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We theoretically demonstrate a deterministic conditional sign flip of a two-photon pulse that preserves the
pulse profile. The nonlinear optical system used is a V-type three-level atom confined in a cavity, and the input
photons are down-converted twin photons having temporal entanglement. The input and the output pulse
profiles are nearly perfectly preserved when the reciprocal bandwidth of the input photons is tuned to the
atomic linewidth.
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I. INTRODUCTION

Photons interact very weakly with environmental degrees
of freedom and thus can maintain quantum coherence for a
long time. Consequently, photons have been widely used for
fundamental tests of quantum mechanics �1–3�, and they are
regarded as one of the most promising candidates for imple-
menting unique quantum-mechanical technologies �4–7�.
However, one problem in using photons in device applica-
tions is that it is difficult to control one photon by using
another photon since the nonlinear interaction between single
photons is negligibly small �8�. Several strategies have been
proposed for overcoming the weakness of the nonlinear in-
teraction between single photons; such strategies include the
probabilistic realization of conditional gates by linear optical
elements and measurements �9� and amplification of nonlin-
ear effects by a strong classical field �10�.

Extensive efforts have also been made to realize a giant
optical nonlinearity that is sensitive to individual photons
�11–13�. In particular, the use of a few-level quantum system
seems highly promising �14–17�, and considerable nonlinear
effects have actually been obtained by using extremely weak
input fields at the single-photon level �18�. In order to
achieve strong interaction between single photons, the input
photons must be in a highly dispersive frequency region
close to the resonance of the system. However, this generally
greatly distorts the photonic pulse profile in the propagation
direction. Such distortion in the pulse profile reduces the
fidelity of the photons and should thus be avoided when
constructing single-photon devices. Previous multimode
quantum-optical analyses �19–22� have demonstrated that
few-level quantum systems can generate substantial nonlin-
ear interactions between single photons. However, the con-
trol of the output pulse profile is essential for actual device
applications.

In this study, we theoretically show that the deterministic
conditional sign flip of a two-photon pulse can be performed
without distorting the pulse profile. The elements required
are a V-type three-level atom confined in a cavity and a twin
photon pair having temporal entanglement, both of which are
available in current quantum-optics experiments. These re-

sults imply that a deterministic optical controlled-Z gate �23�
can be constructed from existent optical elements.

II. SYSTEM

A. Optical circuit

The optical circuit considered in this study is illustrated in
Fig. 1. Two photons are input into the circuit from the optical
paths P1 and P2. The polarization beam splitters are arranged
to transmit horizontally �H� polarized photons and to reflect
vertically �V� polarized photons. The paths P3, P4, and P5
incorporate a nonlinear cavity, which contains a V-type
three-level quantum system as the nonlinear material, as de-
picted in Fig. 2. These cavities do not affect the polarization
of photons. The polarizations of the output photons �P6 and
P7� are thus identical to those of the input photons �P1 and
P2�. When the input polarization state is �VH�in �i.e., V po-
larization in P1 and H polarization in P2�, two input photons
are forwarded to the same cavity. In contrast, when the input
polarization state is �HH�in, �VV�in, or �HV�in, two input pho-
tons are forwarded to different cavities. Therefore, we should
investigate the one- and the two-photon dynamics occurring
in the nonlinear cavity.

B. Nonlinear cavity

The structure of a nonlinear cavity is illustrated in Fig. 2.
The �0�↔ �1� ��0�↔ �2�� transition in the atom is assisted by
a H- �V-� polarized cavity photon. The Hamiltonian H of the
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FIG. 1. �Color online� The optical circuit considered in this
study. PBS: polarization beam splitter; NLC: nonlinear cavity. The
polarizations of the two input photons �P1 and P2� are conserved at
the output ports �P6 and P7�.
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nonlinear cavity including the external field is given by �put-
ting �=c=1�

H = Ha + Hac + Hc + Hce + He, �1�

Ha = ���11 + �22� , �2�

Hac = g��10bH + �20bV + H.c.� , �3�

Hc = ��bH
† bH + bV

†bV� , �4�

Hce =� dk� �

2�
�bH

† bH,k + bV
†bV,k + H.c.� , �5�

He =� dk�kbH,k
† bH,k + kbV,k

† bV,k� . �6�

The parameters have the following meanings. � is the cavity
resonance frequency, which is identical to the atomic transi-
tion frequency, g is the atom-cavity coupling, and � is the
escape rate of a cavity photon into the external field. Note
that the bad-cavity regime of ��g is assumed throughout
this study. The operators have the following meanings. �ij
�=�i�	j�� is the atomic transition operator, bH �bV� is the an-
nihilation operator for the H- �V-� polarized cavity photon,
bH,k �bV,k� is the annihilation operator for the H- �V-� polar-
ized external field with wave number k. As Fig. 2 shows, we
define the spatial coordinate r along the propagation direc-
tion of the incoming and the outgoing photons and assign the
negative �positive� region to the incoming �outgoing� field.

The real-space representation b̃H,r of the external-field opera-

tor is the Fourier transform of bH,k : b̃H,r= �2��−1/2


dk eikrbH,k.

III. TEMPORAL EVOLUTION OF PHOTONS

Using this Hamiltonian, we can relate the pulse profiles of
incoming and outgoing photons. The following three situa-
tions are relevant in the current situation: �i� only a
H-polarized photon enters the cavity, �ii� only a V-polarized
photon enters the cavity, and �iii� H-polarized and

V-polarized photons simultaneously enter the cavity. The
one-photon propagators that connect the input and the output
photons in cases �i� and �ii� are defined by

GH�r,r�� = 	g�b̃H,r�t�b̃H,r�
† �0��g� , �7�

GV�r,r�� = 	g�b̃V,r�t�b̃V,r�
† �0��g� , �8�

where A�t�=eiHtA�0�e−iHt �Heisenberg picture�; H is the
overall Hamiltonian of Eq. �1�; �g� is its ground state; t is the
final moment; and r� and r, respectively, denote the space
variables of the incoming and the outgoing photons, satisfy-
ing r��0�r� t. The t dependences of GH and GV are not
shown explicitly. The two-photon propagator GVH, which
corresponds to case �iii�, is defined similarly by

GVH�r1,r2,r1�,r2�� = 	g�b̃V,r1
�t�b̃H,r2

�t�b̃V,r1�
† �0�b̃H,r2�

† �0��g� ,

�9�

where r1 and r1� �r2 and r2�� are the space variables for the V-
�H-� polarized photon. These propagators can be calculated
by solving the Heisenberg equation. In the bad-cavity regime
of ��g, they are given by

GH�r,r�� = GV�r,r��

= − ��r − r� − t� + 	e�i�+	/2��r−r�−t�
�r� + t − r� ,

�10�

GVH�r1,r2,r1�,r2�� = GV�r1,r1��G
H�r2,r2��

− 	2 �
j=1,2

e�i�+	/2��rj−rj�−t�
�rj� + t − R� ,

�11�

where 	�=4g2 /�� is the atomic natural linewidth and R
=max�r1 ,r2� in Eq. �11�.

We now return to the optical circuit of Fig. 1. The wave
function of two input photons �P1 and P2� is assumed to be
independent of their polarizations and is denoted by
f in�r1� ,r2��, where r1� and r2�, respectively, denote the spatial
coordinates of the P1 and the P2 photons. When the input
polarization state is �HH�in, �VV�in, or �HV�in, two input pho-
tons are forwarded to different cavities and thus evolve in-
dependently. The wave functions of the output photons
�P6 and P7� are then, respectively, given by

fout
HH�r1,r2� =� dr1�dr2� GH�r1,r1��G

H�r2,r2��f in�r1�,r2�� ,

�12�

fout
VV�r1,r2� =� dr1�dr2� GV�r1,r1��G

V�r2,r2��f in�r1�,r2�� ,

�13�
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FIG. 2. �Color online� Structure of the nonlinear cavity. A
V-type three-level atom is placed inside a one-sided cavity. The
�0�↔ �1� ��0�↔ �2�� transition in the atom is assisted by a H- �V-�
polarized photon.
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fout
HV�r1,r2� =� dr1�dr2� GH�r1,r1��G

V�r2,r2��f in�r1�,r2�� .

�14�

Since GH=GV �see Eq. �10��, fout
HH= fout

VV = fout
HV. In contrast,

when the input polarization state is �VH�in, two input photons
are forwarded to the same cavity. The wave function of the
output photons is then given by

fout
VH�r1,r2� =� dr1�dr2� GVH�r1,r2,r1�,r2��f in�r1�,r2�� . �15�

IV. QUANTUM STATES OF OUTPUT PHOTONS

A. Pulse profile of input photons

In the following part of this study, by assuming a specific
form of f in, we evaluate the output wave functions fout

HH

�=fout
VV = fout

HV� and fout
VH. We employ the following form of f in:

f in�r1,r2� = N exp�−
�r1 − r2�

2l1
−

�r1 + r2�
2l2

 , �16�

where N= �2l1l2�−1/2 is a normalization constant to satisfy

dr1dr2�f in�2=1 and l2�l1� denotes the pulse length in the di-
agonal �off-diagonal� direction �see Fig. 3�a��. Note that the
input photons are assumed to be in resonance with the atom,
and the natural phase factor of ei��r1+r2� is dropped here and
hereafter for notational simplicity. Since 	�r1−r2��= l1, l1 rep-
resents the correlation length between two photons. The cor-
relation parameter �, defined by �= 	r1r2� /�	r1

2�	r2
2�, is given

by

� =
l2
2 − l1

2

l1
2 + l2

2 . �17�

For twin photons generated by parametric down conversion,
l2� l1 and therefore ��1 are usually satisfied. Namely, two
photons are entangled temporally.

B. Conditional sign flip

We first examine the long pulse limit of l2→� while
keeping l1 finite. In this limit, nonlinear effects will disap-
pear if two photons without temporal entanglement are input,
since the mean time separation between two photons be-
comes infinite. In contrast, when temporally entangled pho-
tons are input, as in the present case, considerable nonlinear

effects can occur even in the long pulse limit. As observed in
Eq. �16�, in the l2→� limit, f in becomes a function of only a
single variable, �r1−r2�. Then, fout

HH and fout
VH also become func-

tions of �r1−r2� only. Based on this observation and Eqs.
�10�–�15�, the output wave functions are recast into the fol-
lowing forms:

fout
HH�r1,r2� = f in�r1,r2� , �18�

fout
VH�r1,r2� = f in�r1,r2� + Ce−	�r1−r2�/2, �19�

where the coefficient C in Eq. �19� is given by

C = − 2	�
0

�

d e−	/2f in�� , �20�

where = �r1−r2�. In particular, when l1=	−1, Eqs. �19� and
�20� are reduced to the following form:

fout
VH�r1,r2� = − f in�r1,r2� . �21�

Equation �18� implies that the output state is unchanged from
the input one �except for the translational motion�, namely,
�HH�out= �HH�in, �VV�out= �VV�in, and �HV�out= �HV�in. In
contrast, Eq. �21� implies the nonlinear sign flip, �VH�out
=−�VH�in. Thus, for a suitable choice of the input pulse pro-
file �l1=	−1 and l2→��, the conditional sign flip of a two-
photon pulse can be performed without distorting the pulse
profile between the input and the output.

C. Numerical results

Since the pulse lengths are finite in reality, we examine
here the effects of the finiteness of l2 numerically. Three-
dimensional plots of f in, fout

HH, and fout
VH are presented in Fig. 3,

for l1=	−1 and l2=5	−1. It is observed that fout
HH is almost

unchanged from f in, whereas sign flip occurs in fout
VH. The

sectional plots of f in, fout
HH, and −fout

VH on the diagonal and the
off-diagonal lines �see Fig. 3�a�� are presented in Fig. 4. As
expected from analytical results, f in� fout

HH�−fout
VH, and these

three functions become closer as l2 is increased. In contrast,
the results for the l1�	−1 case are presented in Fig. 5. Al-
though fout

HH is nearly unchanged from f in, −fout
VH differs from

f in even when l2 is large.
In order to quantify the distortion of the pulse profile, we

observe the overlap � between �HH�out and �VH�out, defined
by

r1

r2

diagonal
line

off-diagonal
line

(a) fin (b) fout, fout, foutHH VV HV (c) foutVH

l1l2

FIG. 3. �Color online� Three-dimensional plots of �a� f in, �b� fout
HH�=fout

VV = fout
HV�, and �c� fout

VH. l1=	−1 and l2=5	−1. The natural phase factor
of ei��r1+r2� is neglected. The sign of the output wave function is flipped only when the input polarization is �VH�in.
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� =� dr1dr2�fout
HH�r1,r2���fout

VH�r1,r2� . �22�

By definition, � is a complex value satisfying ����1 and is
related to the fidelity F between �HH�out and �VH�out by F
= ���2. A complete sign flip without pulse distortion corre-
sponds to �=−1. In Fig. 6, the dependence of � on l2 is
plotted by fixing l1. Note that � necessarily takes a real value
in the present case of resonant input. It is observed that a
high-fidelity sign flip is attained when l1=	−1 and l2 is large.
For example, F�0.99 ���−0.995� is attained when l2
�21.4	−1.

V. CONTROLLED TWO-PHOTON GATE

It was clarified in Sec. IV that, under the conditions of
l1=	−1 and l2� l1, the conditional sign flip of two-photon
pulse can be achieved without pulse distortion. Namely,
�HH�in→ �HH�out, �HV�in→ �HV�out, �VV�in→ �VV�out, and
�VH�in→−�VH�out. By assigning the computational basis

states to the polarization states of photons, this dynamics
realizes a controlled-Z gate. This gate can be readily
switched to a controlled-NOT gate with the help of two Had-
amard gates �23�, which is realized by quarter-wave plates.

In former studies, it was shown that the temporal en-
tanglement in down-converted photons can be turned into a
controlled-NOT gate by only linear optics �24�. The differ-
ence between such linear schemes and the current one lies in
the success probability of the gate. In linear schemes, the
gate operation succeeds probabilistically in general �9�. In
contrast, in nonlinear schemes including the current one, the
gate operation succeeds with certainty �12�. The merit of the
current scheme lies in the deterministic and high-fidelity op-
eration of the gate.

VI. REMARKS

Three final remarks are in order. �i� In the Hamiltonian �1�
of the nonlinear cavity, atomic radiative damping into non-
cavity modes �usually denoted by �� is assumed to be negli-
gible. Such a system, called a one-dimensional atom, has
actually been realized by existent Fabry-Pérot or microtoroid
resonators �18,25�. Further suppression of � would be pos-
sible by using photonic band-gap materials. �ii� Since 	−1 is
on the order of nanoseconds in typical atomic cavity-QED
systems �25�, the correlation time l1 of twin photons should
be tuned to this order. Such narrow-band photon pairs can be
generated by a cavity-enhanced down conversion �26�. �iii�
The results for the uncorrelated input photons correspond to
the cases of l1= l2, because the temporal correlation � van-
ishes in these cases �see Eq. �17��. When l1= l2=	−1, for
example, we can observe in Fig. 6 that �=−0.4 �fidelity F
= ���2=0.16�, indicating a significant pulse distortion. Thus,
there is a trade-off relation between the input correlation and
the output fidelity.

VII. SUMMARY

In summary, it is theoretically demonstrated that condi-
tional sign flip of a two-photon pulse can be performed de-
terministically while preserving the pulse profile of the input
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FIG. 5. �Color online� The same plots as those in Fig. 4, for
l1=2	−1 and l2=10	−1. The overlap between fout

HH and fout
VH is �=

−0.76.
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FIG. 6. �Color online� Plot of � as a function of l2. l1=	−1 �solid
line�, 2	−1 �dashed line�, and 0.5	−1 �dotted line�. High-fidelity
operation ���−0.995, for example� is attained when l1=	−1 and
l2�21.4	−1.
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FIG. 4. �Color online� Sectional plots of f in �thin dotted line�,
fout
HH �solid line�, and −fout

VH �dashed line�, on the �a� diagonal and �b�
off-diagonal lines �see Fig. 3�a��. l1=	−1 and l2=10	−1. The over-
lap between fout

HH and fout
VH is �=−0.98.
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photons. The elements required are a V-type three-level atom
confined in a cavity and a temporally entangled photon pair.
These results demonstrate the potential of using existent
quantum-optical elements to construct quantum-mechanical
devices that are based on single-photon optical nonlinearity.
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