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The up-conversion dynamics of two photons in a three-level system is investigated theoretically. The
analysis is based on a rigorous formalism that incorporates the multimode nature of the photon field,
enabling quantitative handling of the spatial profiles of the photon pulses. We have derived an analytic
formula that connects the wavefunction of two input photons to that of an up-converted output photon.
The up-conversion efficiency and the output pulse profile are numerically calculated using this formula.
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1. Introduction

In quantum information technologies, such as quantum
cryptography and quantum computation,1–3) nonlinear opti-
cal phenomena have many important applications, including
generation of entangled photon pairs and construction of
quantum gates. Up-conversion of two photons is a repre-
sentative second-order nonlinear optical phenomenon, in
which two incident photons are converted into a single
photon with the sum frequency. In particular, this phenom-
enon can be utilized to realize a high-speed and long-
distance quantum key distribution in telecommunication
bands. Techniques for high-efficiency photon counting are
rapidly improving by using up-conversion.4–7)

The up-conversion dynamics of two photons can be
qualitatively described by the phenomenological time
evolution operator ÛU based on the single-mode approxima-
tion ÛU ¼ exp½�it�ðbyaaþ ayaybÞ�, where a and b are the
annihilation operators for the input and up-converted
photons, respectively, t is the interaction time, and � is the
coupling constant, which is proportional to the second-order
nonlinear susceptibility.8) However, optical nonlinear effects
are sensitive to the spatial profiles of photon pulses, and the
up-conversion efficiency can be affected by the pulse
profiles of incident photons. This implies that the phenom-
enological approach based on the single-mode approxima-
tion is inadequate for quantitative engineering of photonic
quantum states for novel quantum technologies. Therefore, a
multimode analysis of the up-conversion dynamics that
accounts for the spatial profiles of photons must be
developed.

In this study, we develop a multimode theory of up-
conversion dynamics of two photons. The analytical ex-
pression for the wavefunction of an up-converted photon is
obtained as a function of the input wavefunction by using
the method developed in refs. 9–11. A photon pulse has
conventionally been characterized by its spatial profile,
which is obtained from the first-order correlations of the
photon field. However, the input state is not completely
characterized by pulse profiles since it is possible to have

input photons that have identical pulse profiles but different
quantum states. We consider three types of photon pulses
as input states. They have identical pulse profiles and are
indistinguishable using classical measurements based on
photon counting, where we define classical measurements as
measurements of the first-order correlations of the photon
field. It is demonstrated that these three input states induce
different up-conversion dynamics.

This paper is organized as follows. In §2, we introduce a
theoretical model for analyzing the up-conversion dynamics
of two photons. As the simplest �ð2Þ-system, we consider a
three-level system (referred to hereafter as ‘‘atom’’). In §3,
we present a formula that analytically connects the wave-
function of two input photons with the wavefunction of an
up-converted photon. The obtained analytic result is describ-
ed in §4, in which the up-conversion probability and the
pulse profile of the up-converted photon are calculated
numerically. Section 5 shows a summary of the study.

2. Theoretical Model

2.1 Hamiltonian
As illustrated in Fig. 1, the system considered in this study

is composed of a one-dimensional photon field and a three-
level atom located at r ¼ 0. Such a situation can be realized
experimentally by using a cavity quantum electrodynamics
system in the weak-coupling regime.12) Two photons are
input from the input port (the r < 0 region) onto the atom,
which is initially in the ground state. The atom has three
energy levels, namely, jgi, jmi, and jei, as shown in Fig. 1.
The energies jei and jmi measured from jgi are denoted
by �e and �m, respectively, and the decay rates associated
with the jei ! jgi, jei ! jmi, and jmi ! jgi transitions are
denoted by �1, �2, and �3, respectively. Employing natural
units (h� ¼ c ¼ 1), the Hamiltonian for the overall system is
given by

H ¼ �e�ee þ�m�mm þ
Z

dk kaykak

þ
Z

dk i

ffiffiffiffiffiffi
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where ak denotes the photon annihilation operator with the
wave number k, and atomic transition operators are defined
as �eg ¼ jeihgj, for example. The real-space representation
of the photon annihilation operator is defined as the Fourier
transform of ak so that

~aar ¼
1ffiffiffiffiffiffi
2�
p

Z
dk ake

ikr: ð2Þ

2.2 Input two-photon states
The three types of two input photons that we consider in

this study are depicted in Fig. 2. To characterize these states,
we first introduce two single-photon modes, �1ðrÞ and �2ðrÞ,
which are shown in Fig. 2(a). [Specific forms of these
functions are given later, see eqs. (17) and (18).] These
mode functions are spatially separated and localized in
the input port (r < 0 region). They are normalized asR

drj�1ðrÞj2 ¼
R

drj�2ðrÞj2 ¼ 1.
The two photons in Fig. 2(a) occupy different modes. This

state is referred to as the spatially anticorrelated state. In
contrast, the two photons in Fig. 2(b) occupy the same
mode, �1 or �2, and the photonic state consists of their
superpositions with equal weights. This state is referred to as
the spatially correlated state.

In the multimode notation, the state vector of two-photon
states can generally be cast in the following form:

j j
ini ¼

ZZ
dr1 dr2

fjðr1; r2Þffiffiffi
2
p ~aayr1 ~aayr2 j0i; ð3Þ

where j0i represents the overall ground state (the product of
the atomic ground state and the photonic vacuum state),
fjðr1; r2Þ is the two-photon wavefunction, and the index j

(¼ a; b; c) discriminates the types of the two input photons.
The wavefunctions for the anticorrelated ( j ¼ a) and
correlated ( j ¼ b) photons are given by

faðr1; r2Þ ¼
�1ðr1Þ�2ðr2Þ þ �2ðr1Þ�1ðr2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ 2jVj2
p ; ð4Þ

fbðr1; r2Þ ¼
�1ðr1Þ�1ðr2Þ þ �2ðr1Þ�2ðr2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ 2ReðV2Þ
p ; ð5Þ

where V is the overlap between �1 and �2, defined by

V ¼
Z

dr �1ðrÞ��2ðrÞ: ð6Þ

These two-photon wavefunctions are normalized asR
dr1 dr2jfjðr1; r2Þj2 ¼ 1 and symmetrized as fjðr1; r2Þ ¼

fjðr2; r1Þ. The spatial profile of these two-photon pulses can
be characterized by the intensity distribution function I

j
inðrÞ,

which is defined by I
j
inðrÞ ¼ h 

j
inj ~aayr ~aarj j

ini and normalized
as
R

drI
j
inðrÞ ¼ n for n-photon states. From eqs. (4) and (5),

we obtain

IainðrÞ ¼
j�1ðrÞj2 þ j�2ðrÞj2 þ ½V��1ðrÞ��2ðrÞ þ c.c.�

1þ jVj2
; ð7Þ

IbinðrÞ ¼
j�1ðrÞj2 þ j�2ðrÞj2 þ ½V�1ðrÞ��2ðrÞ þ c.c.�

1þ ReðV2Þ
: ð8Þ

In addition to the anticorrelated ( j ¼ a) and correlated
( j ¼ b) two-photon states, we define here the spatially
uncorrelated ( j ¼ c) two-photon states, which have the
same intensity profile as the anticorrelated state. For this
purpose, we introduce a new single-photon mode function
�3ðrÞ satisfying j�3ðrÞj2 ¼ IainðrÞ=2, as shown in Fig. 2(c).
The uncorrelated state is obtained by filling two photons
in the mode �3ðrÞ. Therefore, the wavefunction fc is given
by

fcðr1; r2Þ ¼ �3ðr1Þ�3ðr2Þ: ð9Þ

The state vector is given by eq. (3) with j ¼ c. By definition,
the pulse profile Icin for this state is identical to that for the
anticorrelated state, namely,

IcinðrÞ ¼ IainðrÞ: ð10Þ

In the following, we mainly consider the case in which V
is real, which can be achieved by appropriate selection of the
relative phase between �1 and �2. The pulse profiles of these
three states (Iain, Ibin, and Icin) become identical in this case.
This indicates that these three input states are indistinguish-
able by classical measurements based on photon counting.
However, it will be revealed in later sections that the
nonlinear responses are sensitive to the type of input two-
photon state.

3. Output Photons

The state vector of the output photons is determined by
the Schrödinger equation

Fig. 2. (Color online) Schematic illustrations of the input two-photon

states considered in this study: (a) spatially anticorrelated, (b) spatially

correlated, and (c) spatially uncorrelated states. These three states have

the same intensity distribution and are therefore indistinguishable by

classical measurements.

Fig. 1. (Color online) Physical situation investigated in this study. Two

photons are input from the input port (the r < 0 region) onto a three-level

atom located at r ¼ 0. After interacting with the atom, an up-converted

photon is generated in the output port (the r > 0 region) with a certain

probability.
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j j
outi ¼ e�iHtj j

ini; ð11Þ

where the final moment t is a sufficiently large time at which
the atom is completely de-excited. The output state may
include, with a certain probability, an up-converted photon
associated with the jei ! jgi transition. The output state
vector can thus be written as

j j
outi ¼

ZZ
dr1 dr2

gjðr1; r2; tÞffiffiffi
2
p ~aayr1 ~aayr2 j0i

þ
Z

dr hjðr; tÞ ~aayr j0i;
ð12Þ

where hj and gj are the one- and two-photon wavefunctions
for the output, respectively. The up-conversion probability
Pð1Þj is given as the norm of hj by

Pð1Þj ¼
Z

drjhjðr; tÞj2: ð13Þ

Although this quantity depends on the final moment t by
definition, it becomes independent of t for sufficiently large
values. Similarly, the probability Pð2Þj for the absence of up-
conversion is given as the norm of gj by

Pð2Þj ¼
ZZ

dr1 dr2jgjðr1; r2; tÞj2 ð14Þ

¼ 1� Pð1Þj : ð15Þ

As shown in Appendix, the Schrödinger equation (11) can
be solved analytically. The wavefunction hjðr; tÞ of the up-
converted photon is given in terms of the input wavefunction
fjðr1; r2Þ by

hjðr; tÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�1�2�3

p
exp � i�e þ

�1 þ �2

2

� �
ðt � rÞ

� � Z t�r

0

d�1

Z �1

0

d�2

� exp ið�e ��mÞ þ
�1 þ �2 � �3

2

� �
�1

� �
exp i�m þ

�3

2

� �
�2

� �
fjð��1;��2Þ: ð16Þ

4. Numerical Results

In this section, we visualize the analytical result for
eq. (16) and observe the differences in the up-conversion
dynamics induced by the three different input states, namely,
the anticorrelated state ( j ¼ a), the correlated state ( j ¼ b),
and the uncorrelated state ( j ¼ c). For this purpose, we
employ the following assumptions in this section: (i)
Regarding the atomic energy, �m ¼ �e=2 (¼ �). (ii) For
the atomic decay rates, �1 ¼ �2 ¼ �3 (¼ �) and ��1 are
used as the units of time and length, respectively. (iii) The
two input photons are resonant to the jgi ! jmi and jmi !
jei transitions. The input mode functions �1 and �2 are
specified by eqs. (17) and (18), respectively.

4.1 Input mode functions
In this section, we assume the following forms for the

input mode functions �1ðrÞ and �2ðrÞ:

�1ðrÞ ¼
2

�l2

� �1=4

exp �
r � aþ d=2

l

� �2

þ i�r

" #
; ð17Þ

�2ðrÞ ¼
2

�l2

� �1=4

exp �
r � a� d=2

l

� �2

þ i�r

" #
; ð18Þ

where l is the coherence length, d is the distance between
�1ðrÞ and �2ðrÞ, and að< 0Þ represents the initial position of
the two photons. a is a redundant parameter provided that
jaj � l; d, as is assumed here. The overlap V is given by
V ¼ expð�d2=2l2Þ. The mode function �3ðrÞ is defined by
�3ðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IainðrÞ=2

p
expði�rÞ. From eqs. (7), (17), and (18),

we obtain

�3ðrÞ ¼
2

�l2

� �1=4

exp �
r � a

l

� �2

þ i�r

" #

�
cosh½2ðr � aÞd=l2� þ e�d

2=2l2

2 coshðd2=2l2Þ

( )1=2

:

ð19Þ

The profiles of these mode functions (j�1j, j�2j, and j�3j) are
shown in Fig. 3. The two-photon wavefunctions ( fa, fb, and

fc) are given by eqs. (4), (5), and (9), respectively. It should
be stressed that the overlap V is real in the present case, and
that the pulse profiles (Iain, Ibin, and Icin) become completely
identical. Therefore, these three input states are indistin-
guishable by classical measurements.

4.2 Up-conversion probability
From the two-photon wavefunctions fj ( j ¼ a; b; c), the

wavefunction hj of the up-converted photon can be obtained
numerically by using eq. (16). In this subsection, we discuss
the up-conversion probability Pð1Þj , which is given by
eq. (13), as the norm of hj.

First, we examine the dependence of the up-conversion
efficiency Pð1Þj on the coherence length l by fixing the
distance d at 0. The up-conversion probability is plotted in
Fig. 4 as a function of l. Note that the three input states ( fa,
fb, and fc) become identical in the present case of d ¼ 0.
Figure 4 shows that there exists an optimum coherence

Fig. 3. (Color online) Profiles of the input mode functions assumed in this

study. The mode functions �1 and �2 have peaks at r ¼ a� d=2 and

r ¼ aþ d=2, respectively. The coherence length l is the width of the

peaks. The mode function �3 has two peaks at r ¼ a� d=2 and r ¼
aþ d=2. The mode distance d is the distance between these two peaks for

this mode.
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length for inducing up-conversion. In the l! 0 limit, the
input photons become spectrally broad and cannot interact
with the atom effectively. On the other hand, in the l!1
limit, the field strength of the photons decreases such that it
cannot induce the jgi ! jmi transition efficiently. The up-
conversion probability is maximized when l ’ 3��1, as
shown in Fig. 4.

Next, we examine the dependence of Pð1Þj on the mode
distance d by fixing the coherence length l at 3��1. The up-
conversion probabilities for the three input states (j�a

ini,
j�b

ini, and j�c
ini) are plotted in Fig. 5 as functions of d.

When d ¼ 0, the three probabilities coincide, as depicted in
Fig. 5, because the three input states become identical in this
case. In contrast, differences become apparent as the mode
distance d increases: The up-conversion probability Pð1Þa
vanishes in the d!1 limit for the anticorrelated input
(solid line in Fig. 5), whereas Pð1Þb remains almost unchanged
even in the d!1 limit for the correlated input (dotted line
in Fig. 5). This can be qualitatively understood by the fact
that the arrival of two photons at the atom within a short
time interval is essential for up-conversion, because the first

excitation (jgi ! jmi) should be followed immediately by
the second excitation (jmi ! jei) before the relaxation
(jmi ! jgi). As Fig. 2 shows, when the mode distance d is
increased, the distance between the two photons necessarily
increases for the anticorrelated input, whereas the two
photons always arrive at the atom within a short time
interval for the correlated input.

It is observed that there is a maximum point at d ’ 4��1

for the correlated input in Fig. 5. This arises from the
quantum interference between �1ðr1Þ�1ðr2Þ and �2ðr1Þ�2ðr2Þ.
In contrast, such quantum interference does not occur for the
anticorrelated input since �1ðr1Þ�2ðr2Þ ¼ �2ðr1Þ�1ðr2Þ from
eqs. (17) and (18).

The uncorrelated input (dashed line in Fig. 5) yields
intermediate results between the correlated and anticorre-
lated inputs. This is because the uncorrelated input can be
regarded as a superposition of the correlated and anticorre-
lated inputs. In particular, in the d!1 limit, �3 ’ ð�1 þ
�2Þ=

ffiffiffi
2
p

from eq. (19), and fc ’ ð fa þ fbÞ=
ffiffiffi
2
p

from eq. (9).
Therefore, Pð1Þc is approximately given by Pð1Þc ’ ðPð1Þa þ
Pð1Þb Þ=2, as can be confirmed in Fig. 5.

4.3 Pulse profile of up-converted photon
Another physical quantity extractable from hj is the pulse

profile Ið1Þj ðrÞ of the up-converted photon, which is defined
by

Ið1Þj ðrÞ ¼ jhjðr; tÞj
2: ð20Þ

The norm of the pulse profile gives the up-conversion
probability as

R
dr Ið1Þj ðrÞ ¼ Pð1Þj .

The pulse profiles Ið1Þj ðrÞ of the up-converted photon are
plotted in Fig. 6. Figure 6(a) shows the results for the case
when the mode functions �1ðrÞ and �2ðrÞ are well separated
(d � l). For the anticorrelated input [solid line in Fig. 6(a)],
the up-converted photon is generated in the region in which
�1ðrÞ and �2ðrÞ overlap. On the other hand, for the correlated
input [dotted line in Fig. 6(a)], the up-converted photon is
generated at the positions of �1ðrÞ and �2ðrÞ with almost
identical weights. This can be understood by the fact that an
up-converted photon can be generated if two input photons
arrive at the atom within a short time interval. For the
uncorrelated input [dashed line in Fig. 6(a)], the intensity
Ið1Þc ðrÞ is nearly one-half of Ið1Þb ðrÞ. This is because the
uncorrelated input is given by fc ’ ð fa þ fbÞ=

ffiffiffi
2
p

when �1ðrÞ
and �2ðrÞ are well separated, and the anticorrelated input fa
makes a negligible contribution. As the two modes �1ðrÞ and
�2ðrÞ become closer (d � l), the discrimination between the
three inputs gradually disappears. The profile of the up-
converted photon assumes a complex asymmetric form due
to quantum interference [see Fig. 6(b)].

It is thus demonstrated that, although the three input states
have identical pulse profiles and are therefore indistinguish-
able by classical measurements, the up-conversion dynamics
induced by them are different. As shown in Fig. 5, a high up-
conversion efficiency is obtained when a correlated two-
photon pulse is input. Therefore, the correlated two-photon
pulse is advantageous for maximizing the nonlinear optical
effects.

5. Summary

The up-conversion dynamics of two photons is inves-

Fig. 4. Up-conversion probability as a function of the coherence length l.

The mode distance is fixed at d ¼ 0, where the three types of input states

become identical. The up-conversion efficiency is optimized when

l ’ 3��1.

Fig. 5. (Color online) Up-conversion probabilities as functions of the

mode distance d. The coherence length is fixed at l ¼ 3��1. The solid,

dotted, and dashed lines show the results for the anticorrelated, correlated,

and uncorrelated inputs, respectively.
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tigated theoretically, assuming a three-level system as the
simplest second-order nonlinear optical system. The analysis
is based on a rigorous formalism in which both photons and
optical media are treated quantum-mechanically and the
multimode nature of the photon field is considered. Three
types of states are considered for the input two-photon state:
spatially anticorrelated, correlated, and uncorrelated states,
which are schematically illustrated in Fig. 2. These three
states have an identical pulse profile and are therefore
indistinguishable by classical measurements.

We have derived eq. (16), which connects the two-photon
wavefunction fjðr1; r2Þ in the input port with the one-photon
wavefunction hjðr; tÞ of the up-converted photon in the
output port. From hjðr; tÞ, we have evaluated the up-
conversion probability [eq. (13) and Fig. 5] and the pulse
profile [eq. (20) and Fig. 6]. It is found that, although the
three input states are indistinguishable on the basis of their
intensity distributions, they induce different up-conversion
dynamics. These results demonstrate the necessity of using
multimode treatment for photons in quantitative theories of
nonlinear quantum optics.

Appendix: Derivation of Wavefunction of
Up-Converted Photon

In this appendix, the wavefunction of the up-converted
photon is analytically derived. The wavefunction is ex-
pressed as a function of the input two-photon wavefunction

fjðr1; r2Þ, as shown in eq. (16). In order to calculate the
wavefunction of the up-converted photon, we use the
method developed in refs. 9–11.

A.1 Coherent input and corresponding output states
A.1.1 Coherent input state

We consider the following coherent state as the input:

j�ini ¼ N exp

Z
dr½��1ðrÞ þ 	�2ðrÞ� ~aayr

� �
j0i; ðA:1Þ

where N ¼ exp½�ðj�j2 þ j	j2 þ �	�V þ ��	V�Þ=2� and �
and 	 are perturbation parameters. This state has the
photon amplitude F ðr; 0Þ ¼ h�inj ~aarj�ini ¼ ��1ðrÞ þ 	�2ðrÞ.
Expanding in powers of � and 	, the state j�ini is written
as

j�ini ¼ j0i þ �j�1i þ 	j�2i þ
�2ffiffiffi

2
p j�1�1i þ

	2ffiffiffi
2
p j�2�2i

þ �	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jVj2

q
j�1�2i þ � � � ; ðA:2Þ

where the state vectors on the right-hand side are given by,
for example,

j�1i ¼
Z

dr �1ðrÞ ~aayr j0i; ðA:3Þ

j�1�1i ¼
ZZ

dr1 dr2
�1ðr1Þ�1ðr2Þffiffiffi

2
p ~aayr1 ~aayr2 j0i; ðA:4Þ

j�1�2i ¼
ZZ

dr1 dr2
�1ðr1Þ�2ðr2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jVj2
p ~aayr1 ~aayr2 j0i: ðA:5Þ

Note that in terms of these states, the anticorrelated and
correlated states can be written as j a

ini ¼ j�1�2i and j b
ini ¼

ðj�1�1i þ j�2�2iÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2ReðV2Þ

p
, respectively.

A.1.2 Corresponding output state
From the linearity of the Schrödinger equation j�outi ¼

e�iHtj�ini, the output state for this coherent input state can be
given by

j�outi ¼ j0i þ �j�1outi þ 	j�2outi þ
�2ffiffiffi

2
p j�1�1outi

þ
	2ffiffiffi
2
p j�2�2outi þ

�	ffiffiffi
2
p j�1�2outi þ � � � ; ðA:6Þ

where we write the state vectors on the right-hand side in the
following forms:

j�1outi ¼
Z

dr 
1ðr; tÞ ~aayr j0i; ðA:7Þ

j�1�1outi ¼
ZZ

dr1 dr2

11ðr1; r2; tÞffiffiffi

2
p ~aayr1 ~aayr2 j0i

þ
Z

dr �11ðr; tÞ ~aayr j0i; ðA:8Þ

j�1�2outi ¼
ZZ

dr1 dr2

12ðr1; r2; tÞffiffiffi

2
p ~aayr1 ~aayr2 j0i

þ
Z

dr �12ðr; tÞ ~aayr j0i: ðA:9Þ

The wavefunctions of the output two-photon states are
denoted by 
11ðr1; r2; tÞ and 
12ðr1; r2; tÞ, and 
1ðr; tÞ is the
wavefunction of the output one-photon state with the
fundamental frequency, whereas, �11ðr; tÞ and �12ðr; tÞ
denote the wavefunctions of the output one-photon states

Fig. 6. (Color online) Pulse profiles of the up-converted photon. Results

for the anticorrelated, correlated, and uncorrelated inputs are indicated by

the solid, dotted, and dashed lines, respectively. In (a), the parameters are

set at l ¼ 3��1 and d ¼ 8��1 (the d � l case), whereas in (b), they are

set at l ¼ 3��1 and d ¼ 4��1 (the d � l case). The input pulse profiles

(which are identical for the three kinds of inputs) are indicated by a thin

dashed line.
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with the sum frequency, which are the up-converted photon
states. We write the state vectors j�2outi and j�2�2outi in a
similar manner. Considering that we can write j a

outi ¼
j�1�2outi and j b

outi ¼ ðj�1�1outi þ j�2�2outiÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2 ReðV2Þ

p
,

the following relations can be obtained:

haðr; tÞ ¼ �12ðr; tÞ; ðA:10Þ

hbðr; tÞ ¼
�11ðr; tÞ þ �22ðr; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ 2 ReðV2Þ
p : ðA:11Þ

A.2 Input–output relation and field amplitude
From the Heisenberg equation for the field operator ak, we

obtain the following input–output relation

~aarðtÞ ¼ ~aar�tð0Þ �
ffiffiffiffiffiffi
�1

p
�geðt � rÞ �

ffiffiffiffiffiffi
�2

p
�meðt � rÞ

�
ffiffiffiffiffiffi
�3

p
�gmðt � rÞ:

ðA:12Þ

Using this input–output relation, the photon amplitude of the
corresponding output state, which is given by F ðr; tÞ ¼
h�outj ~aarj�outi ¼ h�inj ~aarðtÞj�ini 	 h ~aarðtÞi, can be expressed in
two ways as

F ðr; tÞ ¼ �
1ðr; tÞ þ 	
2ðr; tÞ þ
�2ffiffiffi

2
p �11ðr; tÞ þ

	2ffiffiffi
2
p �22ðr; tÞ

þ �	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jVj2

q
�12ðr; tÞ þ � � � ; ðA:13Þ

¼ ��1ðr � tÞ þ 	�2ðr � tÞ �
ffiffiffiffiffiffi
�1

p
h�geðt � rÞi

�
ffiffiffiffiffiffi
�2

p
h�meðt � rÞi �

ffiffiffiffiffiffi
�3

p
h�gmðt � rÞi: ðA:14Þ

Therefore, comparing the components of the same order for
� and 	, the following relations can be obtained:

�11ðr; tÞ ¼ �
ffiffiffiffiffiffiffiffi
2�1

p
h�geðt � rÞið�

2Þ; ðA:15Þ

�22ðr; tÞ ¼ �
ffiffiffiffiffiffiffiffi
2�1

p
h�geðt � rÞið	

2Þ; ðA:16Þ

�12ðr; tÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

1þ jVj2

s
h�geðt � rÞið�	Þ; ðA:17Þ

where h�geðt � rÞið�2Þ is the second-order component of
h�geðt � rÞi ¼ h�inj�egðt � rÞj�ini proportional to �2, for
example. From eqs. (A·10), (A·11), and (A·15)–(A·17), we
can obtain

haðr; tÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

1þ jVj2

s
h�geðt � rÞið�	Þ; ðA:18Þ

hbðr; tÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

1þ ReðV2Þ

s

� ½h�geðt � rÞið�
2Þ þ h�geðt � rÞið	

2Þ�: ðA:19Þ

A.3 Equations of motion for atomic operators
The second-order components of the expectation h�geðt �

rÞi in eqs. (A·18) and (A·19) can be calculated from the
Heisenberg equations for the atomic operators �gm and �ge.
From the Heisenberg equations for �gm and �ge, the
equations of motion for h�gmi and h�gei are given by

d

d�
h�gmi ¼ � i�m þ

�3

2

� �
h�gmi �

ffiffiffiffiffiffiffiffiffiffiffi
�1�3

p

2
h�gei

þ
ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
h�eei þ

ffiffiffiffiffiffiffiffiffiffiffi
�2�3

p
h�mei

�
ffiffiffiffiffiffi
�1

p
½��1ð��Þ þ 	�2ð��Þ�h�emi

�
ffiffiffiffiffiffi
�2

p
½����1ð��Þ þ 	

���2ð��Þ�h�gei

�
ffiffiffiffiffiffi
�3

p
½��1ð��Þ þ 	�2ð��Þ�ðh�mmi � h�ggiÞ;

ðA:20Þ
d

d�
h�gei ¼ � i�e þ

�1 þ �2

2

� �
h�gei �

ffiffiffiffiffiffiffiffiffiffiffi
�1�3

p

2
h�gmi

�
ffiffiffiffiffiffi
�1

p
½��1ð��Þ þ 	�2ð��Þ�ðh�eei � h�ggiÞ

þ
ffiffiffiffiffiffi
�2

p
½��1ð��Þ þ 	�2ð��Þ�h�gmi

�
ffiffiffiffiffiffi
�3

p
½��1ð��Þ þ 	�2ð��Þ�h�mei; ðA:21Þ

where we used the virtue of the coherent state: ~aarj�ini ¼
½��1ðrÞ þ 	�2ðrÞ�j�ini. Using the rotating wave approxima-
tion, and expanding these equations in powers of � and 	,
it is found that, except for h�gei and h�gmi, the expectations
of the atomic operators make no contribution to the
equations of motion for the second-order components of
h�gei, and that the second-order components of h�mei vanish
for the initial condition h�með0Þi ¼ 0. Therefore, we can
obtain the equations of motion for the second-order
components of h�gei as

d

d�
h�geið�

2Þ ¼ � i�e þ
�1 þ �2

2

� �
h�geið�

2Þ

þ
ffiffiffiffiffiffi
�2

p
�1ð��Þh�gmið�Þ; ðA:22Þ

d

d�
h�geið	

2Þ ¼ � i�e þ
�1 þ �2

2

� �
h�geið	

2Þ

þ
ffiffiffiffiffiffi
�2

p
�2ð��Þh�gmið	Þ; ðA:23Þ

d

d�
h�geið�	Þ ¼ � i�e þ

�1 þ �2

2

� �
h�geið�	Þ

þ
ffiffiffiffiffiffi
�2

p
½�1ð��Þh�gmið	Þ þ �2ð��Þh�gmið�Þ�:

ðA:24Þ
These equations involve the linear components of h�gmi. We
can obtain the equations of motion for the linear components
of h�gmi from eq. (A·20) as

d

d�
h�gmið�Þ ¼ � i�m þ

�3

2

� �
h�gmið�Þ

þ
ffiffiffiffiffiffi
�3

p
�1ð��Þ; ðA:25Þ

d

d�
h�gmið	Þ ¼ � i�m þ

�3

2

� �
h�gmið	Þ

þ
ffiffiffiffiffiffi
�3

p
�2ð��Þ: ðA:26Þ

Solving these equations, the wavefunctions of the up-
converted photon hjðr; tÞ can be obtained analytically as
eq. (16). This expression for the wavefunctions of the up-
converted photon is also derived for the uncorrelated
photons fc when we consider the coherent state j�cini with
the photon amplitude F cðr; 0Þ ¼ h�cinj ~aarj�cini ¼ ��3ðrÞ as
input, where � is a perturbation parameter. Therefore,
given the input two-photon wavefunction fjðr1; r2Þ, we
can determine the specific expressions for hjðr; tÞ from
eq. (16).
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