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Abstract
It is revealed that quadrature squeezing occurs in the output field from a one-
dimensional atom driven by a classical field. The degree of squeezing depends
on the intensity of the input field, and reaches 28% at the maximum. It can
roughly be regarded that the output field is in a superposition of coherent and
number states.

1. Introduction

In the field of cavity quantum electrodynamics (QED), highly isolated quantum systems
composed of cavity photons and atoms can be realized [1]. The principal merit of a cavity
QED system lies in its long coherence time. Such good quantum coherence has enabled us
to observe experimentally the quantum oscillation among several quantum levels [2, 3]. This
oscillatory dynamics has been applied to the preparation of non-classical states among cavity
photons and atoms [4, 5], and also to quantum-state measurements [6–8]. The potential of
cavity QED systems in quantum state engineering is further enriched with the help of laser-
induced coherence among the atomic levels [9]. For example, the generation of single-photons
with controllable pulse shapes has been accomplished [10, 11]. Recently, it was pointed out
that the generation of entangled photons is also possible in cavity QED systems by utilizing
the motional degrees of freedom of an atom [12, 13].

Besides isolation of the internal atom–photon system, the cavity also acts as an amplifier
of the photon field. Thus, a cavity QED system is also promising as a giant χ(3) system,
in which the atomic Kerr nonlinearity due to transition saturation is drastically enhanced by
a cavity. One demonstration of this giant nonlinear effect is the photon blockade, in which
the cavity photon mode behaves as an effective two-level system with transition saturation
[14–16]. Another demonstration of the giant χ(3) effect is a significant nonlinear phase shift
obtained by extremely weak input fields [17, 18]. The experimental results suggest realization

0953-4075/06/234853+07$30.00 © 2006 IOP Publishing Ltd Printed in the UK 4853

http://dx.doi.org/10.1088/0953-4075/39/23/004
mailto:ikuzak@sys.wakayama-u.ac.jp
http://stacks.iop.org/JPhysB/39/4853


4854 K Koshino

of the strong optical nonlinearity sensitive to individual photons [19], which can be applicable
to the construction of the controlled-phase gates required for optical quantum computing
[20–24].

In this experiment, classical fields were used as the input, and the observed phase shift
was quantitatively explained through semiclassical analysis, in which the photon fields are
described solely by their amplitudes [18]. The semiclassical theories predict that the amplitude
of the output field becomes smaller than that of the input, even in the dissipationless case in
which the field energy must be conserved between the input and the output (see section 3)
[25, 26]. This fact implies that the output field is not in a simple coherent state, and stimulates
us to investigate the field fluctuation in the output field. In this study, it is revealed that the
output field may exhibit squeezing in one quadrature, when the input intensity is weak. This is
another manifestation of the weak-field optical nonlinearity peculiar to a cavity QED system
besides the nonlinear phase shift.

This study is presented as follows. In section 2, the Hamiltonian for a cavity QED system
in the region called a one-dimensional atom is presented, and the basic equations are derived.
In section 3, the mean amplitude of the output field is calculated based on the semiclassical
equations. Section 4 is the main part of this study, where the squeezing spectra are calculated
as functions of the input intensity, revealing the optimum intensity and the maximum degree
of squeezing. It is also shown that the squeezing spectra can be explained qualitatively by a
superposition of coherent and number states.

2. Model and basic equations

The system considered in this study is composed of a one-sided cavity and a two-level atom
placed inside of it. An atom confined in an optical cavity is coupled to two kinds of photonic
continua: the quasi-cavity continuum and the noncavity continuum [27]. When the coupling
to the former dominates that to the latter (in the language of cavity QED, g2/κ � γ ) and
in the weak coupling regime (κ � g), the atom behaves as if it were coupled only to a
one-dimensional photon field of the quasi-cavity continuum and is called a one-dimensional
atom [17, 18]. In the lossless limit (γ → 0), the Hamiltonian describing this system is given
by

H =
∫

dω

[
ωb†

ωbω +

√
�

2π

(
ib†

ωs + H.c.
)]

, (1)

where s and bω represent the annihilation operators for the atomic excitation and an external
photonic mode with frequency ω, respectively. The commutators for s and bω are given by
[s, s†] = 1−2s†s and

[
bω, b

†
ω′

] = δ(ω−ω′). The atomic decay rate � is represented, in terms
of the cavity QED parameters, as � = 4g2/κ . Note that h̄ = c = 1 throughout this study, and
that the free Hamiltonian for the atom (ωas

†s) has been removed by choosing ωa as the origin
of the energy.

On the basis of this Hamiltonian, we investigate the optical response of a one-dimensional
atom using the Heisenberg equations. Following the standard input–output formalism [28–31],
the input and output field operators are defined by

ain[t] = −(2π)−1/2
∫ ∞

−∞
dω e−iω(t−t0)bω(t0), (2)

aout[t] = (2π)−1/2
∫ ∞

−∞
dω e−iω(t−t1)bω(t1), (3)
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where t0 and t1 represent the initial and final moments, and t0 < t < t1. Note that square
brackets are used in the definitions of ain[t] and aout[t], since these operators are not in the
Heisenberg representation. ain[t] and aout[t] are connected through the following boundary
condition:

ain[t] + aout[t] =
√

�s(t). (4)

Using the input field operator ain[t], the Heisenberg equation for s is given by
d

dt
s = −�

2
s +

√
�(1 − 2s†s)ain[t]. (5)

3. Semiclassical theory

Before investigating the quantum fluctuation in the output field, we first examine the mean
amplitude of the output field. Throughout this study, we concentrate on a case where the
input field is a monochromatic coherent field with amplitude E and frequency �̃. Hereafter,
we principally use a dimensionless frequency �(= �̃/�). In this case, one can rigorously
replace the operator ain[t] with a c-number 〈ain〉 = E e−i��(t−t0) when ain[t] operates on the
initial state vector |i〉. Using this fact and equation (5), and denoting the expectation value
〈i|A(t)|i〉 by 〈A〉, the equations of motion for 〈s〉 and 〈s†s〉 are given by

d

dt
〈s〉 = −�

2
〈s〉 +

√
�(1 − 2〈s†s〉)〈ain〉, (6)

d

dt
〈s†s〉 = −�〈s†s〉 +

√
�(〈ain〉〈s〉∗ + c.c.). (7)

These equations are nothing but the semiclassical Bloch equations for an atom driven by a
classical field. The stationary solutions of the above equations are readily obtained as

〈s〉 = 2(1 + 2i�)

|1 + 2i�|2 + J

〈ain〉√
�

, (8)

〈s†s〉 = J/2

|1 + 2i�|2 + J
, (9)

where J denotes the dimensionless intensity of the input field, defined by J = 8|〈ain〉|2/�.
The amplitude 〈aout〉 of the output field is given, using equations (4) and (8), by

〈aout〉 = (1 + 2i�)2 − J

|1 + 2i�|2 + J
〈ain〉. (10)

One can readily confirm that the amplitude of the output field is attenuated, i.e., |〈aout〉| < |〈ain〉|
[25, 26]. The field amplitude is conserved only in the linear limit, J → 0. Therefore, this
attenuation in the mean amplitude should be regarded as a nonlinear effect. In particular, 〈aout〉
completely vanishes when the input field is resonant with the atom (� = 0) and the intensity
J = 1. It might appear that the energy conservation is broken, in spite of the fact that there
is no dissipation mechanism in the present system. However, by evaluating the field intensity〈
a
†
outaout

〉
using equations (4), (8) and (9), one can confirm the following energy conservation

law: 〈
a
†
outaout

〉 = 〈
a†

inain
〉 = |〈ain〉|2. (11)

These observations reveal that the inequality
〈
a
†
outaout

〉
> |〈aout〉|2 holds in the output field.

This inequality suggests that the output field is not in a genuine coherent state, and therefore
cannot be characterized solely by the mean amplitude. This fact motivates us to examine the
field fluctuation in the next section.
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4. Spectrum of squeezing

In this section, we examine the variances in the quadratures of the output field. The quadrature
operators X1,2 for the output field are defined by

Xout
1 [t] = eiθa

†
out[t] + e−iθ aout[t], (12)

Xout
2 [t] = i eiθa

†
out[t] − i e−iθaout[t], (13)

where θ denotes the reference phase. The quantities we evaluate here are the squeezing
spectra:Sout

j (ω) : (j = 1, 2), which is defined as the Fourier transform of the normally ordered
two-time correlation function

〈
:Xout

j [t], Xout
j [0] :

〉
:

:Sout
j (ω) :=

∫
dt e−iω�t

〈
:Xout

j [t], Xout
j [0] :

〉
, (14)

where 〈A,B〉 = 〈AB〉 − 〈A〉〈B〉 [30]. Note that ω is a dimensionless frequency normalized
by �. The negativity of : Sout

j : implies squeezing in the Xj quadrature. The two-
time correlation functions for the quadrature operators are related to those for the atomic
operators by〈
:Xout

j [t], Xout
j [0] :

〉 = �[〈s†(t), s(0)〉 + (−1)j e−2iθT 〈s(t), s(0)〉] + c.c., (15)

where T denotes the time ordering.
Now we start to evaluate the two-time correlation functions, x(t) = 〈s†(t), s(0)〉 and

y(t) = e−2iθT 〈s(t), s(0)〉. Denoting z(t) = e−iθ 〈s†(t)s(t), s(0)〉 and 〈ãin〉 = e−iθ 〈ain〉, we
obtain from equation (5) the following equations of motion for the two-time correlation
functions for t > 0:

dx

dt
= −�

2
x − 2

√
�〈ãin〉∗z, (16)

dy

dt
= −�

2
y − 2

√
�〈ãin〉z, (17)

dz

dt
= −�z +

√
�(〈ãin〉x + 〈ãin〉∗y). (18)

Note that, in deriving equations (17) and (18), we have used the fact that ain[t] and s(0) are
commutable if t > 0 [30]. The initial conditions are given by x(0) = 〈s†s〉 − |〈s〉|2, y(0) =
−e−2iθ 〈s〉2, and z(0) = −e−iθ 〈s〉〈s†s〉, where 〈s〉 and 〈s†s〉 are stationary values given by
equations (8) and (9). The two-time correlation functions for negative t can be evaluated with
the use of the following relations, x(−|t |) = x∗(|t |) and y(−|t |) = e2i�|t |y(|t |), which hold
in the stationary state.

We hereafter focus on the case where the input field is resonant with the atom, i.e., � = 0.
In this case, 〈ain〉 becomes independent of time. By choosing the reference angle θ to satisfy
eiθ = 〈ain〉/|〈ain〉|, x, y and z are reduced to real quantities. Then, using the dimensionless
intensity J, the two-time correlation functions are given by

x(t) + y(t) = C1 e−α1�|t | + C2 e−α2�|t |, (19)

x(t) − y(t) = J

2(1 + J )
e−�|t |/2, (20)

where α1 and α2 are the solutions of the quadratic equation α2 − (3/2)α + (1 + J )/2 = 0. C1

and C2 are given by
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:S1
out(0):

:S2
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:S
1ou

t (0
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 , 
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2ou
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):

J
0 0.2 0.4 10.6 0.8

2

1.5

1

0.5

0

Figure 1. Plot of :Sout
1 (0) : and :Sout

2 (0) : as functions of the input intensity J. The thin dotted line
represents :S : = 0. When the input intensity is weak enough to satisfy J < 1/2, squeezing takes
place in the X2 quadrature.

C1 = (α2 + 1/2)x(0) + (α2 − 1/2)y(0)

α2 − α1
, (21)

C2 = (α1 + 1/2)x(0) + (α1 − 1/2)y(0)

α1 − α2
, (22)

where x(0) = J 2/2(1 + J )2 and y(0) = −J/2(1 + J )2. Using equations (14), (15), (19)
and (20), the squeezing spectra are given by

:Sout
1 (ω) : = 4J

(1 + J )|1 + 2iω|2 , (23)

:Sout
2 (ω) : = 4α1C1

|α1 + iω|2 +
4α2C2

|α2 + iω|2 . (24)

The squeezing spectra for the ω = 0 component take particularly simple forms, which are
given by

:Sout
1 (0) : = 4J

(1 + J )
, (25)

:Sout
2 (0) : = −4J (1 − 2J )

(1 + J )3
. (26)

The intensity dependences of :Sout
j (0) : are plotted in figure 1. It is shown that the squeezing

occurs in the X2 quadrature when the input field is weak enough to satisfy J < 1/2. The
squeezing is maximized when J = (3 − √

7)/2 = 0.177, where the degree of squeezing
reaches 28%. (:Sout

2 (0) : = −0.28, in other words, Sout
2 (0) = 0.72.)

The intensity dependences of :Sout
1 (0) : and :Sout

2 (0) : observed in figure 1 can be intuitively
understood as follows. The output field is expected to have two components, namely the
coherent component and the incoherent component [25, 26, 32]. The coherent component is
in a coherent state |α〉 with a mean amplitude α. On the other hand, the incoherent component
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Figure 2. The normally ordered variances : S1: and : S2: for the state given by equation (27), as
functions of the superposition coefficient |γ |. α is fixed at 3. γ is in phase with α (namely, γ is
real and positive) in figure 2(a), whereas γ is out of phase with α in figure 2(b).

originates in the spontaneous emission from the atom, and therefore is in a number (single-
photon) state |1〉. The quantum state of the output field would roughly be given by superposing
these two components as

|ψout〉 	 C(|α〉 + γ |1〉), (27)

where C is a normalization factor and γ is a superposition coefficient. Since the incoherent
component originates in the spontaneous emission from the atom, |γ | would be roughly
proportional to the atomic excitation 〈s†s〉 and therefore to the input intensity J. The normally
ordered variances : S1 : and : S2 : for this state are plotted in figure 2 as functions of the
superposition coefficient |γ |. γ is in phase with α in figure 2(a), whereas γ is out of phase
with α by π in figure 2(b). It is commonly observed in figures 2(a) and (b) that, as the
incoherent component |γ | increases, : S1 : is enhanced significantly whereas : S2 : is not so
affected. This point is in agreement with figure 1. The phase of γ plays a crucial role in the
small |γ | region. When γ is in phase with α, as shown in figure 2(a), :S2: shows squeezing in
the small |γ | region, whereas :S1: is a monotonically increasing function of |γ |. In contrast,
when γ is out of phase with α, as shown in figure 2(b), : S1 : shows squeezing in the very
small |γ | region whereas :S2: does not. Thus, the qualitative features of the quantum noise in
the output port can be explained in terms of the wavefunction given by equation (27) with the
coefficient γ in phase with α.
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