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When two distinguishable photons are simultaneously input into a nonlinear system, the output photons
undergo nonlinear optical effects of the cross–Kerr type. Theoretical quantification of this two-photon cross–
Kerr effect requires, in principle, a fully quantum-mechanical analysis involving heavy computation. In this
paper, we propose a method for evaluating the two-photon cross–Kerr effect using a semiclassical optical
response theory. The semiclassical method enables precise evaluation of the cross–Kerr effect with greatly
reduced computation. The validity of the method is confirmed using a model nonlinear system.

DOI: 10.1103/PhysRevA.74.053818 PACS number�s�: 42.65.Hw, 42.50.Dv

I. INTRODUCTION

Control of light by light is one of the most challenging
topics in current photonics technology. To date, all-optical
switching of laser pulses has been demonstrated by several
groups, by utilizing the optical nonlinearity inherent in opti-
cal fibers �1–6�. From the viewpoint of quantum information
processing, extension of such technology to the single-
photon domain, namely, control of a photon by a photon, is
highly desirable in order to achieve an optical controlled
phase gate, which is a key component for all-optical quan-
tum computation �7,8�. However, an obstacle to all-optical
control at the single-photon level is the inherent weakness of
the two-photon nonlinear interaction. However, by utilizing
the field-amplification effect of optical cavities, it was clearly
demonstrated that considerable nonlinear effects can be ob-
tained even when using weak input fields at the single-
photon level �9,10�. Furthermore, owing to rapid progress in
entangled-photon generation techniques �11–13�, the avail-
ability of two-photon pulses has been greatly extended. Thus,
quantification of nonlinear effects in two-photon states re-
quires urgent theoretical investigation in order to determine
the optimal design for two-photon nonlinear devices.

A straightforward way to evaluate the two-photon cross–
Kerr effect is to analyze the quantum dynamics of two pho-
tons. Conventionally, the dynamics of several photons has
been discussed theoretically, using effective Hamiltonians
with single-mode approximations, in which it is implicitly
assumed that there are no changes in the photonic pulse
shapes. However, for precise evaluation of two-photon non-
linear effects, the changes in the pulse shapes must be taken
into account, since considerable changes in the pulse shapes
are inevitable when large nonlinear effects are obtained. In
this case, the following two requirements must be fulfilled by
the theory: �i� the photon field must be treated rigorously as
a continuous field and �ii� both the optical media and the
photon field must be treated quantum mechanically. How-
ever, such fully quantum-mechanical analyses of optical re-
sponse require heavy numerical computation. Consequently,
they have thus far been performed only for simple nonlinear

optical media, such as two-level atoms �14–17�. In contrast,
when classical light fields are used as the input, the optical
responses can be analyzed within a semiclassical framework,
in which the light fields can be treated as classical c-number
fields. Owing to c-number treatment of light fields, semiclas-
sical analyses are much simpler than fully quantum-
mechanical analyses, and have therefore been applied to
various types of realistic complicated systems �18,19�.

Since the two-photon Fock state does not belong to clas-
sical fields, semiclassical results do not directly describe
two-photon dynamics. However, considering that a classical
field �coherent state� is composed of a superposition of Fock
states, it is natural to expect that some information on two-
photon dynamics is buried in the semiclassical results. From
this perspective, it was revealed in Ref. �20� that two-photon
nonlinearity can be evaluated by semiclassical methods, by-
passing the need to perform fully quantum-mechanical cal-
culations. The applicability of the theory presented in Ref.
�20� was restricted to evaluation of the self–Kerr effect be-
tween two identical photons. However, the use of cross–
Kerr-type nonlinearity between two distinguishable photons
is also promising for the construction of two-photon devices,
since such photons can be divided by optical devices, such as
polarization beam splitters �21�. In this study, we present an
extended theory for evaluating the cross–Kerr effect between
two distinguishable photons within semiclassical optical re-
sponse theory.

This study is organized as follows. In Sec. II, a measure
of the cross–Kerr effect appearing in the output two-photon
state is defined. In Sec. III, we derive a formula for evaluat-
ing the two-photon cross–Kerr effect by using semiclassical
results. The validity of this formula is confirmed in Sec. IV,
by calculating the cross–Kerr effect using two distinct for-
malisms, namely, fully quantum-mechanical and semiclassi-
cal ones, for a model cross–Kerr system. Section V summa-
rizes the results.

II. A MEASURE OF THE TWO-PHOTON
CROSS–KERR EFFECT

The situation investigated in this study is illustrated in
Fig. 1. Two photons with different polarizations �hereafter, x-
and y-polarized photons� are inputted into a cross–Kerr me-*Electronic address: ikuzak@sys.wakayama-u.ac.jp
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dium. Denoting the spatial wave functions of the x- and
y-polarized photons by fa�r� and fb�r�, respectively, the input
state vector is given by

��in� =� dr1dr2fa�r1�fb�r2�ar1

† br2

† �0� , �1�

where ar
† �br

†� represents a creation operator for an
x-polarized �y-polarized� photon at r. The input wave func-
tions, fa�r� and fb�r�, are normalized as �dr � fa�r��2
=�dr � fb�r��2=1. After interaction with the cross–Kerr me-
dium, the output state vector of these two photons is given
by

��out� =� dr1dr2g̃ab�r1,r2�ar1

† br2

† �0� . �2�

Note that, in contrast with the uncorrelated input state, the
output wave function g̃ab�r1 ,r2� cannot be factored, in gen-
eral, due to the nonlinear interaction between two photons.
The output wave function g̃ab�r1 ,r2� is normalized as
�dr1dr2 � g̃ab�r1 ,r2��2=1.

In order to quantify the cross–Kerr effect appearing in the
output state, the linear output state ��out

L � should be defined.

Denoting the one-photon output wave functions by f̄ a�r� and

f̄ b�r�, which are the resultants of one-photon inputs
��drfa�r�ar

† �0� and �drfb�r�br
† �0��, the linear output state

vector is given by

��out
L � =� dr1dr2 f̄ a�r1� f̄ b�r2�ar1

† br2

† �0� . �3�

f̄ a,b�r� generally differs from fa,b�r� in shape due to linear

dispersion, and f̄ a,b�r� is normalized as �dr � f̄ a�r��2

=�dr � f̄ b�r��2=1. As a measure of the cross–Kerr effect ap-
pearing in ��out�, we adopt the complex number �, which is
defined as the overlap between ��out� and ��out

L �

� 	 
�out
L ��out� =� dr1dr2 f̄ a

*�r1� f̄ b
*�r2�g̃ab�r1,r2� . �4�

By definition, �� � �1. When �� � =1 ��=ei��, it necessarily
follows that ��out�=ei� ��out

L �. In this case, the phase � can be
interpreted as the nonlinear phase shift, which is applicable
to optical phase gates. However, ��� is not necessarily unity
�16,17�, since the spatial envelope of the two-photon output

wave function g̃ab�r1 ,r2� generally differs from that of the

linear one, f̄ a�r1� f̄ b�r2�.

III. SEMICLASSICAL EVALUATION OF TWO-PHOTON
CROSS–KERR EFFECT

A. Optical response to classical fields

In this section, we consider the optical response to the
classical input fields. When the amplitude of the input field is
given by fa�r� for the x polarization and by fb�r� for the y
polarization, the state vector describing this classical field is
given by

��in� = Nexp�� drfa�r�ar
†�exp�� drfb�r�br

†��0� , �5�

where N is the normalization constant defined by N
=exp�−2−1�dr��fa�r��2+ �fb�r��2��. For up to two-photon
components, this state can be expanded as follows:

��in� = N��0� + �Ain� + �Bin� + 2−1/2�AAin�

+ 2−1/2�BBin� + �ABin�� , �6�

where

�Ain� =� drfa�r�ar
†�0� , �7�

�Bin� =� drfb�r�br
†�0� , �8�

�AAin� = 2−1/2� dr1dr2fa�r1�fa�r2�ar1

† ar2

† �0� , �9�

�BBin� = 2−1/2� dr1dr2fb�r1�fb�r2�br1

† br2

† �0� , �10�

�ABin� =� dr1dr2fa�r1�fb�r2�ar1

† br2

† �0� . �11�

The factors 2−1/2 on the right-hand sides of Eqs. �9� and �10�
are the normalization constants. After interaction with the
medium, the above five state vectors are transformed as fol-
lows:

�Ain� → �Aout� =� drf̄a�r�ar
†�0� , �12�

�Bin� → �Bout� =� drf̄b�r�br
†�0� , �13�

�AAin� → �AAout� = 2−1/2� dr1dr2g̃aa�r1,r2�ar1

† ar2

† �0� ,

�14�

�BBin� → �BBout� = 2−1/2� dr1dr2g̃bb�r1,r2�br1

† br2

† �0� ,

�15�

r

cross-Kerr medium

x-polarized photon

y-polarized photon

FIG. 1. Schematic illustration of the situation considered in this
study. The cross–Kerr interaction between x- and y-polarized pho-
tons occurs in a cross–Kerr medium.

KAZUKI KOSHINO PHYSICAL REVIEW A 74, 053818 �2006�

053818-2



�ABin� → �ABout� =� dr1dr2g̃ab�r1,r2�ar1

† br2

† �0� , �16�

where g̃aa and g̃bb denote the output two-photon wave func-
tions when two identical photons having the same polariza-
tion are input. Since both self– and cross–Kerr effects are

usually inherent in nonlinear media, g̃aa� f̄ a f̄a and

g̃bb� f̄ b f̄b, in general, due to the self–Kerr effect �20�. As a
result of the linearity in the quantum time evolution
�Schrödinger equation�, the output state vector is given by

��out� = N��0� + �Aout� + �Bout� + 2−1/2�AAout�

+ 2−1/2�BBout� + �ABout�� . �17�

The amplitude of the output field can readily be calculated
from the output state vector of Eq. �17�: the amplitudes of
the x- and y-polarized components are given by 
ar�
= 
�out �ar ��out� and 
br�= 
�out �br ��out�, respectively. Here-
after, we are concerned only with 
ar� and denote it by
Fxy�r�. �The subscript xy indicates that the input field has
both x- and y-polarized components.� The linear and third-
order components of Fxy�r� are given by

Fxy
�1��r� = f̄ a�r� , �18�

Fxy
�3��r� =� dr� f̄ a

*�r��g̃aa�r,r�� +� dr� f̄ b
*�r��g̃ab�r,r��

− f̄ a�r� � dr���fa�r���2 + �fb�r���2� , �19�

From Eq. �19�, it can be seen that the third-order output field
Fxy

�3� contains contracted information on the two-photon out-
put wave functions, g̃aa and g̃ab.

For later use, we also consider a case in which only an
x-polarized classical field is inputted. The output amplitude
in this case, which is denoted by Fx�r�, is simply given by
putting fb�r�→0 in Eqs. �18� and �19�. Namely,

Fx
�1��r� = f̄ a�r� , �20�

Fx
�3��r� =� dr� f̄ a

*�r��g̃aa�r,r�� − f̄ a�r� � dr��fa�r���2.

�21�

It should be remarked again that these output amplitudes
�Fxy

�1�, Fxy
�3�, Fx

�1� and Fx
�3�� can be calculated by semiclassical

optical response theory.

B. Two-photon cross–Kerr effect

Our objective is to evaluate the measure � of the two-
photon cross–Kerr effect defined in Eq. �4�, from quantities
obtainable using semiclassical theory, namely, the amplitudes
of the output field. It can be readily confirmed that the quan-
tity �� given by

�� = 1 +� dr�Fxy
�1��r��*Fxy

�3��r� −� dr�Fx
�1��r��*Fx

�3��r�

�22�

is identical to � of Eq. �4�. Thus, by calculating �� using
semiclassical theory, the two-photon cross–Kerr effect can be
evaluated without the need to do fully quantum-mechanical
calculations.

There are three remarks on Eq. �22�: �i� When both x- and
y-polarized fields are input, both the self– and cross–Kerr
effects are reflected in the nonlinear output field, Fxy

�3�. More
specifically, the self–Kerr effect appears in the first term on
the right-hand side of Eq. �19�, while the cross–Kerr effect
appears in the second term. In order to extract the cross–Kerr
effect, the self–Kerr effect is subtracted, as represented by
the third term on the right-hand side of Eq. �22�. �ii� Equa-
tion �22� is constructed by only the x-polarized amplitudes of
the output field. However, by interchanging the roles of x-
and y-polarizations, semiclassical evaluation of the two-
photon cross–Kerr effect is also possible through the
y-polarized amplitudes. �iii� In deriving the above formula,
except for the assumption that the output photon state re-
mains as a pure state �see Eqs. �12�–�16��, no system-
dependent features are required. Equation �22� is therefore
widely applicable to various cross–Kerr media in the
dissipation-free limit.

IV. CONFIRMATION

This section is devoted to verifying the validity of the
proposed formula. To this end, using a specific model of a
cross–Kerr system, we will evaluate the two-photon cross–
Kerr effect by two different methods. In one method, the
linear and nonlinear two-photon output states ���out

L � and
��out�� are calculated in a fully quantum-mechanical fashion,
and the two-photon cross–Kerr effect is directly evaluated
using its definition given in Eq. �4�. In the other method,
after calculating the output fields against classical input
fields, the cross–Kerr effect is evaluated using Eq. �22�.

A. Interacting boson model

As the simplest cross–Kerr system, we employ two inter-
acting bosonic particles having the same transition energy �.
Putting �=c=1 and choosing � as the origin of energy, the
Hamiltonian of the system, including the photon field, is
given by

H = �a†ab†b +� dkkak
†ak +� 	

2

�a†ak + H.c.��

+� dkkbk
†bk +� 	

2

�b†bk + H.c.�� , �23�

where a and b are the annihilation operators of bosons, ak
�bk� denotes the annihilation operator for the x- �y-� polarized
photon with wave number k, and � represents the coupling
constant between two bosons. The real-space annihilation
operator ar, which appeared in previous sections �in Eq. �1�,
etc.�, is given by ar= �2
�−1/2�dkeikrak.
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There are two comments regarding this system. �i� The
boson a �b� is coupled only to the x- �y-� polarized field. The
cross–Kerr interaction between x- and y-polarized photons
originates in the interaction between the oscillators, �a†ab†b.
Note that the self–Kerr interaction between identical photons
is absent in the present system. �ii� In the Hamiltonian of Eq.
�23�, optical media �bosons� are directly coupled to one-
dimensional photon fields by the coupling constant 	. Such
direct coupling can be attained in the weak coupling regime
of cavity-QED systems. In terms of conventional cavity-
QED parameters g and �, 	 is given by 	=4g2 /� �9�.

B. Fully quantum-mechanical evaluation

The procedure for the fully quantum-mechanical evalua-
tion is outlined as follows. The photon field is discretized by
imposing a periodic boundary condition on r. If the period is
large enough, then imposition of the periodic boundary con-
dition has no influence on the numerical results. In addition,
the number of photonic modes is made finite by introducing
a cutoff wave number kcut and treating only photonic modes
satisfying �k � �kcut. After this finitization of the Hamiltonian,
the output state ��out� is calculated by solving the
Schrödinger equation in the two-quanta Hilbert space. Linear
output ��out

L � is obtained by putting �=0 in the Hamiltonian.
From these two states, the parameter � is evaluated using Eq.
�4�.

C. Semiclassical evaluation

In order to apply the semiclassical evaluation formula, we
here analyze the linear and nonlinear responses when classi-
cal light pulses are input. The initial state vector is given by
Eq. �5�. The Heisenberg equation for a and b are given, with
the help of the input-output formalism �22–25�, by

ȧ = − �	

2
�a − i�b†ab − i�	at0−t�t0� , �24�

ḃ = − �	

2
�b − i�a†ab − i�	bt0−t�t0� , �25�

where t0 denotes the initial moment, and at0−t�t0� �bt0−t�t0�� is
the initial annihilation operator for the x- �y-� polarized pho-
ton field at r= t0− t. The photon-field operators at time t are
given by

ar�t� = ar−t+t0
�t0� − i�	a�t − r� , �26�

br�t� = br−t+t0
�t0� − i�	b�t − r� . �27�

By taking the expectation values with respect to the initial
state vector ��in� given by Eq. �5�, the operator equations of
Eqs. �24� and �25� are transformed into c-number equations
of motion for 
a� and 
b�. It should be remarked that the
initial photon operator ar�t0� is replaceable with a c-number
fa�r�, since the initial state is a coherent state and, therefore,
ar�t0� ��in�= fa�r� ��in�. Thus, familiar semiclassical equa-
tions of motion are obtained. Denoting the linear components

of 
a� and 
b� by 
a�1�� and 
b�1��, they evolve as

d

dt

a�1�� = − �	

2
�
a�1�� − i�	fa�t0 − t� , �28�

d

dt

b�1�� = − �	

2
�
b�1�� − i�	fb�t0 − t� . �29�

For the determination of the response up to the third or-
der, three second-order quantities �
ab�, 
b†b�, and 
b†a��
and two third-order quantities �
a�3�� and 
b†ab�� are rel-
evant. The equations of motion for these quantities are given
by

d

dt

ab� = − �	 + i��
ab�

− i�	�fb�t0 − t�
a�1�� + fa�t0 − t�
b�1��� , �30�

d

dt

b†b� = − 	
b†b� + i�	�fb

*�t0 − t�
b�1�� − c.c.� , �31�

d

dt

b†a� = − 	
b†a� + i�	�fb

*�t0 − t�
a�1�� − fa�t0 − t�
b�1��*� ,

�32�

d

dt

a�3�� = − �	

2
�
a�3�� − i�
b†ab� , �33�

d

dt

b†ab� = − �3	

2
+ i��
b†ab� + i�	�fb

*�t0 − t�
ab�

− fa�t0 − t�
b†b� − fb�t0 − t�
b†a�� . �34�

Finally, the output field amplitudes are given by

Fxy
�1��r� = 
ar

�1��t�� = fa�r − t + t0� − i�	
a�1��t − r�� , �35�

Fxy
�3��r� = 
ar

�3��t�� = − i�	
a�3��t − r�� , �36�

where the final time t should be chosen as an arbitrary time
sufficiently after the interaction. It is observed that the above
output amplitudes are obtained by solving the simultaneous
equations of motion for seven quantities, which is obviously
a much reduced task compared to that for the fully quantum-
mechanical method outlined in Sec. IV B.

In order to use Eq. �22�, we must also determine Fx
�1� and

Fx
�3�, that is, the output amplitudes when only an x-polarized

pulse is input. They are obtained by putting fb→0 in Eqs.
�28�–�34�. Then, it is readily confirmed that the nonlinear
response Fx

�3� vanishes as expected and that the subtraction of
the self–Kerr effect is not required in the present model.
However, this is specific to the interacting boson model of
Eq. �23� and the subtraction procedure is necessary in gen-
eral.

D. Results

Here, we compare the numerical results obtained by the
two distinct formalisms. Regarding the pulse shapes of input
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photons, we consider the case in which the x- and
y-polarized photons have the same Gaussian forms given by

fa�r� = fb�r� = � 2


d2�1/4

exp− � r

d
�2

+ iqr� , �37�

which is characterized by the coherence length d and the
central frequency q. The two-photon cross–Kerr effect is ex-
pected to be maximized when d�	−1 and q�0, since under
these conditions the input photons are most effectively ab-
sorbed by the oscillators �16�.

In Fig. 2, as a real quantity representing the strength of
the two-photon cross–Kerr effect, ��−1� is plotted as a func-
tion of the input photon frequency q, by fixing the pulse
length at d=	−1. As expected, the cross–Kerr effect is strong
around the resonance frequency of bosons, q�0. However,
since � is positive in Fig. 2, the energies of the oscillators are
blueshifted and ��−1� is maximized by photons with q0.

It is apparent that the results of the semiclassical �dotted
line� and quantum-mechanical �solid line� methods are in
good agreement. However, a slight discrepancy is observed
between the two results. This discrepancy should be attrib-
uted to the imperfect nature of the quantum-mechanical
method due to the introduction of the cutoff wave number
kcut, since it was confirmed numerically that the discrepancy
decreases as kcut is increased. Thus, if the quantum-

mechanical calculation could be carried out rigorously �kcut

→ � �, then these two results are expected to show complete
agreement. These observations demonstrate the validity of
the semiclassical evaluation method, as well as its potential
as a simple and accurate tool for the evaluation of the two-
photon cross–Kerr effect.

V. SUMMARY

When x- and y-polarized photons are input into a nonlin-
ear medium simultaneously, the cross–Kerr effect appears in
the output photons �see Fig. 1�. The measure of the cross–
Kerr effect is defined in Sec. II, as the overlap between the
linear and nonlinear output wave functions, as given by Eq.
�4�. In Sec. III, we have proposed a method for evaluating
the two-photon cross-Kerr effect using semiclassical optical
response theory, bypassing the need to perform fully
quantum-mechanical calculations. The prescription is as fol-
lows: calculate the linear and the third-order nonlinear com-
ponents of the output field, for the case in which the input
classical light pulse has both x and y components, and also
for the case in which the input pulse has only an x compo-
nent; then, evaluate the two-photon cross–Kerr effect using
Eq. �22�. In Sec. IV, taking the interacting boson model as an
example of a cross–Kerr system, the semiclassical and
quantum-mechanical results are compared �see Fig. 2� and
the validity of the semiclassical method is demonstrated.

The merits of the proposed method are summarized in
two points. One merit is that, as observed in Sec. IV, the
method enables accurate evaluation of the two-photon cross–
Kerr effect with reduced calculations. The other merit is that
the method is applicable to a wide range of nonlinear sys-
tems, since no system-dependent features are assumed in the
derivation presented in Sec. III. Thus, the semiclassical
evaluation method could serve as a convenient theoretical
tool in future photonics technology in the quantum domain.
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