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Evaluation of cavity quantum electrodynamics parameters for a planar-cavity geometry
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We investigate how a two-level system inside of a planar cavity behaves as a cavity quantum electrodynam-
ics �QED� system. Starting from a three-dimensional model, the method for determining the cavity-QED
parameters �g ,� ,�� is presented, and the parameters are evaluated as functions of the input beam profile. It is
shown that suppression of the radiative loss of cavity photons is possible by engineering the lateral profile of
the input beam.
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I. INTRODUCTION

In cavity quantum electrodynamics �QED� systems, a
well isolated system composed of atoms and cavity photons
is coupled to the external photon field, which can be utilized
as a probe for inferring the quantum state of atoms and
cavity photons. Cavity QED systems are therefore suitable
for fundamental tests of quantum dynamics in open systems
and of their potential applications in quantum control
technology �1,2�. In the strong-coupling regime of cavity
QED, the atoms and the cavity mode exchange the energy
quantum �Rabi flopping� �3,4� before it escapes out of the
cavity. This internal dynamics is applied for preparation of
nonclassical states, such as the number state of cavity
photons �5,6� and the entangled states among atoms and cav-
ity photons �7–9�. In combination with measurements on the
probes, quantum nondemolition measurement of the cavity-
photon number �10� and continuous monitoring of the atomic
position inside the cavity �11,12� have been achieved.
Besides isolation of the system, the cavity also plays a role
of an amplifier of the input light field. Exploiting this mag-
nification effect, significant nonlinear phase shift has been
demonstrated by the weak field at the single-photon level
�13,14�. The strong optical nonlinearity sensitive to indi-
vidual photons �15–18�, as well as the photon generation
techniques �19–21�, is the key ingredient for optical quantum
computation �22,23�. Furthermore, combining the field mag-
nification effect with multilevel quantum systems,
electromagnetic-induced transparency �EIT� effects have
been proved to occur at the few-photon level �24–26�. Re-
cently, it was shown that the strong-coupling regime of cav-
ity QED can be realized by solid-state systems, such as su-
perconducting quantum circuits �27,28� and quantum dots
�29,30�, which will open new possibilities of cavity QED.
Thus, the cavity QED plays a central role in the modern
quantum control technology.

Another merit of cavity QED systems is that their dynam-
ics can be analyzed precisely by a compact theoretical model
with three principal parameters �1,31�: the atom-cavity di-
pole coupling g, the damping rate of the cavity mode �, and
the atomic decay rate into noncavity modes �. In typical
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cavity-QED experiments using real atoms, a cavity is formed
by two spherical mirrors, where the spatial profile of the
cavity mode is specified by geometric parameters such as the
curvature of the mirrors and the cavity length �32,33�. In
solid-state optical spectroscopy, optically active media are
often confined in planar microcavities. When a planar cavity
is used, the spatial profile of the input beam can be chosen
more arbitrarily. In such systems, it is naturally expected that
the cavity volume is determined not only by the geometric
parameters of the cavity but also by the profile of the input
beam �see Sec. II A�. Therefore, the parameters g, �, and �
would depend on, for example, the beam diameter and inci-
dent angle.

The purpose of the present study is to clarify theoretically
how an “atom” �an effective two-level system such as a
quantum dot� confined within a planar cavity behaves as a
cavity QED system. Starting from a three-dimensional
model of an atom-cavity system and an input beam, the pre-
scription to determine the parameters g, �, and � is pre-
sented, and the parameters are evaluated as functions of the
input beam diameter. It is revealed that the radiative loss of
cavity photons can be vanished in principle with an appro-
priate choice of the lateral profile of the input beam. These
theoretical results are expected to provide guiding principles
for the design of a solid-state cavity QED systems with re-
duced radiative loss.

FIG. 1. Sketch of the system considered in this study. The planar
cavity consists of a perfect mirror at z=−l and a leaky mirror at
z=0. A two-level system �atom� is embedded in the cavity at
R= �X ,Y ,Z� and a single photon is incident along the z axis with

beam diameter 2d.
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II. SYSTEM

The system considered in this study is illustrated in Fig. 1.
A planar one-sided cavity is formed by a perfect mirror at
z=−l and a weakly transmissive mirror at z=0. The thickness
of the leaky mirror is neglected here; the only parameter that
characterizes the mirror is the transmissivity T. An atom with
resonance frequency �a and transition dipole moment � is
placed in the cavity at R= �X ,Y ,Z�, where −l�Z�0. A
single-photon state at normal incidence and fixed polariza-
tion is supplied as an input. The photon field can thus be
treated simply as a scalar field. Assuming that the input beam
diameter 2d is substantially larger than the diffraction limit, a
separable wave function ��x ,y���z�, normalized as
�dxdy ���x ,y��2=�dz ���z��2=1, is employed for the input
photon. The present discussion is restricted to the case of
�a��c, where �c=� / l is the cutoff frequency of the planar
cavity ��=c=	0=1 throughout this study�. In this case, only
the lowest subband of the intracavity field �kz=�c� is
relevant.

A. Estimation of g and �

Intuitively, g and � can be estimated as follows. The
normalized cavity-mode function can be expressed as
f�r�= �2�c /��1/2 sin��cz���x ,y�, assuming that the lateral
profile is the same as that of the input beam. The atom-cavity
coupling is therefore expected to have the form

gest =
��a

�2�c

f�R� =
��a

��
sin��cZ���X,Y� , �1�

where � denotes the transition dipole moment of the atom.
From the transmissivity T of the mirror, the escape rate for
cavity photons is expected to be

�est = T/2l = T�c/2� . �2�

The validity of these estimates will be examined later.

B. Three-dimensional formalism

Now we start to investigate the atom-photon interaction
using a three-dimensional formalism. Denoting a two-
dimensional in-plane wave vector �kx ,ky� by k� and a three-
dimensional wave vector �kx ,ky ,kz� by k, the Hamiltonian of
this system is given by

H = �a
+
− +	 d2k���k�ck�
†ck� + ��k�
+ck� + H.c.��

+	 d3k
�kbk
†bk + � ck�

†bk

�2��k�
+ H.c.� . �3�

Here, 
−, ck�, and bk are the annihilation operators for
the atom, the intracavity field �−l�z�0�, and the external
field �z0�, respectively. It is of note that ck� has only two
indices, since kz is fixed at �c inside the cavity. The commu-
tators for ck� and bk are given by �ck� ,ck��

† �=�2�k� −k��� and
† 3
�bk ,bk�

�=� �k−k��. �k� and �k denote the energies for ck� and
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bk, as given by �k� = ��c
2+ �k��2�1/2 and �k= �k�. The atom-

photon coupling �k� is given by

�k� =
��a

�2�k�
fk��R� , �4�

where fk��r�=��c /2�3 sin��cz�exp�i�kxx+kyy�� is the spatial
mode function for ck�. �k� is the lifetime of ck�, as given by
�k� =2��k� /T�c

2. It is of note that the in-plane wave vector k� is
conserved in the interaction between ck� and bk due to trans-
lational symmetry. As quantum-dot systems have been
shown to exhibit Fourier-transform-limited linewidths �20�,
the dephasing terms �e.g., the atom-phonon coupling� are
neglected in the present treatment.

Although the input photon propagates in the z0 region
toward the negative z direction, it has been shown that the
input photon may be regarded as propagating in the z�0
region toward the positive z direction �34�. Following this
convention, the input photon state is given by

�in� =	 d3r��x,y���z�br
†�0� , �5�

where ���z��2 is localized in the z�0 region and br is the
Fourier transform of bk, that is, br= �2��−3/2�d3keik·rbk.

III. EVALUATION OF CAVITY-QED PARAMETERS

A. Calculation of form factors

The objective is to derive, from Eqs. �3� and �5�, the
form factor ��t����2 for overall atom-photon coupling and
the form factor ��c����2 for coupling to the quasicavity
continuum �35�. To this end, the photonic part of the Hamil-
tonian is diagonalized, following the Fano method �36�.
Approximating �k by kz, the eigenmode operator Bk�� is
given by

Bk�� = �k����ck� +	 dkz�k���,kz�bk, �6�

where

�k���� =
�2��k��−1/2

� − �k� + i/2�k�
, �7�

�k���,kz� =
�2��k��−1

�� − �k� + i/2�k���� − kz + i��
+ ��� − kz� . �8�

Bk�� is normalized as �Bk�� ,Bk����
† �=�2�k� −k������−���. In-

versely, ck� =�d��k�
*���Bk��. Using Bk��, the Hamiltonian can

be rewritten as follows:

H = �a
+
− +	 d2k�d����k��k�
*���
+Bk�� + H.c.� + �Bk��

† Bk��� .

�9�

From this form of the Hamiltonian, it is straightforward
to obtain the following expression for the overall form

factor:
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��t����2 =	 d2k���k��k�
*����2. �10�

The overall form factor ��t����2 is thus independent of the
input photon profile, ��x ,y���z�. It can be readily confirmed
that ��t����2 is also independent of the in-plane position
�X ,Y� of the atom, as expected from the translational
symmetry.

Next, we determine the quasicavity continuum. The input
photon profile now becomes important at this stage. Denot-
ing the Fourier transform of ��x ,y� and ��z� by �̃�k�� and

�̃�kz�, and noting the fact that ��z� is localized in the z�0
region, the input state given by Eq. �5� can be rewritten as

�in� =	 d2k�d��̃����̃�k��
� − �k� − i/2�k�

� − �k� + i/2�k�
Bk��

† �0� . �11�

To relate the present problem to the conventional �g ,� ,��
model, the quasicavity continuum should be defined so as to
contain the input photon state completely. Therefore, the
quasicavity continuum C� is defined by

C�
† =	 d2k��̃�k��

� − �k� − i/2�k�

� − �k� + i/2�k�
Bk��

† . �12�

Note that C� is normalized as �C� ,C��
† �=���−���. Thus,

��c����2 is given by

��c����2 = ��0�
−HC�
† �0��2 = �	 d2k��̃�k���k��k�����2

.

�13�

By the Schwartz inequality, ��c����2

��d2k� � �̃�k���2�d2k� ��k��k�����2= ��t����2, which is in agree-
ment with the present definitions. Thus, Eqs. �10� and �13�
give the formal expressions for ��t����2 and ��c����2, respec-
tively.

B. Relation between form factors and cavity-QED parameters

The relationship between the parameters �g ,� ,�� and the
form factors ���c����2 and ��t����2� is as follows. In the con-
ventional �g ,� ,�� model of cavity-QED, ��c����2 is given by
the Lorentzian

��c����con
2 =

g2�

2�

1

�� − �c�2 + �2/4
, �14�

and ��t����con
2 = ��c����con

2 +� /2� �37�. Thus, the area of
��c����2 corresponds to g2, i.e., g2=�d� ��c����2, while � is
identified as the half-width of ��c����2. � is dependent on the
photon energy � in general, although this � dependence is
usually neglected in the conventional �g ,� ,�� model. � is
given by ����=2����t����2− ��c����2�.

IV. NUMERICAL RESULTS

To embody these formal results, the discussion is
restricted to the following case: �i� the lateral profile of
053814
the input beam is Gaussian with diameter 2d, i.e.,
��x ,y�= ��d2�−1/2exp�−�x2+y2� /2d2�, �ii� the atom is placed
at the center of the cavity, i.e., �X ,Y ,Z�= �0,0 ,−l /2�, �iii� the
atom is resonant with the cavity, i.e., �a=�c.

A. Form factors

Figure 2 plots ��t����2 and ��c����2. Applying the approxi-
mation of �k� ��0� =2� /T�c to Eq. �10�, ��t����2 is obtained
analytically as

��t����2 =
�2�c

3

2�2 
1

2
+

1

�
arctan� 4�

T�c
�� − �c�� , �15�

which is in good agreement with the rigorous numerical re-
sult. The steplike behavior of ��t����2 is a well-known prop-
erty of the two-dimensional photon field �38�.

In contrast to ��t����2, which is determined solely by the
transmissivity, ��c����2 is also dependent on the beam diam-
eter, as shown in Fig. 2. When d is large �solid line�, ��c����2
reduces to a genuine Lorentzian, expressed as Eq. �14� with
g=gest and �=�est. As d decreases, with a corresponding de-
crease in cavity volume, the atom-cavity coupling g in-
creases and ��c����2 becomes larger �dotted and dashed lines
in Fig. 2�. However, ��c����2 cannot increase freely due to the
upper bound imparted by the condition ��c����2� ��t����2.
This upper bound is expected to become important when d is
sufficiently small to satisfy �cd�4T−1/2, by comparing
��t����2 �Eq. �15�� and ��c����2 �Eq. �14� with Eqs. �1� and
�2�� at �=�c. It can be clearly seen in Fig. 2 that ��c����2
deviates considerably from a genuine Lorentzian in the re-
gion of small d.

B. Evaluation of g and �

The parameters g and � can be evaluated from ��c����2.
Figure 3 plots g and � as functions of the beam diameter 2d
for three different values of T. The values of g and � deter-
mined in the rigorous manner are in good agreement with
the estimated values gest and �est in the region of large d.
However, in the region of small d satisfying �cd�4T−1/2,

2 2

FIG. 2. Plot of ��t����2 �thin line� and ��c����2 �bold lines� for
d=20�c

−1 �dashed line�, 50�c
−1 �dotted line�, and 200�c

−1 �solid
line�. The transmissivity of the mirror is fixed at T=10−3.
the upper-bound condition ���c���� � ��t���� � becomes se-
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vere, and g and � deviate appreciably from the estimated
values.

C. Optimum beam profile for reduction of �

It can be observed from Fig. 2 that ���� is highly sensi-
tive to � in the present situation. Above the cutoff frequency,
where the atom is allowed to emit photons in the in-plane
direction, ���� is large. In contrast, below the cutoff fre-
quency, ��t����2 is mostly occupied by ��c����2, and ���� is
substantially suppressed. From the viewpoint of quantum
control technology, this system becomes quite useful if ����
can be reduced to zero, i.e., ��t����2= ��c����2. In this case,
the input photons with energy � always appear in the output
port after the interaction. That is, the system acts as a cavity-
QED system without radiative loss. The Schwartz inequality
suggests that ��t����2= ��c����2 is achieved when
�̃lossless�k� ;��= ��t����−1�k�

*
�k�

*���, where ��t����−1 is a normal-
ization factor. Thus, when the input photon energy is �, loss-
less operation can be realized by choosing the lateral beam
profile such that

�lossless�r;�� =
1

2���t���� 	 dk�eik�·r��k�
*
�k�

*��� , �16�

where r�= �x ,y� and r= �r��. The form of �lossless�r ;�� is plotted
in Fig. 4. Below the cutoff frequency �bold lines in Fig. 4�,
�lossless becomes a single-peaked and almost real function.
Since �lossless is not a genuine Gaussian, a perfectly lossless
situation cannot be attained using a Gaussian beam.
However, even with a Gaussian beam, the loss can be
suppressed effectively if an appropriate beam diameter
is chosen ���c����2 / ��t����2�0.9�. Above the cutoff fre-
quency, �lossless becomes an oscillatory complex function
�thin lines in Fig. 4�, which is far from Gaussian. Thus,
the loss cannot be suppressed effectively above the cutoff
frequency.

D. Realistic values of „g ,� ,�…

Here, we evaluate realistic values of �g ,� ,��. We con-

FIG. 3. Plot of g /gest and � /�est as functions of beam diameter
2d. g and � are evaluated from ��c����2, and gest and �est are
given by Eqs. �1� and �2�. Plots are shown for transmissivities of
T=10−2 �solid lines�, T=10−3 �dotted lines�, and T=10−4 �dashed
lines�.
sider a situation in which the role of an “atom” is played by
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a quantum dot with ��a�=��c�=1 eV and a diameter of
a=10 nm. The transition dipole moment � of this dot is
roughly given by ��qa, where q is the electronic charge.
The transmissivity T and beam diameter 2d are set at
T=10−3 and d=50�c

−1�10 �m in reference to the dotted
line in Fig. 2. In this case, g /�c�6�10−5 and � /�c�4
�10−4, and � is most effectively suppressed at
��0.9998�c,where � /�c�7�10−7.

Let us consider a case where an optimum two-photon
pulse for maximizing nonlinearity �coherent length of
11 mm and central frequency of 0.9998�c� is inputted �37�.
Then, the two-photon nonlinearity �the overlap between the
output wave function and the linear output wave function�
reaches −0.5, which means that nonlinear sign shift in the
output wave function is possible by the two-photon input. At
the same time, the radiative loss of cavity photons into non-
cavity modes is well suppressed �less than 1%�. These values
indicate the potential of this cavity QED system as a two-
photon nonlinear device.

V. REMARKS

In the present study, a one-photon state �Eq. �5�� was se-
lected as the input photon state. However, as the theory is
constructed only by linear transformation on the photonic
modes �Eqs. �6� and �12��, the results obtained here are also
applicable to general input photonic states, such as the co-
herent state.

Limitations of the present treatment appear when extend-
ing consideration to beam diameters comparable to the
photon wavelength, and to atomic resonances with higher
harmonics of the cavity. That is, the use of a separable input
wave function in Eq. �5� assumes that the beam diameter
2d is much larger than the wavelength ��cd�1�. Discussion
for much smaller values of d ��cd�1� will require the use of
an inseparable input wave function. When the atom is reso-
nant with higher harmonics of the cavity, i.e., �a�n�c
�n�2�, higher subbands of the intracavity field must be
taken into account. However, both limitations appear rela-
tively straightforward to resolve and will be examined in

FIG. 4. Spatial form of �lossless�r ;��, showing real �solid lines�
and imaginary �broken line� parts. The transmissivity T is 10−3.
Bold and thin lines denote results for � /�c=0.999 and 1.001,
respectively.
future work.
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VI. SUMMARY

In summary, we have presented the theoretical prescrip-
tion to determine the cavity-QED parameters �g ,� ,�� for an
atom embedded in a planar cavity, starting from a three-
dimensional formalism. The cavity-QED parameters can be
evaluated through two kinds of form factors, namely the one
for the overall atom-photon coupling and the one for cou-
pling to the quasicavity continuum. The parameters depend
on the lateral profile of the input beam. In particular, the

system is shown to function as a cavity-QED system without

053814
radiative loss of cavity photons ��=0� under an adequate
choice of the lateral beam profile.
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