(
1 − 2σ †σ

)
[Nb(t)+ Nd(t)] − iN †

c (t)σ − iσNc(t), (14)

d

dt
σ †σ =

(
−
0r +0n

2
σ †σ −

0re2iθb

2
2t∈(2l,∞)σ

†σ(t − 2l)− iσ †[Nb(t)+ Nd(t)]

)
+ h.c., (15)
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where

2r∈(a,b) =

1 (a < r < b),
1/2 (r = a, b),
0 (otherwise),

(16)

and the noise operators Nb(t), Nc(t) and Nd(t) are defined by

Nb(t)=
√
0r/2

[
eiθb b̃l−t(0)+ e−iθb b̃−l−t(0)

]
, (17)

Nc(t)=
√

20p̃c−t(0), (18)

Nd(t)=

√
0nd̃−t(0). (19)

The microwave photons formally propagate only in the positive direction and interact with
the qubit at both r = −l and +l. This makes the equation of motion of the qubit, equations (14)
and (15), non-local in time [29]. However, the position l of the qubit is of the order of the
microwave wavelength in the present situation and therefore the dynamics of the qubit is
negligible during the short time interval of the order of l/v, except for the natural phase factor.
(Typically, l ∼ 1 cm, v ∼ c/3, and therefore l/v ∼ 10−10 s. In contrast, the time scale of the
qubit dynamics is determined by 0−1

r ∼ 10−8 s [19].) We may then safely replace σ(t +1t)
with σ(t) e−iωb1t . Furthermore, since we consider the narrow frequency range near resonance,
we can also replace b̃±l−t(0) with e±iωbl b̃−t(0). Then, equations (11), (14), (15) and (17) are
rewritten as follows:

b̃r(t)= b̃r−t(0)− iα0̃1/2
r 2r∈(0,t)σ(t − r), (20)

d

dt
σ = (−iω̃b −02)σ − i

(
1 − 2σ †σ

)
[Nb(t)+ Nd(t)] − iN †

c (t)σ − iσNc(t), (21)

d

dt
σ †σ = −01σ

†σ − iσ †[Nb(t)+ Nd(t)] + i[N †
b (t)+ N †

d (t)]σ, (22)

Nb(t)= α0̃1/2
r b̃−t(0), (23)

where α = sgn[cos(ωbl + θb)], ω̃b and 0̃r are the transition frequency and the radiative linewidth
of the qubit, which are renormalized by coupling to the semi-infinite field as

ω̃b = ωb + (0r/2) sin 2(ωbl + θb), (24)

0̃r = 20r cos2(ωbl + θb), (25)

and 01 and 02 are the overall rates for energy relaxation and dephasing, as given by

01 = 0̃r +0n, (26)

02 = 01/2 +0p. (27)

The commutation relations between the noise and qubit operators are summarized in
appendix B. Here, the radiative level shift originates from the coupling to continuous photonic
modes as found by Lamb and Retherford [1], in contrast with the shifts originating from the
coupling to a discrete cavity mode [23]. Equations (24) and (25) indicate that both the radiative
shift and linewidth of the qubit are controllable through the boundary condition. We will observe
in the following how these renormalized values are reflected in the microwave response of the
qubit.
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4. Response of the qubit

4.1. Basic equations

In this section, we observe the response of the qubit to a continuous pump field of equation (10).
The equations of motion for s1(t)≡ 〈σ(t)〉 ei(ωpt−θb) and s2(t)≡ 〈σ †(t)σ (t)〉 are given, from
equations (9), (21) and (22), by

d

dt

s1

s∗

1
s2

 =

−02 + iδω 0 iα�
0 −02 − iδω −iα�

iα�/2 −iα�/2 −01

 s1

s∗

1
s2

 +

−iα�/2
iα�/2

0

 , (28)

where δω = ωp − ω̃b is the detuning between the pump and the renormalized qubit frequency
and �= 20̃1/2

r E is the Rabi frequency.
The response of the qubit can be pursued by solving equation (28) with the initial condition

of s1(0)= s2(0)= 0. The transient behavior before reaching the stationary state is determined
by the 3×3 matrix appearing in equation (28). When the pump field is resonant (δω = 0), the
three eigenvalues of the matrix are given by

λ= −02,−
01 +02

2
± i

√
�2 −

(
01 −02

2

)2

. (29)

Therefore, if the pump field is strong enough to satisfy �� 01,2, the upper-state population
exhibits oscillatory behavior known as the Rabi oscillation. The qubit reaches its stationary
state for t � 0−1

1,2. The stationary values, s̄1 = s1(∞) and s̄2 = s2(∞), are obtained by putting
d
dt = 0 in equation (28) as

s̄1 =
−iα

2

01(02 + iδω)�

01|02 + iδω|2 +02�2
, (30)

s̄2 =
1

2

02�
2

01|02 + iδω|2 +02�2
. (31)

4.2. Numerical results

Transient behavior of s2 under resonant pumping (ωp = ω̃b) is shown in figure 2 for several
different boundary conditions. The Rabi frequency is given by �= 20̃1/2

r E , whereas the
damping rate is given by 01,2 ∼ 0̃r, both of which are sensitive to the boundary condition
through the renormalization of 0̃r. The Rabi oscillations can be observed clearly when the Rabi
frequency is much larger than the damping rate, namely, E2/0r � cos2(ωbl + θb). This tendency
can be confirmed in figure 2.

In order to observe the effects of dissipation, the stationary population s̄2 of the excited
state is plotted as a function of θb in figure 3, for several different dissipation rates, 0p and 0n. It
is observed that both dissipative mechanisms decrease the excited state population as expected.
Their difference appears in the limit of mod(ωbl + θb)→ ±0.5π , where the qubit lies at the
node of the corresponding eigenmode and therefore cannot be seen by the microwave. s̄2 is non-
vanishing in this limit in the ideal cases of 0n = 0. However, in reality, s̄2 vanishes in this limit
due to finite 0n (see the dashed line in figure 3).
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Figure 2. Temporal evolution of the excited state population s2(t) in
the dissipation-free cases (0p = 0n = 0) with different boundary conditions:
mod(ωbl + θb, π)= 0 (solid), ±0.4π (dotted) and ±0.45π (dashed). The pump
is tuned to the renormalized resonance (ωp = ω̃b) and its intensity is fixed
(E2

= 0r).
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Figure 3. Effects of dissipation on the stationary population s̄2 of the excited
state: no dissipation ((0p, 0n)/0r = (0, 0), thin dotted line), pure dephasing
((0p, 0n)/0r = (0.2, 0), solid) and non-radiative decay ((0p, 0n)/0r = (0, 0.2),
dotted). The pump is tuned to the renormalized resonance (ωp = ω̃b) and
its intensity is fixed (E2

= 0r). Although s̄2 is non-vanishing at mod(ωbl +
θb, π)/π = 0.5 in the ideal cases of 0n = 0, s̄2 vanishes in reality due to finite
0n ((0p, 0n)/0r = (0.2, 0.01), dashed line).

5. Amplitude of the output field

In the following sections, we investigate the properties of the output microwave. In this section,
we discuss the coherent amplitude of the output wave, Eout(r, t)= 〈bout,r(t)〉, which can be
measured by homodyne-type measurements. From equations (20) and (30), Eout is given, in the
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Figure 4. (a) Phase shift and (b) amplitude of the reflected wave, in the linear-
response regime (E2

→ 0) and in the dissipation-free limit (0p = 0n = 0). The
origin of frequency is set at the bare resonance frequency, ωb. The boundary
condition is set at mod(ωbl + θb, π)= 0 (solid), ±0.25π (dotted) and ±0.5π
(dashed). Note that the natural phase factor e2iθb is removed in (a) and that all
lines are overlapping in (b).

stationary state, by

Eout(r, t)

Ein(−r, t)
=

(
1 −

0̃r01(02 + iδω)

01|02 + iδω|2 +02�2

)
e2iθb, (32)

where Ein(−r, t)= E eiωp(r−t). This expression for Eout holds for any input intensity.

5.1. Linear response

The effects of the boundary condition and dissipations are most clearly reflected in the linear
response of the qubit. By taking the weak-field limit (�→ 0) in equation (32), the linear
response is given by

Eout(r, t)

Ein(−r, t)
=

2δω + i(20p +0n − 0̃r)

2δω + i(20p +0n + 0̃r)
e2iθb . (33)

We first discuss the dissipation-free limit of 0p = 0n = 0. The phase shift φ = arg(Eout/Ein) and
the amplitude |Eout| of the output wave are plotted in figure 4 for several different boundary
conditions. (In order to observe the boundary effects clearly, the natural phase factor e2iθb

is removed.) We can confirm that |Eout| = |Ein| from equation (33). This implies that the
input wave is reflected coherently without attenuation. The input wave is subject to a linear
phase shift of φ(ωp), which changes steeply around ω̃b within a narrow frequency width of
0̃r. Therefore, φ(ωp) is sensitive to the boundary condition as observed in figure 4(a). When
mod(ωbl + θb, π)= ±0.5π and therefore 0̃r = 0, the qubit lies at the node of the corresponding
eigenmode. Therefore, the input wave cannot see the qubit and is reflected as it is, Eout = Ein.

Next, we discuss the effects of dissipation. Equation (33) implies that, regarding the linear
response, the roles of the two dissipative mechanisms, 0p and 0n, are equivalent. The dissipative
version of figure 4 is shown in figure 5. A clear difference from the dissipation-free case is the
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appearance of a dip in |Eout(ωp)|, which is located at ω̃b and has a width of 0̃r. In particular,
when 0̃r = 20p +0n is satisfied (dotted lines in figure 5), the coherent amplitude vanishes in
the output port under a resonant pump. In this case, the fate of input photons depends strongly
on the nature of dissipation (see section 6.2 for detailed discussion): when pure dephasing is
dominant (0p � 0n), all input photons are reflected into the output port after inelastic scattering.
In contrast, when non-radiative decay is dominant (0n � 0p), all input photons are dissipated
into environments. This is known as the critical coupling [34].

6. The power spectrum

6.1. Coherent and incoherent components

The power spectrum S(ω) of the output radiation is defined by

S(ω)= lim
T →∞

∫ ∫ T

0

dt1dt2

2πT
eiω(t2−t1)〈̃b†

r (t1)̃br(t2)〉, (34)

where r (> l) represents the detector position. Since the correlation function 〈̃b†
r (t1)̃br(t2)〉

depends only on t1 − t2 when stationary, S(ω) is recast into the following form:

S(ω)= Re
∫

∞

0

dτ

π
eiωτ

〈̃b†
r (t )̃br(t + τ)〉, (35)

where t should satisfy t � r . S(ω) can be calculated analytically using the Heisenberg equations
(see appendix C for details). It is composed of the coherent and incoherent parts as S(ω)=

Sc(ω)+ Si(ω), where

Sc(ω)= |Eout|
2δ(ω−ωp), (36)

Si(ω)= (0̃r/π)ReI3(ω). (37)

Eout and I3(ω) are given by equations (32) and (C.6).
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6.2. Fluxes of three components

The input photons have the following three possibilities after interacting with the qubit, as shown
in figure 1: (i) coherent reflection into the output port, (ii) incoherent reflection into the output
port and (iii) dissipation into the environment. The photon fluxes for (i) and (ii) are evaluated
by Fc =

∫
dωSc(ω) and Fi =

∫
dωSi(ω). From equations (36) and (C.10), we have

Fc = |Eout|
2
= E2

−01s̄2 + 0̃r|s̄1|
2, (38)

Fi = 0̃r(s̄2 − |s̄1|
2). (39)

The flux for (iii) is defined by Fd =
∫

dωSd(ω), where Sd(ω) is obtained by replacing b̃r with d̃r

in equation (34). It is given by

Fd = 〈̃d†
r (t )̃dr(t)〉 = 0ns̄2. (40)

From equations (38)–(40), we have

Fc + Fi + Fd = E2. (41)

This represents the flux conservation law, since the input flux is E2.

In the linear-response regime (E2
→ 0), Fi and Fd are reduced to Fi =

20p0̃
2
r

01|02+iδω|2
E2 and

Fd =
20n0̃

2
r 02

01|02+iδω|2
E2. Figure 6 shows the dependences of Fc, Fi and Fd on the boundary condition,

assuming that the pump is always tuned to the renormalized resonance (ωp = ω̃b). If dissipations
are small enough to satisfy 0n + 20p < 20r, one may set the boundary condition to satisfy
0̃r = 0n + 20p. Then, the coherent component vanishes in the output, whereas Fi =

0p

0p+0n
E2 and

Fd =
0n

0p+0n
E2. Therefore, the fate of input photons becomes sensitive to the type of dissipation.

When pure dephasing is negligible (0n � 0p) as in optical experiments, all input photons are
dissipated into the environment. This is known as critical coupling [34]. In contrast, when pure
dephasing is dominant (0p � 0n) as in circuit QED experiments, all input photons are reflected
back to the output port after inelastic scattering. When mod(ωbl + θb, π)= ±0.5π and therefore
0̃r = 0, the qubit is located at the node of the corresponding eigenmode. Therefore, the pump
field cannot see the qubit and is reflected as it is.
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Since equations (38)–(40) are derived non-perturbatively and are valid for any input
intensity, we can readily observe the strong field effects. Figure 7 shows the dependences of
Fc, Fi and Fd on the input power E2, fixing the boundary condition. It is worth noting that,
if 0n + 20p < 0̃r is satisfied, the coherent component may vanish at a certain input intensity,
E2

= 01(0̃r −02)/40̃r. In the limit of strong pumping (E2
→ ∞), the qubit becomes saturated

(s̄2 → 1/2) and does not interact with the field. Therefore, the pump field is reflected as it is in
this limit.

6.3. Spectral shapes of Si(ω)

In the previous subsection, we clarified how the ratios of coherent and incoherent components
are determined. Here we investigate the spectral shape of the incoherent component. In the
dissipation-free limit (0p = 0n = 0), the spectral shape is identical to that of a two-level atom
in free space, having the renormalized parameters ω̃b and 0̃r. Figure 8 shows how the pump
intensity E2 affects the spectral shape. Under a weak pump (�. 0̃r), Si(ω) has a single peak
at the pump frequency ωp. In contrast, under a strong pump (�& 0̃r), two sidebands appear
symmetrically at ωp ±�. This is known as the Mollow triplet [19, 35, 36]. As the intensity is
increased, the two sidebands shift keeping their linewidths. Figure 9 shows how the boundary
condition affects the spectral shape, fixing the pump intensity and frequency. The boundary
condition affects the spectrum through renormalization of 0̃r. The linewidths of the three peaks
are proportional to 0̃r, while the level splitting � is proportional to 0̃1/2

r . Therefore, the triplet
structure becomes clearer for smaller 0̃r [mod(ωbl + θb, π)→ ±0.5π ]. This tendency can be
confirmed in figure 9.

Next we discuss the effects of dissipation. Here we fix the boundary condition at
mod(ωbl + θb, π)= 0, where ω̃b = ωb and 0̃r = 20r, but qualitatively similar results are obtained
for general boundary conditions. Figure 10 shows the effects of dissipation on Si(ω) when
the pump is tuned to the resonance (ωp = ω̃b). We can observe that dissipations broaden the
peaks, preserving the symmetry of the triplet structure about the pump frequency. The roles
of 0p and 0n are qualitatively the same under resonant pumping. However, the symmetry of
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the triplet structure is not necessarily conserved for off-resonant pumping. Figure 11 shows the
results when the pump frequency is below the resonance (ωp = ω̃b − 50r). If pure dephasing
is absent (0p = 0), the symmetry of the spectrum about the pump frequency is preserved.
This point is in agreement with the optical results reported in [29] in the Markovian limit.
In contrast, if pure dephasing is present (0p > 0), the symmetry of the spectrum is broken. The
sideband closer to the resonance ω̃b becomes larger than the other one. (Although not presented
in figure 11, the lower sideband becomes larger than the higher one when ωp > ω̃b.) Since
conservation of photon number is guaranteed by equation (41), asymmetry in the spectrum
implies that conservation of photon energy is broken between the input and the output. These
facts can be understood as follows. The excitation in the atom is necessarily converted into
a single photon in the absence of pure dephasing (σ †

|0〉 → b†
k |0〉), whereas the atom can

emit a photon accompanying low-energy excitations in the environment in the presence of
pure dephasing (σ †

|0〉 → b†
k |0〉, b†

kc†
k′|0〉, · · · ). Namely, energy conservation is relaxed by the
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pure-dephasing-type interaction with the environment [37]. The atom can then emit photons
dominantly near its resonance to break the symmetry.

7. Discussion

We analyzed a superconducting qubit coupled to a semi-infinite transmission line and observed
that its transition frequency and linewidth become sensitive to the boundary condition of
the line. Since the boundary condition can be varied continuously in circuit QED systems
(see appendix A), the current scheme thus provides an experimentally compact method for
controlling the radiative property of the qubit. We make two remarks here from the viewpoint
of single-photon engineering. (i) The physical origin of the present phenomenon is interference
among the following three waves: reflected wave (the first term in equation (11)), radiation

New Journal of Physics 14 (2012) 043005 (http://www.njp.org/)

http://www.njp.org/


16

emitted into the positive r -direction (the second term in equation (11)) and radiation emitted into
the negative r -direction and reflected afterwards (the third term in equation (11)). Therefore, the
conditions for obtaining the present effects by a single photon with pulse length d are as follows:
the radiative decay rate is slow enough to satisfy 0r � v/ l, where v is the microwave velocity
in the transmission line, and the pulse length is long enough to satisfy l � d. Both conditions
can be readily satisfied in the circuit QED systems. The giant optical nonlinearity sensitive to
individual photons, which is peculiar to such a 1D system, is expected to appear in the present
system [25]. (ii) The position dependence of 0̃r is determined by its bare transition frequency
ωb (see equation (25)). Therefore, in multi-level quantum systems which have several decay
paths with different transition frequencies (1-type three-level system, for example [27]), the
present scheme will serve as a method for controlling the ratio of radiative decay rates. This
would enable us to control the Raman-transition efficiency and would open up a new type of
single-photon engineering, which will be discussed elsewhere.

8. Summary

We studied the resonance fluorescence from a superconducting qubit that interacts with a semi-
infinite 1D microwave field and is subject to two types of dissipation, pure dephasing and non-
radiative damping (figure 1). When coupled to a semi-infinite field, the transition frequency and
the radiative linewidth of the qubit are renormalized as equations (24) and (25), and become
sensitive to the boundary condition of the field. We analyzed the properties of the output
microwave radiation, such as the coherent amplitude and the power spectrum, and observed
how the boundary condition and the two types of dissipation modify the properties of output
radiation. The present scheme would offer an experimentally compact method for controlling
the radiative properties of quantum few-level systems, which would be useful for future single-
photon engineering.
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Appendix A. The boundary condition

For self-containedness of the paper, we briefly overview how the phase θb in equation (1) is
determined by the magnetic flux threading the SQUID [30]. Figure A.1 shows the effective
circuit diagram of a transmission line terminated by a SQUID. The transmission line is modeled
by a set of discrete inductances (L) and capacitances (C), and the phase across the j th capacitor
is denoted by φ j ( j > 1). The SQUID consists of two identical Josephson junctions (each having
capacitance Cs and Josephson energy Es) forming a loop, and the phases across the junctions are
denoted by φa and φb. The flux quantization requires that φa −φb = φex + 2mπ (m is integer),
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Figure A.1. Equivalent circuit for a transmission line terminated by a SQUID.
The transmission line is modeled by a set of discrete inductances and
capacitances. The SQUID consists of two identical junctions forming a loop.
The external magnetic flux threading the loop is (h̄/2e)φex.

where (h̄/2e)φex is the external magnetic flux threading the loop. The overall Lagrangian is
given by

L= LTL +LSQ +Lint, (A.1)

LTL =

∞∑
j=1

(
h̄

2e

)2
[

C φ̇2
j

2
−
(φ j+1 −φ j)

2

2L

]
, (A.2)

LSQ =

(
h̄

2e

)2 Cs

2
(φ̇2

a + φ̇2
b)+ Es(cosφa + cosφb), (A.3)

Lint = −

(
h̄

2e

)2
(φb −φ1)

2

2L
. (A.4)

We switch to new phase variables ϕ0 = (φa +φb)/2 +πθ [−cos(φex/2)] and ϕ j = φ j +φex/2 +
πθ [−cos(φex/2)] for j > 1, where θ is the Heaviside step function. The Lagrangian is then
recast in the following form:

LTL =

∞∑
j=1

(
h̄

2e

)2
[

C ϕ̇2
j

2
−
(ϕ j+1 −ϕ j)

2

2L

]
, (A.5)

LSQ =

(
h̄

2e

)2 C̃s

2
ϕ̇2

0 + Ẽs(φex) cosϕ0, (A.6)

Lint = −

(
h̄

2e

)2
(ϕ0 −ϕ1)

2

2L
, (A.7)

where C̃s = 2Cs and Ẽs(φex)= 2Es| cos(φex/2)|. Therefore, the SQUID works as a single
Josephson junction having a tunable Josephson energy Ẽs(φex) through the external magnetic
flux φex.

The equations of motion for ϕ0 and ϕ j ( j > 1) are, respectively, given by

C̃sϕ̈0 = −(2e/h̄)2 Ẽs(φex) sinϕ0 + (ϕ1 −ϕ0)/L , (A.8)

C ϕ̈ j = −(2ϕ j −ϕ j−1 −ϕ j+1)/L . (A.9)

We hereafter treat the phase variable as a continuous one ϕ(r, t), which is related to ϕ j(t) by
ϕ j(t)= ϕ( j1x, t), where 1x is the distance between the neighboring inductances. We also
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introduce the inductance and capacitance per unit length by L0 = L/1x and C0 = C/1x .
Equation (A.9) is then reduced to the wave equation

∂2ϕ

∂t2
= v2 ∂

2ϕ

∂r 2
, (A.10)

where v = (L0C0)
−1/2 is the velocity of the microwave. On the other hand, equation (A.8) is

recast in the following form after linearization:

C̃sϕ̈(0, t)= −

(
2e

h̄

)2

Ẽs(φex)ϕ(0, t)+
1

L0

∂ϕ

∂r
(0, t), (A.11)

which determines the boundary condition at r = 0.
The eigenmode function at the resonance frequency is given by ϕ(r, t)= fωb/v(r) e−iωbt ,

where fk(r) is given by equation (1). Substituting this into equation (A.11), we obtain the
equation that determines θb as a function of the external magnetic flux φex:

tan θb =
2Z0

ωb

[
ω2

bCs −

(
2e

h̄

)2

Es |cos(φex/2)|

]
, (A.12)

where Z0 =
√

L0/C0 is the characteristic impedance of the transmission line. Typically, Z0 ∼

50 �, ωb ∼ 10 GHz, Cs ∼ 100 fF and (2e/h̄)Es ∼ 5µA. Therefore, we may vary θb largely
through the external magnetic flux φex.

Appendix B. Derivation of Heisenberg equations

We first derive the input–output relation, equation (11), for the microwave photon field. From
the Hamiltonian of equation (2), the Heisenberg equations for bk are given by

d

dt
bk = −ikbk − i

√
0r

4π
(eikl+iθb + e−ikl−iθb)σ. (B.1)

For 0< t , this equation can be formally solved as

bk(t)= bk(0) e−ikt
− ie−iθb

√
0r

4π

∫ t

0
dτσ (τ) eik(τ−t−l)

− ieiθb

√
0r

4π

∫ t

0
dτσ (τ) eik(τ−t+l). (B.2)

Switching to the real-space representation by equation (8), we obtain the following input–output
relation for photons:

b̃r(t)= b̃r−t(0)− ie−iθb

√
0r

2
2r∈(l,t+l)σ(t − r + l)− ieiθb

√
0r

2
2r∈(−l,t−l)σ(t − r − l), (B.3)

where 2r∈(a,b) is defined by equation (16). Similarly, c̃r(t) and d̃r(t) are given by

c̃r(t)= c̃r−t(0)− i
√

20p2r∈(0,t)σ
†(t − r)σ (t − r), (B.4)

d̃r(t)= d̃r−t(0)− i
√
0n2r∈(0,t)σ(t − r). (B.5)

The Heisenberg equations for σ and σ †σ are given, from equation (2), by

d

dt
σ = −iωbσ − i

√
0r

2
(1 − 2σ †σ)(eiθb b̃l + e−iθb b̃−l)− i

√
20pσ (̃c

†
0 + c̃0)− i

√
0n(1 − 2σ †σ )̃d0,

(B.6)
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d

dt
σ †σ = −iσ †

[√
0r

2
(eiθb b̃l + e−iθb b̃−l)+

√
0nd̃0

]
+ h.c. (B.7)

Using equations (17)–(19), the above equations are recast as equations (14) and (15).
The commutation relations between the noise operators and the atomic operator are derived

as follows. Putting r = t − t ′ in equation (B.5) and using the equal-time commutation relation,
[̃dt−t ′(t), S(t)] = 0, where S may be any atomic operator, we obtain

[Nd(t
′), S(t)] = i0n2t ′∈(0,t)[σ(t

′), S(t)]. (B.8)

Similarly, we have[
Nb(t

′), S(t)
]
= i0̃r2t ′∈(0,t)[σ(t

′), S(t)], (B.9)[
Nc(t

′), S(t)
]
= 2i0p2t ′∈(0,t)[σ

†(t ′)σ (t ′), S(t)]. (B.10)

Appendix C. Derivation of the power spectrum

Here we derive the analytic form of S(ω) based on equation (35). For notational simplicity, we
set r → +0 in this section. From equation (20), the two-time correlation function of the field is
composed of four terms as

〈̃b†
0(t )̃b0(t + τ)〉 = 〈̃b−t(0)〉

∗
〈̃b−t−τ (0)〉 + iα0̃1/2

r 〈σ(t)〉∗
〈̃b−t−τ (0)〉

−iα0̃1/2
r 〈̃b−t(0)〉

∗
〈σ(t + τ)〉 + 0̃r〈σ

†(t)σ (t + τ)〉, (C.1)

where we have used the fact that |ψi〉 is an eigenstate of b̃r(0). The first three terms contribute
to the coherent part of the spectrum,

S(1+2+3)(ω)= (E2
−01s̄2)δ(ω−ωp). (C.2)

In order to determine the two-time correlation function of the atom, we define the
following three quantities: s3(τ )= 〈σ †(t)σ (t + τ)〉 eiωpτ , s4(τ )= 〈σ †(t)σ †(t + τ)〉 e−iωp(2t+τ),
s5(τ )= 〈σ †(t)σ †(t + τ)σ (t + τ)〉e−iωpt , all of which are independent of t when stationary. The
equations of motion for these quantities are given, from equations (21), (22) and (B.8)–(B.10),
by

d

dτ

s3

s4

s5

 =

−02 + iδω 0 iα�
0 −02 − iδω −iα�

iα�/2 −iα�/2 −01

 s3

s4

s5

 +

−iα�s̄∗

1/2
iα�s̄∗

1/2
0

 , (C.3)

with the initial conditions of s3(0)= s̄2 and s4(0)= s5(0)= 0. Since the two-time correlation
functions factor in the τ → ∞ limit, the stationary values are given by s̄3 = |s̄1|

2, s̄4 = (s̄∗

1 )
2, s̄5 =

s̄∗

1 s̄2. Using new variables δs j(τ )= s j(τ )− s̄ j ( j = 3, 4, 5), the above equations are rewritten as

d

dτ

δs3

δs4

δs5

 =

−02 + iδω 0 iα�
0 −02 − iδω −iα�

iα�/2 −iα�/2 −01

 δs3

δs4

δs5

 , (C.4)
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with the initial conditions of δs3(0)= s̄2 − |s̄1|
2, δs4(0)= −(s̄∗

1 )
2, δs5(0)= −s̄∗

1 s̄2. We denote
the Fourier transforms of δs j(τ ) by I j(ω)=

∫
∞

0 dτei(ω−ωp)τδs j(τ ). After partial integration, they
are given by I3

I4

I5

 =

 µ1 0 iα�
0 µ2 −iα�

iα�∗/2 −iα�/2 µ3

−1 |s̄1|
2
− s̄2

(s̄∗

1 )
2

s̄∗

1 s̄2

 , (C.5)

where µ1 = −02 + i(ω− ω̃b), µ2 = −02 + i(ω + ω̃b − 2ωp) and µ3 = −01 + i(ω−ωp). There-
fore, I3(ω) is given by

I3(ω)=
|s̄1|

2
− s̄2

µ1
+
�2(s̄∗

1 )
2
−�2(|s̄1|

2
− s̄2)µ2/µ1 − 2iα�s̄∗

1 s̄2µ2

2µ1µ2µ3 +�2(µ1 +µ2)
. (C.6)

Combining the above results, the fourth term in the right-hand side of equation (C.1) contributes
to both coherent and incoherent parts of the spectrum,

S(4)(ω)= 0̃r|s̄1|
2δ(ω−ωp)+

0̃r

2π
[I3(ω)+ c.c.] . (C.7)

From equations (C.2) and (C.7), the power spectrum is given by S(ω)= Sc(ω)+ Si(ω), where
the coherent and incoherent components are given by

Sc(ω)= |Eout|
2δ(ω−ωp), (C.8)

Si(ω)=
0̃r

2π
[I3(ω)+ c.c.] , (C.9)

where Eout is given by equation (32), and |Eout|
2
= E2

−01s̄2 + 0̃r|s̄1|
2. By the definition of

I3(ω), we have∫
dωSi(ω)= 0̃r(s̄2 − |s̄1|

2). (C.10)
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