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Evaluation of multiphoton effects in down-conversion
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Multiphoton effects in down-conversion are investigated based on the full-quantum multimode formalism by
considering a three-level system as a prototype nonlinear system. We analytically derive the three-photon output
wave function for two input photons, where one of the two input photons is down-converted and the other one is
not. Using this output wave function, we calculate the down-conversion probability, the purity, and the fidelity to
evaluate the entanglement between a down-converted photon pair and a non-down-converted photon. It is shown
that the saturation effect occurs by multiphoton input and that it affects both the down-conversion probability
and the quantum correlation between the down-converted photon pair and the non-down-converted photon. We
also reveal the necessary conditions for multiphoton effects to be strong.
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I. INTRODUCTION

Parametric down-conversion is a nonlinear optical process
in which a parent photon is converted into two daughter pho-
tons; this process satisfies energy and momentum conservation
[1,2]. Parametric down-conversion has recently been attracting
considerable interest in the context of fundamental tests of
quantum mechanics and of quantum-information processing,
since it is the most efficient and convenient method for
generating polarization entanglement between two particles
[3–5].

As a classical nonlinear optical process, parametric down-
conversion has been explained in terms of coupled-mode
theory, which is based on the linear and nonlinear suscepti-
bilities of optical media [6–8]. The concept of several light
modes interacting through the nonlinear susceptibility is also
useful when constructing a quantum-mechanical theory of
down-conversion. The simplest phenomenological interaction
Hamiltonian is the following [9,10]:

H = λa†
s a

†
i ap + H.c., (1)

where as , ai , and ap are, respectively, the annihilation operators
for the signal, idler, and pump modes and λ is a coupling
constant that is proportional to the nonlinear susceptibility
and the interaction time (crystal length). While such phe-
nomenological theories can describe several basic properties
of the process, they have the following two drawbacks: (i)
They treat signal and idler photons as independent particles.
However, in actual down-conversion, the signal and idler
photons are strongly correlated in time. (ii) They assume
that input pump photons are down-converted independently.
Specifically, when n photons are input into a nonlinear media
and only one photon is down-converted, its dynamics is
unaffected by the other n − 1 photons. However, in principle,
the n − 1 pump photons and the down-converted photons are
spatiotemporally correlated after nonlinear interaction. When
down-converted photons are used as a quantum-mechanical
light source, it is essential to rigorously characterize
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the down-converted photons, including their spatiotemporal
properties.

The purpose of this study is to investigate multiphoton
effects in down-conversion based on the full-quantum mul-
timode formalism, in which both the photon field and the
atomic system are quantized and the multimode nature of the
photon field is exactly taken into account. Taking a three-level
system as a prototype system for a nonlinear medium, we
formulate an analytical method for obtaining various quantities
characterizing multiphoton effects such as the probability,
the purity, and the fidelity. We clarify that the nonlinearity
induced by saturation of the three-level system affects both
the probability and the quantum correlation between down-
converted photons and a fundamental (non-down-converted)
photon.

II. FORMULATION

A. Hamiltonian

In this study, we consider a physical setup in which
photons propagating in one dimension are down-converted
at a three-level system (hereafter, atom) located at r = 0,
as illustrated in Fig. 1 [11–13]. The atom has three levels:
|g〉, |m〉, and |e〉. The energies of |e〉 and |m〉 relative to
that of |g〉 are denoted by �e and �m, respectively. The
|e〉 ↔ |g〉 transition is assisted by a horizontally polarized
photon, whereas |e〉 ↔ |m〉 and |m〉 ↔ |g〉 transitions are
assisted by vertically polarized photons; the spontaneous decay
rates for the |e〉 → |g〉, |e〉 → |m〉, and |m〉 → |g〉 transitions
are denoted by �1, �2, and �3, respectively. Under the rotating
wave approximation, the Hamiltonian for the overall system
is given by (setting h̄ = c = 1)

H = �eσee + �mσmm +
∫

dkkh
†
khk +

∫
dkkv

†
kvk

+ (i
√

�1σegh̃r=0 + i
√

�2σemṽr=0

+ i
√

�3σmgṽr=0 + H.c.), (2)

where σij (= |i〉〈j |) is the atomic transition operator and
hk (vk) is the annihilation operator for the horizontally
(vertically) polarized photon with wave number k. The
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FIG. 1. (Color online) Schematic illustration of the system
considered in this study. Two photons resonant with the |g〉 → |e〉
transition are input into a three-level atom. On interacting with
the atom, two down-converted photons are generated with some
probability.

real-space representations h̃r and ṽr are the Fourier transforms
of hk and vk , respectively: h̃r = (2π )−1/2

∫
dkeikrhk and

ṽr = (2π )−1/2
∫

dkeikrvk .

B. Input and output states

To observe multiphoton effects that occur in down-
conversion, we investigate the minimal case in which two
photons are simultaneously input to the system. The initial
atom-photon state vector is∣∣ψ (2)

in

〉 = 1√
2

[∫
drf (r)h̃†

r

]2

|0〉, (3)

where |0〉 represents the overall ground state (the product of
the atomic ground state and the photonic vacuum state). Note
that the two input photons are uncorrelated and have the same
wave function f (r) as photons in classical pump pulses. f (r)
is normalized as

∫
dr|f (r)|2 = 1 and localized in the input

port (r < 0 region). After interacting with the atom, down-
converted photons may be generated due to the cascade decay
channel of |e〉 → |m〉 → |g〉. The output state vector can be
formally written as∣∣ψ (2)

out

〉 =
∫

d2r
g2→2(r1, r2; t)√

2
h̃†

r1
h̃†

r2
|0〉

+
∫

d3r
g2→3(r1, r2, r3; t)√

2
h̃†

r1
ṽ†

r2
ṽ†

r3
|0〉

+
∫

d4r
g2→4(r1, r2, r3, r4; t)√

4!
ṽ†

r1
ṽ†

r2
ṽ†

r3
ṽ†

r4
|0〉, (4)

where t is the time at which the atom is completely deexcited,
and g2→j represents the wave function of the j output photons
(4 − j fundamental photons and 2j − 4 down-converted
ones). The output wave functions satisfy the sum rule of∑4

j=2(
∫

dj r|g2→j |2) = 1 since 〈ψ (2)
out|ψ (2)

out〉 = 1.

To quantify multiphoton effects, we need to consider
a reference case in which each photon is down-converted
independently without being affected by the other photons.
For this purpose, we consider the input of a single photon and
its resultant output:∣∣ψ (1)

in

〉 =
∫

drf (r)h̃†
r |0〉, (5)∣∣ψ (1)

out

〉 =
∫

drg1→1(r; t)h̃†
r |0〉

+
∫

dr1dr2
g1→2(r1, r2; t)√

2
ṽ†

r1
ṽ†

r2
|0〉, (6)

where g1→j represents the wave function of j output photons
(2 − j fundamental photons and 2j − 2 down-converted
ones). The output wave functions satisfy the sum rule of∑2

j=1(
∫

dj r|g1→j |2) = 1.

C. Relation between input and output wave functions

The output state vector is determined by the Schrödinger
equation ∣∣ψ (1),(2)

out

〉 = e−iHt
∣∣ψ (1),(2)

in

〉
. (7)

As demonstrated in the Appendix, this equation can be solved
analytically by considering a coherent state as the input
state [11,12]. Here, we summarize the results of the relation
between the input and the output wave functions. The output
wave functions for one-photon input (g1→1 and g1→2) are
given by

g1→1(r; t) = f (r − t) −
√

�1〈σge(t − r)〉, (8)

g1→2(r1, r2; t) =
√

�2�3〈σgm(t − r1)σme(t − r2)〉, (9)

where 〈σge〉 and 〈σme〉 are respectively the linear one- and
two-time atomic correlation functions, which are given by

〈σge(t)〉 =
√

�1

∫ ∞

0
dξf (−t + ξ )e−i�̃eξ , (10)

〈σgm(t1)σme(t2)〉 = 〈σge(tl)〉ei�̃m(tl−ts ), (11)

where �̃e = �e − i(�1 + �2)/2, �̃m = �m − i�3/2, tl =
max(t1, t2), and ts = min(t1, t2). The probabilities of the
nonoccurrence and the occurrence of down-conversion are
respectively given by P1→1 = ∫

dr|g1→1(r; t)|2 and P1→2 =∫
dr1dr2|g1→2(r1, r2; t)|2, which satisfy P1→1 + P1→2 = 1.
For the case of two-photon input, we present the three-

photon output wave function, g2→3. (See Appendix for g2→2

and g2→4.) It is given by

g2→3(r, r1, r2; t)

= g1→1(r; t)g1→2(r1, r2; t) + δg2→3(r, r1, r2; t), (12)

where δg2→3(r, r1, r2; t) is given by

δg2→3(r, r1, r2; t) =

⎧⎪⎪⎨⎪⎪⎩
√

�1�2�3〈σge(t − r1)〉〈σgm(t − r1)σme(t − r2)〉e−i�̃e(r1−r) (r � r1 � r2)
√

�1�2�3〈σge(t − r)〉〈σgm(t − r)σme(t − r2)〉e−i�̃m(r−r1) (r1 � r � r2)
√

�1�2�3〈σge(t − r)〉〈σgm(t − r2)σme(t − r1)〉e−i�̃e(r−r2) (r1 � r2 � r).

(13)
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The first term on the right-hand side of Eq. (12) is obtained
when two input photons are down-converted independently
of each other, and the second term corresponds to the
correction for multiphoton effects. The probability for three-
photon output is given by P2→3 = ∫

drdr1dr2|g2→3(r, r1,

r2; t)|2.

D. Measures of multiphoton effects

In this subsection, we focus on the case in which two
photons are input simultaneously and only one of them is
down-converted (namely, the three-photon component in the
output). From Eq. (4), we introduce the following target state
vector: ∣∣ψ2→3

out

〉 ≡
∫

d3r
g2→3(r, r1, r2; t)√

2
h̃†

r ṽ
†
r1
ṽ†

r2
|0〉. (14)

This state includes multiphoton effects. In contrast, assuming
that each input photon is down-converted independently, we
can construct the reference three-photon state from Eqs. (3)
and (6). It is given by

∣∣ψ̃2→3
out

〉 ≡
∫

d3rg1→1(r; t)g1→2(r1, r2; t)h̃†
r ṽ

†
r1
ṽ†

r2
|0〉. (15)

Hereafter, quantities with tildes represent those concern-
ing this reference state, which is free from multiphoton
effects.

1. Down-conversion probability

The difference between the aforementioned two states
will appear in the down-conversion probabilities, which
are determined by the norms of the aforementioned state
vectors:

P2→3 = Tr
[∣∣ψ2→3

out

〉 〈
ψ2→3

out

∣∣] =
∫

d3r|g2→3(r, r1, r2; t)|2,
(16)

P̃2→3 = Tr
[∣∣ψ̃2→3

out

〉 〈
ψ̃2→3

out

∣∣] = 2P1→1P1→2, (17)

where Tr indicates the trace over all photons. Rigorously, P2→3

and P̃2→3 are functions of t ; however, they almost become
independent of t when sufficient time has passed and we take
this limit in the rest of this article.

2. Purity

The density matrices of down-converted photons are ob-
tained from the aforementioned state vectors by tracing out
the fundamental photon:

ρdc = Trh
[∣∣ψ2→3

out

〉 〈
ψ2→3

out

∣∣]
Tr

[∣∣ψ2→3
out

〉 〈
ψ2→3

out

∣∣] =
∫

d4r
∫

dξg2→3(ξ, r1, r2; t)g∗
2→3(ξ, r3, r4; t)ṽ†

r1 ṽ
†
r2 |0〉〈0|ṽr3 ṽr4

2P2→3
, (18)

ρ̃dc = Trh
[∣∣ψ̃2→3

out

〉 〈
ψ̃2→3

out

∣∣]
Tr

[∣∣ψ̃2→3
out

〉 〈
ψ̃2→3

out

∣∣] =
∫

d4rg1→2(r1, r2; t)g∗
1→2(r3, r4; t)ṽ†

r1 ṽ
†
r2 |0〉〈0|ṽr3 ṽr4

2P1→2
, (19)

where Trh indicates a partial trace over only the horizontally
polarized photon.

The purity P is a measure of the entanglement between
the two down-converted photons and the residual fundamental
photon. It is defined by

P = Trv
(
ρ2

dc

)
, (20)

P̃ = Trv
(
ρ̃2

dc

) = 1, (21)

where Trv represents the trace over the vertically polar-
ized photons. By definition, 0 � P � 1 is satisfied. The
down-converted photons are separable from the residual
photon in the reference state of Eq. (15); thus P̃ = 1.
However, when several photons are input simultaneously,
the down-converted photons may entangle with the fun-

damental photon, reducing P . Using Eq. (18), P can be
rewritten as

P =
∫

d4r
∣∣∫ dξg2→3(ξ, r1, r2; t)g∗

2→3(ξ, r3, r4; t)
∣∣2

P 2
2→3

. (22)

3. Fidelity

The fidelity F is a measure of the closeness between ρdc

and ρ̃dc defined by

F = [Trv(ρdcρ̃dc)]1/2 . (23)

Note that F reaches 1 when ρdc is equal to ρ̃dc, while F
decreases with increasing distance between the two states due
to multiphoton effects. Using Eqs. (18) and (19), F can be
rewritten as

F =
[∫

d4r
∫

dξg∗
1→2(r1, r2)g2→3(ξ, r1, r2; t)g∗

2→3(ξ, r ′
1, r

′
2; t)g1→2(r ′

1r
′
2)

P1→2P2→3

]1/2

. (24)
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III. RESULTS

In this section, we present the numerical results assuming
a specific form of the input photonic wave function f (r). We
employ the following form of f (r):

f (r) =
{

(2/d)1/2 exp (r/d + iωr) (r < 0)

0 (r > 0)
, (25)

where d is the pulse length and ω is the frequency of the input
photon that is close to the |g〉 → |e〉 transition. Using Eq. (10),
the linear response of the atom induced by this photon is given
by

〈σge(t)〉 =
{

0 (t < 0)

(2�1/d)1/2
[
e−(d−1+iω)t − e−i�̃et

]
[−i� + (�1 + �2)/2 − d−1]−1 (t > 0),

(26)

where �(= ω − �e) is the detuning. For simplicity, we
hereafter assume that �1 = �2 = �3 and �m = �e/2.

A. Probability

1. One-photon input

We preliminarily observe the probabilities for the occur-
rence (P1→2) and nonoccurrence (P1→1) of down-conversion
when only a single photon is input. In Fig. 2, P1→1 and
P1→2 are plotted as functions of the pulse length d, as-
suming complete resonance (� = 0). The down-conversion
probability P1→2 is a monotonically increasing function of d.
The down-conversion probability vanishes in the short-pulse
limit (d 
 �−1

1 ), since the input photon becomes spectrally
broad in this limit and is no longer resonant with the
atom. In contrast, the down-conversion probability becomes
unity in the long-pulse limit (d � �−1

1 ). The cause of this
nearly perfect down-conversion is the destructive interfer-
ence between the incident photon and the atomic radiation.
Equation (8) shows that the output photon at the fundamental
frequency is composed of the incident photon f and the
atomic radiation 〈σge〉; in the long-pulse limit, Eq. (10) can be
adiabatically integrated to give 〈σge(t)〉 = 2

√
�1f (−t)/(�1 +

�2), which completely cancels the incident photon f when
�1 = �2.

When the photon frequency is detuned (� �= 0), this
destructive interference becomes incomplete, and the prob-
ability of the down-conversion decreases. In Fig. 3, P1→1 and
P1→2 are plotted as functions of the detuning �, fixing the
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FIG. 2. (Color online) P1→1 (solid line) and P1→2 (dashed line)
as functions of the pulse length d . The input pulse is in resonance
with the |g〉 → |e〉 transition (� = 0).

pulse length at d = 10�−1
1 . The down-conversion probability

decreases monotonically as the detuning |�| is increased.

2. Two-photon input

Next, we investigate the probability for the case when
two photons are input. We focus on the three-photon output
state which is composed of a down-converted photon pair
and a fundamental photon. Figure 4 shows the probability
P2→3 at the resonance frequency (� = 0) as a function of the
pulse length d. It is observed that the probability vanishes
in the short-pulse limit d 
 �−1

1 . As d increases, the down-
conversion process becomes more dominant around d ∼ �−1

1
due to efficient excitation and emission of the atom, as found
in the case of one-photon input. Consequently, P2→3 increases
as d approaches d ∼ �−1

1 . Since further increase in d make
down-conversion more efficient, the process in which both
input photons are down-converted into four photons becomes
dominant. Therefore, P2→3 starts to decrease and approaches
zero in the long-pulse limit d � �−1

1 .
To study the nonlinear effect, we need to compare the

aforementioned result with the one for an uncorrelated three-
photon output state where there is no correlation between
the fundamental photon and the down-converted photons. The
dashed line in Fig. 4 shows the probability P̃2→3. As expected
from Fig. 2, P̃2→3 has a peak around d ∼ �−1

1 . However, the
peak height and the peak position are shifted from those for the
probability P2→3 for the stimultaneous two-photon input. This
difference is due to multiphoton effects, because the nonlinear
effect does not occur for independent two-photon input.
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FIG. 3. (Color online) P1→1 (solid line) and P1→2 (dashed line) as
functions of the detuning �. The pulse length is fixed at d = 10�−1

1 .
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FIG. 4. (Color online) P2→3 (solid line) and P̃2→3 (dashed line)
as functions of the pulse length d . The input photon is resonant with
the |g〉 → |e〉 transition (� = 0).

Multiphoton effects in the probability P2→3 can be
discussed analytically by noting P2→3 = ∫

d3r|g2→3|2 and
g2→3 = g1→1g1→2 + δg2→3. Here, we find that δg2→3 repre-
sents multiphoton effects, since the probability P2→3 coincides
with P̃2→3 for δg2→3 = 0. The analytic form of δg2→3 given by
Eq. (13) indicates that the nonlinearity is induced by multiple
interference among the atomic transitions. For a short pulse
(d 
 �−1

1 ), down-converted photons are hardly produced,
and consequently the nonlinear factor δg2→3 becomes almost
zero. For a long pulse (d � �−1

1 ), down-converted photons
are efficiently produced, while the excited states of the atom
quickly decay to the ground state compared with a typical
time scale d, at which multiple interference becomes relevant.
In this case, the nonlinear effect disappears since there is no
chance of interference between the down-converted photons
and the non-down-converted photon. The nonlinear effect (i.e.,
the difference between P2→3 and P̃2→3) is most significant
near d ∼ �−1

1 as seen in Fig. 4. Compared with independent
two-photon input, the peak of the probability P2→3 shifts to
a larger pulse length d. This trend reflects the retarded nature
of the nonlinear effect, which becomes effective only after
a certain number of down-converted photons are generated.
These features of stimultaneous two-photon input are expected
to carry over to a general input of more than two correlated
photons.
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FIG. 5. (Color online) P2→3 (solid line) and P̃2→3 (dashed line) as
functions of the detuning �. The pulse length is fixed at d = 10 �−1

1 .

Multiphoton effects are most significant for the resonance
condition � = 0, at which excitation of the atom occurs
efficiently. To see this, we plot P2→3 and P̃2→3 as functions of
� in Fig. 5. The result for an uncorrelated three-photon output
state can be understood by noting that P̃2→3 = 2P1→2P1→1.
The two peaks in this figure appear by multiplying the �

dependences of P1→1 and P1→1 shown in Fig. 3. The difference
between P2→3 and P̃2→3 indicates that the nonlinear effect is
effective only near � = 0.

B. Spatial profile of down-converted photons

Multiphoton effects almost appear in the spatial profile
of down-converted photons. The spatial profiles are given
by

I 1→2
out (r1, r2; t) =

〈
ψ1→2

out

∣∣ṽ†
r1 ṽ

†
r2 ṽr2 ṽr1

∣∣ψ1→2
out

〉
P1→2

= |g1→2(r1, r2; t)|2
P1→2

, (27)

I 2→3
out (r1, r2; t) =

〈
ψ2→3

out

∣∣ṽ†
r1 ṽ

†
r2 ṽr2 ṽr1

∣∣ψ2→3
out

〉
P2→3

=
∫

dξ |g2→3(ξ, r1, r2; t)|2
P2→3

, (28)

for one and two input photons, respectively. Note that Iout � 0,∫
d2rIout = 1, and Iout(r1, r2) = Iout(r2, r1), by definition.
Figure 6 shows contour plots of I 1→2

out and I 2→3
out . Both I 1→2

out
and I 2→3

out are distributed near the diagonal line, indicating
strong temporal entanglement, which is usually observed
in down-converted photons. Comparison of I 1→2

out and I 2→3
out

confirms that additional input photons reduce the temporal
entanglement between the down-converted photons.

C. Purity and fidelity

In this subsection, we evaluate multiphoton effects in down-
conversion by the purity P and the fidelity F , which are given
by Eqs. (22) and (24), respectively.

First, we examine the pulse length d dependences of P and
F at � = 0. Figure 7 shows that they decrease monotonically
with increasing d. They reach finite values in the d � �−1

1
region. Figure 8 shows the detuning � dependences of P and
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FIG. 6. (Color online) Spatial profiles of down-converted photons
generated by (a) one input photon and (b) two input photons. The input
photons are in resonance with the |g〉 → |e〉 transition (� = 0). The
pulse length is fixed at d = 10�−1

1 .
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FIG. 7. (Color online) P and F as functions of the pulse length
d . The input photon is in resonance with the |g〉 → |e〉 transition
(� = 0).

F . They have a minimum value at the resonance frequency
(� = 0) and increase monotonically as functions of |�|.
These results indicate that a longer pulse and a smaller |�|
are advantageous for generating entanglement between the
residual fundamental photon and the down-converted photon
pair.

We briefly discuss the mechanism of the behaviors of P
and F . When δg2→3 vanishes, Eqs. (12), (22), and (24) show
that both the purity and the fidelity approach 1. Therefore,
δg2→3 has large effects on both P and F . As discussed in the
previous section, this term depends on the atomic emission
〈σge〉. When d is sufficiently short or |�| is large, the first
excitation is strongly suppressed and 〈σge〉 approaches 0. In
other words, there are too few generated down-converted
photon pairs to produce multiphoton effects in these limits;
thus, the fundamental photon and the down-converted photon
pair develop independently. Therefore, both the purity and
the fidelity become 1. On the other hand, in the d � �−1

1
region, atomic emission becomes large (as discussed for the
one-input-photon case) and both the purity and the fidelity for
the three-photon state remain at the resonance frequency.

IV. SUMMARY

In this study, we have investigated multiphoton effects in
down-conversion in a three-level system based on the full-
quantum multimode formalism. We have analytically derived
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FIG. 8. (Color online) P and F as functions of the detuning �.
The pulse length is fixed at d = 100�−1

1 .

the three-photon output wave function for two input photons
and shown that the saturation effect for multiphoton input
occurs and the correlation strength is weak due to the spatial
shape of down-converted photons. We also introduce the purity
and the fidelity to determine the quantum state for three-photon
output. At the resonance frequency � = 0, we demonstrated
that the correlation between the transmitted output photon and
a down-converted photon pair is weak when the pulse length d

is sufficiently short, whereas the correlation increases greatly
around d ≈ �−1

1 due to an increase in the number of down-
converted photons. The correlation remains when photons are
down-converted with almost unit efficiency. This situation is
realized under the following conditions: the |e〉 → |g〉 and
|e〉 → |m〉 transitions have similar decay rates and the input
photons are resonant with the |g〉 → |e〉 transition. Under these
conditions, the nonlinear term is comparable to the linear term
and entanglement remains even when the pulse length is long.
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APPENDIX: SOLUTION OF EQUATION OF MOTION

To solve the Schrödinger equation, we use the coherent
state |φin〉 as the input state. Since we consider the input state,
which is composed of the horizontally polarized photons, the
state vector of a coherent state is given by

|φin〉 = e−|µ|2/2exp

[
µ

∫
drf (r)h̃†

r

]
|0〉. (A1)

The output state vector for |φin〉 is obtained by the Schrödinger
equation |φout〉 = e−iHt |φin〉. Expanding in powers of µ, the
state vector |φin(out)〉 can be rewritten as

|φin(out)〉 = |0〉 + µ
∣∣ψ (1)

in(out)

〉 + µ2

√
2

∣∣ψ (2)
in(out)

〉 + · · · . (A2)

The linear and quadratic components of |φin(out)〉 give |ψ (1)
in(out)〉

and |ψ (2)
in(out)〉, respectively. Using the coherent output state, we

can obtain the one- and two-photon output wave functions for
single-photon input from

〈h̃r〉(1) = g1→1(r; t), (A3)〈
ṽr1 ṽr2

〉(1) =
√

2g1→2(r1, r2; t), (A4)

where we define the average 〈A〉(1) as the linear component of
〈φout|A|φout〉. Likewise, the three-photon output wave function
for two input photons is obtained by〈

h̃r ṽr1 ṽr2

〉(2) =
√

2g2→3(r, r1, r2; t), (A5)

where the average 〈A〉(2) represents the quadratic component
of 〈φout|A|φout〉.

From the Heisenberg equations for h̃k(t) and ṽk(t), the
output field operators in the range of 0 < r < t are given by

h̃r (t) = h̃−t−r (0) −
√

�1σge(t − r), (A6)

ṽr (t) = ṽ−t (0) −
√

�2σme(t − r) −
√

�3σgm(t − r), (A7)
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where h̃−t (0) and ṽ−t (0) are initial field operators at the
position r = −t . Using the above input-output relations, the
output wave functions for one input photon, which are given
by Eqs. (A3) and (A4), can be rewritten as

g1→1(r; t) = f (−t − r) −
√

�1〈σge(t − r)〉(1), (A8)

g1→2(r1, r2; t) =
√

�2�3

2
[〈σme(t − r1)σgm(t − r2)〉(1)

+〈σgm(t − r1)σme(t − r2)〉(1)]. (A9)

Here, we use the relation h̃r (0)|φin〉 = µf (r)|φin〉 and
ṽr (0)|φin〉 = 0. In order to calculate 〈σge(t − r)〉(1), 〈σme(t −
r1)σgm(t − r2)〉(1), and 〈σgm(t − r1)σme(t − r2)〉(1), we work in
the Heisenberg picture. The Heisenberg equations for σgm and
σge are written as

d

dt
σgm =

[
−i�m − �3

2

]
σgm +

√
�2�3σme −

√
�1σemh̃−t (0)

−
√

�2ṽ
†
−t (0)σge +

√
�3(σgg − σmm)ṽ−t (0),

(A10)
d

dt
σge =

[
−i�e − �1 + �2

2

]
σge +

√
�1(σgg − σee)h̃−t (0)

+
√

�2σgmṽ−t (0) −
√

�3σmeṽ−t (0). (A11)

Using the initial condition where only 〈σgg〉 has a finite
value in the zeroth order for µ, we can solve the equations
of motion for 〈σge(t)〉(1), 〈σgm(t − r1)σme(t − r2)〉(1), and

〈σme(t − r1)σgm(t − r2)〉(1), respectively:

〈σge(t)〉(1) =
√

�1

∫ ∞

0
dξf (−t + ξ )e−i�̃eξ , (A12)

〈σgm(t − r1)σme(t − r2)〉(1) = 〈σge(t − r2)〉(1)e−i�̃m(r2−r1),

(A13)

〈σme(t − r1)σgm(t − r2)〉(1) = 0, (A14)

where the frequencies �̃e and �̃m denote �e − i(�1 + �2)/2
and �m − i�3/2, respectively, and we set r1 � r2. Substituting
Eqs. (A12)–(A14) into Eqs. (A8) and (A9), we obtain one- and
two-photon output wave functions for a single input photon
(g1→1 and g1→2).

The two-, three-, and four-photon output wave functions
for two input photons are given by

g2→2(r1, r2; t) = g1→1(r1; t)g1→1(r2; t) + δg2→2(r1, r2; t),

(A15)

g2→3(r, r1, r2; t) = g1→1(r; t)g1→2(r1, r2; t)

+ δg2→3(r, r1, r2; t), (A16)

g2→4(r1, r2, r3, r4; t) = g1→2(r1, r2; t)g1→2(r3, r4; t)

+ δg2→4(r1, r2, r3, r4; t). (A17)

Equations (A5)–(A7) show that δg2→2, δg2→3, and δg2→4

contain many terms. However, by solving the Heisenberg
equations, we can straightforwardly obtain the following
equations for a quadratic order of µ:

δg2→2(r1, r2; t) = −�1[〈σge(t − r2)〉(1)]2e−i�̃e(r2−r1), (A18)

δg2→3(r, r1, r2; t) =

⎧⎪⎪⎨⎪⎪⎩
√

�1�2�3〈σge(t − r1)〉(1)〈σgm(t − r1)σme(t − r2)〉(1)e−i�̃e(r1−r) (r � r1 � r2)
√

�1�2�3〈σge(t − r)〉(1)〈σgm(t − r)σme(t − r2)〉(1)e−i�̃m(r−r1) (r1 � r � r2)
√

�1�2�3〈σge(t − r)〉(1)〈σgm(t − r2)σme(t − r1)〉(1)e−i�̃e(r−r2) (r1 � r2 � r),

(A19)

δg2→4(r1, r2, r3, r4; t) = − [
g2

1→2(r3, r4; t)
]
e−i�̃m(r2−r1)e−i�̃e(r3−r2)e−i�̃m(r4−r3). (A20)

Thus, we obtain the two-, three- and four-photon output wave functions by substituting Eqs. (A18)–(A20) into Eqs. (A15)–(A17),
respectively.
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