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Up-conversion dynamics for temporally entangled two-photon pulses
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We analyze the up conversion of a two-photon pulse having temporal entanglement on the basis of a full
quantum formalism that treats both photons and optical media quantum mechanically. We derive a formula of
the up-converted photon wave function, which is applicable to arbitrary input two-photon states for a three-level
system, as the simplest second-order nonlinear optical system. As the input, we employ three kinds of temporally
entangled two-photon pulses: correlated, uncorrelated, and anticorrelated. We observe the up-conversion
efficiency and the temporal profile of the up-converted photon. Our results reveal the crossover behavior of the
up conversion from anticorrelation to correlation and show how the temporal correlation in the input is reflected
in the up-conversion process.
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I. INTRODUCTION

Nonlinear optical effects appearing in single photons would
be quite useful for realizing future photonic quantum technolo-
gies, including quantum information processing [1–3]. How-
ever, considerable nonlinear optical effects can be obtained
only by inputting strong laser pulses containing innumerable
photons. Therefore, achieving the giant optical nonlinearity
sensitive to single photons is left as an open problem. On
the other hand, the nonclassical nature of entangled photons
may serve as a clue to overcoming the limitation of present
optical technologies based on classical light. In particular,
entanglements in the continuous degree of freedom (e.g.,
temporal, spatial, frequency, and momentum entanglements)
are applicable for quantum imaging, quantum lithography,
and quantum metrology [4–9]. Owing to recent experimental
developments, photon sources for temporally entangled two-
photon pulses [10–14] are now available, in which the temporal
correlation of two photons can be engineered at will. Moreover,
it has been shown theoretically that up conversion for two
single-photon pulses is sensitive to multimode entanglements
between single-photon pulses [15]. Therefore, it is expected
that there is a possibility of a giant optical nonlinearity that
is sensitive to single photons by controlling the temporal
correlation of two photons.

In this paper, we reveal the uniqueness of such temporally
entangled photons appearing in the optical response. As one
of the simplest nonlinear optical processes, we consider how
a two-photon pulse propagating in a one-dimensional space
is up converted by a delta-type three-level system, which has
nonvanishing transition matrix elements among three levels
(see Fig. 1). Such a situation can be realized in various physical
setups, such as quantum dots coupled to photonic crystal
waveguides [16] and superconducting qubits coupled to a
microwave transmission line [17]. As the input, three kinds
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of temporally entangled two-photon pulses are considered:
(i) anticorrelated, (ii) uncorrelated, and (iii) correlated. In
addition, we also consider a classical pulse having the mean
photon number n = 2 as a reference. These states have the
identical pulse shapes and therefore are indistinguishable by
the classical measurements, which are essentially concerned
with the first-order correlation of the field. On the basis
of the full quantum analysis, in which both the multimode
photon field and the optical media are treated quantum
mechanically, we clarify how the temporal entanglement in
the input pulse affects the up-conversion dynamics. We also
analyze the crossover of the temporal correlation of the input
in the up-conversion dynamics from anticorrelation to corre-
lation, and specify the optimal correlation for up-conversion
efficiency.

This paper is organized as follows. Details of the theoretical
model are explained in Sec. II. We derive an analytical
form of the propagating function in Sec. III and connect the
wave functions of the up-converted photon and the input two
photons. Based on this formal result, we visualize numerically
the up-conversion probability and the pulse shape in Sec. IV,
giving an intuitive interpretation of how the temporally
entangled two photons are up converted. Section V is devoted
to a summary.

II. SYSTEM

A. Nonlinear optical system

As illustrated in Fig. 1, we consider the system composed
of two kinds of one-dimensional photon fields [horizontally
(H ) polarized and vertically (V ) polarized] and a delta-type
three-level system (we call hereafter an “atom”) located at
r = 0. The three atomic levels are denoted by |g〉, |m〉, and
|e〉. The energies |m〉 and |e〉 measured from |g〉 are �m and �e,
respectively, and the radiative decay rates associated with the
|e〉 → |g〉, |e〉 → |m〉, and |m〉 → |g〉 transitions are denoted
by �1, �2, and �3, respectively. The |e〉 → |m〉 and |m〉 → |g〉
transitions are assisted by H -polarized photons, and the |e〉 →
|g〉 transition by V -polarized photons. Employing natural units
(h̄ = c = 1), the Hamiltonian for the overall system is given,
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FIG. 1. (Color online) The physical setup. Two H -polarized
photons are input from the input port (the r < 0 region). After
interacting with the three-level system, an up-converted photon with
V polarization is generated in the output port (the r > 0 region) with
a certain probability.

under the rotating-wave approximation, by

H = �eσee + �mσmm +
∫

dk k(a†
kak + b

†
kbk)

+
∫

dk√
2π

(i
√

�1σegbk+i
√

�2σemak+i
√

�3σmgak+H.c.),

(1)

where the atomic transition operators are defined as σeg =
|e〉〈g|, for example. The ak (bk) denotes the annihilation
operator of the H -polarized (V -polarized) photon with the
wave number k. The real-space representation ãr of the tilde
operator is defined as the Fourier transform of ak:

ãr = 1√
2π

∫
dk akeikr . (2)

The b̃r is defined similarly.

B. Input and output photons

Initially, the atom is in the ground state and two H -polarized
photons are input from the input port (the r < 0 region). After
the photon-atom interaction, an up-converted photon with V

polarization may be generated in the output port (the r > 0
region) with a certain probability. The state vector of the input
two photons can be written as

|ψin〉 =
∫ ∫

dr1dr2
f (r1,r2)√

2
ã†

r1
ã†

r2
|0〉, (3)

where |0〉 represents the overall ground state (the product of
the atomic ground state and the photonic vacuum state), and
f (r1,r2) is the two-photon wave function, which is normalized
as

∫
dr1dr2|f (r1,r2)|2 = 1 and symmetrized as f (r1,r2) =

f (r2,r1). Note that the input two photons are initially localized
at an initial position, which means f (r1,r2) = 0 for r1 > 0 or
r2 > 0. The state vector of the output photons is determined
by the Schrödinger equation

|ψout〉 = exp(−iHt)|ψin〉, (4)

where the final moment t is a sufficiently large time at which
the atom is completely de-excited. The output state may

contain a V -polarized single-photon component associated
with the |e〉 → |g〉 transition. The output state vector can thus
be written as

|ψout〉 =
∫ ∫

dr1dr2
g(r1,r2; t)√

2
ã†

r1
ã†

r2
|0〉

+
∫

dr h(r; t)b̃†r |0〉, (5)

where g(r1,r2; t) and h(r; t) are the H -polarized two-photon
and V -polarized single-photon wave functions, respectively.
Note that g(r1,r2; t) and h(r; t) vanish on the input port. The
probabilities for up conversion and for the absence of up
conversion are given as the norm of h(r; t) and g(r1,r2; t),
respectively, by

P1 =
∫

dr|h(r; t)|2, (6)

P2 =
∫ ∫

dr1dr2|g(r1,r2; t)|2. (7)

These probabilities satisfy P1 + P2 = 1, and are independent
of the final moment t as long as t is sufficiently large.

III. RELATION BETWEEN INPUT
AND UP-CONVERTED PHOTONS

In the following part of this paper, we analyze the up-
conversion dynamics of temporally entangled two-photon
pulses. In this section, we derive the analytical expression
for the wave function h(r; t) of the up-converted photon from
the Schrödinger equation (4) [18,19].

A. Propagator for up-conversion dynamics

The wave function of the up-converted photon can be
written as

h(r; t) = 〈0|b̃r |ψout〉 = 〈0|b̃r (t)|ψin〉
=

∫ ∫
dr ′

1dr ′
2G(r,r ′

1,r
′
2; t)f (r ′

1,r
′
2), (8)

where A(t) = eiHtAe−iHt (Heisenberg picture), and
G(r,r ′

1,r
′
2; t) is the propagator related to the up-converted

photon, which is defined, for r ′ < 0 < r , by

G(r,r ′
1,r

′
2; t) = 1√

2
〈0|b̃r (t)ã†

r ′
1
ã
†
r ′

2
|0〉. (9)

This propagator contains complete information about the
up-conversion dynamics of the input two photons. Note that
Eq. (8) holds for an arbitrary input two-photon wave function
f (r1,r2).

B. Up-converted photon wave function

As shown in the Appendix, the propagator (9) is given, for
0 < r < t , by

G(r,r ′
1,r

′
2; t)

= −
√

�1�2�3

2

∫ t−r

0
dτ1

∫ τ1

0
dτ2 [δ(τ1 + r ′

2)δ(τ2 + r ′
1)

+ δ(τ1 + r ′
1)δ(τ2 + r ′

2)]
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FIG. 2. (Color online) Density plots of R(2)(r1,r2) for the input two-photon wave function in this paper: (a) temporally anticorrelated
(ρ = −0.9), (b) temporally uncorrelated (ρ = 0), and (c) temporally correlated (ρ = 0.9) states.

× exp

{
−

[(
i�e + �1 + �2

2

)
(t − r − τ1)

]}

× exp

[
−

(
i�m + �3

2

)
(τ1 − τ2)

]
. (10)

From Eqs. (8) and (10), the wave function h(r; t) of the up-
converted photon is given, in terms of the input wave function
f (r1,r2), by

h(r; t) = −
√

2�1�2�3 exp

[
−

(
i�e + �1 + �2

2

)
(t − r)

]

×
∫ t−r

0
dτ1

∫ τ1

0
dτ2 f (−τ1, − τ2)

× exp

{ [
i(�e − �m) + �1 + �2 − �3

2

]
τ1

+
(

i�m + �3

2

)
τ2

}
. (11)

This formula is applicable to arbitrary input two-photon states.
In fact, it is the same expression as the up-converted photon
wave functions that are derived for some specific inputs in
Ref. [15].

IV. RESULTS

A. Input two-photon wave function

As the input two-photon wave function, we employ the
following bivariate Gaussian:

f (r1,r2) =
[

2

π (1 − ρ2)1/2 l2

]1/2

× exp

[
− r̄2

1 + r̄2
2 − 2ρr̄1r̄2

(1 − ρ2) l2
+ i�(r̄1 + r̄2)

]
, (12)

where r̄ = r − a, and a represents the initial position, which
is a redundant parameter provided that |a| � l, as is assumed
here. The parameters ρ, l, and � denote the correlation
between the two photons, the pulse length, and the photon
frequency, respectively. The correlation parameter ρ lies in
the −1 < ρ < 1 region, where positive (negative) values
indicate the temporal correlation (anticorrelation) of two
photons, and ρ = 0 implies no correlation. We can analyze the
crossover behavior of the up conversion from anticorrelation

to correlation by continuously changing the value of ρ.
Figure 2 shows the density plots of the second-order correlation
function R(2)(r1,r2) defined by

R(2)(r1,r2) = 〈ψin|ã†
r2 ã

†
r1 ãr1 ãr2 |ψin〉
2

= |f (r1,r2)|2. (13)

It is observed that two photons tend to be found at the
same position as ρ is increased. Note that the single-
photon intensity I (r) ≡ 〈ψin|ã†

r ãr |ψin〉/2 = ∫
dr ′|f (r,r ′)|2 =

(2/πl2)1/2exp(−2r̄2/l2) is independent of ρ. Therefore, two-
photon states for different values of ρ are indistinguishable
by measurements of the first-order correlations of the photon
field.

For reference, we also consider a classical light pulse with
the mean photon number n = 2:

∣∣ψC
in

〉 = N exp

[√
2

∫
drfC (r)ã†

r

]
|0〉, (14)

where fC(r) = √
I (r) exp(i�r̄), and N = e−1 is the normal-

ization factor. Note that |ψC
in 〉 has the same intensity as the

single-photon intensity I (r) for f (r1,r2). For this input state,
the up-conversion probability is given by

P C
1 =

∫
dr

〈
ψC

in

∣∣b̃†r (t)b̃r (t)
∣∣ψC

in

〉
, (15)

which can be calculated from the input-output relation of b̃r

and the equations of motion for the atomic coherence.
In the following subsections, we investigate the up-

conversion dynamics for the input two-photon state (12) by
numerically calculating the analytical expression (11) for the
up-converted photon. For simplicity, we employ the following
assumptions: (i) Regarding the atomic energy, �m = �e/2
(= �0); (ii) regarding the atomic decay rates, �1 = �2 = �3

(= �), and �−1 is used as the unit of time and length; and
(iii) the two input photons are resonant to the |g〉 → |m〉 and
|m〉 → |e〉 transitions �0 = �.

B. Up-conversion probability

First, we investigate the up-conversion probability P1,
which is given by Eq. (6) as the norm of h(r; t). Figure 3
shows the crossover behavior of the up conversion from anti-
correlation to correlation, where the up-conversion probability
P1 is plotted as a function of the correlation parameter ρ (solid

013824-3



NAKATANI, SHIMIZU, AND KOSHINO PHYSICAL REVIEW A 83, 013824 (2011)

0

 0.2

 0.4

 0.6

 0.8

1

-1 -0.5 0  0.5 1
Correlation parameter ρ

U
p-

co
nv

er
si

on
 p

ro
ba

bi
lit

y

Two-photon state
Classical light pulse

FIG. 3. Crossover behavior of the up conversion. The solid line
shows the up-conversion probability as a function of ρ, where
the pulse length is fixed at l = 10�−1. The dotted line shows the
probability for the classical light pulse with the mean photon number
n = 2. The up-conversion probability is maximized (P1 � 0.96) at
ρ � 0.97.

line) by fixing the pulse length l at 10�−1. As a reference,
the probability for the classical light pulse, which is given by
Eq. (15), is also plotted (dotted line in Fig. 3). It is observed
that the up-conversion probability tends to increase as ρ is
increased, and is maximized (P1 � 0.96) at ρ � 0.97. The
up-conversion probabilities for the temporally uncorrelated
state (ρ = 0) and for the reference classical pulse almost
coincide, P1 � P C

1 � 0.4. For temporally correlated input
states, we can efficiently obtain the up-converted photon. The
up-converted photon can be basically obtained with higher
efficiency for larger correlation ρ, because the first excitation
(|g〉 → |m〉) should be followed immediately by the second
excitation (|m〉 → |e〉) before the relaxation (|m〉 → |g〉).
However, the efficiency is decreased in the ρ → 1 limit, in
which two photons arrive at the atom exactly at the same
moment; this is because the atom does not absorb two photons
within a much shorter time than the photon-atom interaction
time �−1. This behavior is quite similar to that of the optical
nonlinearity calculated in Ref. [19], where a H -polarized
and a V -polarized photon interact at a V -type three-level
system.

C. Pulse shape of up-converted photon

Next, we examine the the pulse shape of the up-converted
photon, which is given by

Iout(r; t) = 〈ψin|b̃†r (t)b̃r (t)|ψin〉 = |h(r; t)|2. (16)

For the temporally anticorrelated (ρ = −0.9), uncorrelated
(ρ = 0), and correlated (ρ = 0.9) two-photon states, the pulse
shapes of the up-converted photon are plotted in Fig. 4. It
is observed that the length of the up-converted photon pulse
for the anticorrelated input (solid line in Fig. 4) is shorter
than that for the other input states. In contrast, we obtain a
long pulse for the correlated input state (dashed line in Fig. 4),
which indicates that the correlated two photons induce a strong
nonlinear effect. The pulse shape for the uncorrelated input
state (fine dotted line in Fig. 4) is similar to that for the classical
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FIG. 4. (Color online) Pulse shapes of the up-converted photon.
The pulse length is fixed at l = 10�−1. Results for the anticorrelated
(ρ = −0.9), uncorrelated (ρ = 0), and correlated (ρ = 0.9) two-
photon states are indicated by the solid, fine dotted, and dashed lines,
respectively. The dotted line shows the output pulse shape for the
classical input.

light pulse (dotted line in Fig. 4). The slight difference between
them is due to the fact that the classical light pulse has not only
the two-photon component, but also the one-photon and the
more-than-two-photons components.

D. Intuitive explanation

The up-conversion dynamics of temporally entangled two-
photon pulses can intuitively be understood by the following
interpretation: the up conversion arises in the diagonal area
|r1 − r2| <∼ �−1 of the second-order correlation R(2)(r1,r2),
where two photons in the pulse are absorbed by the atom within
the time interval �−1. The pulse length of the up-converted
photon is determined by the width of R(2) on the diagonal line
r1 = r2. The temporally correlated state for which R2 is large
near the diagonal line [Fig. 2(c)] gives a large up-conversion
probability [Fig. 3]. The resultant up-converted photon has
a long pulse length [Fig. 4]. In contrast, the temporally
anticorrelated state for which R2 is large near the antidiagonal
line [Fig. 2(a)] gives a small up-conversion probability. The
pulse length of the resultant up-converted photon becomes
shorter than that for the uncorrelated state.

V. SUMMARY

We have investigated theoretically the up-conversion dy-
namics of temporally entangled two-photon pulses, assuming a
three-level atom as the simplest second-order nonlinear optical
system. We have derived the formula of the up-converted
photon wave function [Eq. (11)], which is applicable to arbi-
trary input two-photon states. Temporal entanglements of the
input two-photon pulses are characterized by the correlation
parameter ρ, as shown in Fig. 2. From the up-converted
photon wave function (11), we have numerically evaluated
the up-conversion probability, where the crossover behavior
from anticorrelation to correlation is clarified by continuously
changing the value of ρ and the optimal correlation is specified,
as shown in Fig. 3. We have also visualized the pulse shape
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of the up-converted photon in Fig. 4. It is found that, although
the input states are indistinguishable by the first-order corre-
lation, the up-conversion efficiency depends drastically on the
temporal correlation ρ. The dependence of the up-conversion
dynamics on ρ can intuitively be explained by considering that
the up conversion arises in the diagonal area |r1 − r2| <∼ �−1

of the second-order correlation R(2)(r1,r2). The obtained
results indicate that a temporally correlated (anticorrelated)
two-photon pulse has an effectively longer (shorter) pulse
length than that of the uncorrelated two-photon pulse on
the up-conversion dynamics. We believe that controlling the
temporal entanglements of a two-photon pulse opens up new
possibilities of photonic quantum technologies.
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APPENDIX: DERIVATION OF THE PROPAGATOR

In this appendix, we derive the propagator (9). For future
convenience, we introduce a coherent state given by

|φ〉 = Nφ exp

( ∑
j=1,2

µj ã
†
r ′
j

)
|0〉, (A1)

where µj are perturbation coefficients and Nφ is a normal-
ization factor. Note that ãr |φ〉 = ∑

j=1,2 µjδ(r − r ′
j )|φ〉 and

b̃r |φ〉 = 0. From the Heisenberg equations for the photonic
operators, the output fields are obtained, for 0 � r < τ � t ,
as

ãr (τ ) = ãr−τ (0) − [
√

�2σme(τ − r) +
√

�3σgm(τ − r)] θ (r),

(A2)

b̃r (τ ) = b̃r−τ (0) −
√

�1σge(τ − r) θ (r), (A3)

where θ (r) is the Heaviside step function. From Eqs. (A1) and
(A3), the propagator can be written as

G(r,r ′
1,r

′
2; t) = 1√

2
〈b̃r (t)〉(µ1µ2)

= −
√

�1

2
〈σge(t − r)〉(µ1µ2)θ (r), (A4)

where 〈b̃r (t)〉(µ1µ2) is the second-order component of 〈b̃r (t)〉 =
〈φ|b̃r (t)|φ〉 proportional to µ1µ2, for example.

From the Heisenberg equations for σge and σgm, the
equations of motion for 〈σge〉 and 〈σgm〉 are given by

d

dτ
〈σge(τ )〉

= −
(

i�e + �1 + �2

2

)
〈σge(τ )〉 +

∑
j=1,2

µjδ(τ + rj )

× [
√

�2〈σgm(τ )〉 −
√

�3〈σme(τ )〉], (A5)
d

dτ
〈σgm(τ )〉

= −
(

i�m + �3

2

)
〈σgm(τ )〉 +

√
�2�3〈σme(τ )〉

−
∑
j=1,2

µ∗
j δ(τ + rj )

√
�2〈σge(τ )〉

−
∑
j=1,2

µjδ(τ + rj )
√

�3[〈σmm(τ )〉− 〈σgg(τ )〉], (A6)

where we used the relations of Eqs. (A2) and (A3), and
the virtue of the coherent state |φ〉: ãr |φ〉 = ∑

j=1,2 µjδ(r −
r ′
j )|φ〉 and b̃r |φ〉 = 0. Using the rotating-wave approximation

and expanding these equations in powers of µ1 and µ2,
it is found that, except for 〈σge〉(µ1µ2) and 〈σgm〉(µj ), the
components of the expectations of the atomic operators have
no contribution to the equation of motion for 〈σge〉(µ1µ2). The
equations of motion for 〈σge〉(µ1µ2) and 〈σgm〉(µj ) can be written
as follows:
d

dτ
〈σge(τ )〉(µ1µ2)

= −
(

i�e + �1 + �2

2

)
〈σge(τ )〉(µ1µ2)

+
√

�2[δ(τ + r2)〈σgm(τ )〉(µ1) + δ(τ + r1)〈σgm(τ )〉(µ2)],

(A7)
d

dτ
〈σgm(τ )〉(µj )

= −
(

i�m + �3

2

)
〈σgm(τ )〉(µj ) +

√
�3δ(τ + rj ). (A8)

Solving these equations with the initial conditions
〈σge(0)〉(µ1µ2) = 0 and 〈σgm(0)〉(µj ) = 0, the propagator (A4)
is reduced, for 0 < r < t , to Eq. (10).
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