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Exploiting the field-amplification effect of a cavity, the possibility of optical nonlinear-
ity by only two photons was indicated experimentally. In the present article, we review
our recent analysis of the two-photon dynamics in a cavity quantum electrodynamics
(QED) system. Since a cavity-QED system is highly dispersive around its resonances,
the shapes of photonic pulses are significantly deformed through interaction with the
system. Thus, the present analysis is based on a formalism beyond single-mode approx-
imations. The external photon field is treated rigorously as a continuum, which enables
us to handle the two-photon wavefunction in the space representation. The degree of
optical nonlinearity in a two-photon state is quantified by comparing the output wave-
function with the linear output wavefunction. It is revealed that the semiclassical optical
response theory can be applied for evaluation of the two-photon optical nonlinearity. The
two-photon nonlinearity appears not purely as a phase shift in the output wavefunction.
The degradation of the fidelity between the output wavefunction and the linear output
wavefunction always occurs, which hinders the application of this nonlinear effect as a
quantum phase gate. The optimum condition for maximizing the two-photon nonlinear-
ity is clarified, suggesting that pulse shape control is more essential than the Q-value
control of the cavity QED system.

Keywords: Two-photon nonlinearity; cavity-QED; controlled phase gate; nonlinear phase
shift.

1. Introduction

Cavity quantum electrodynamics (QED) concerns the properties of optically active

media (typically two-level atoms) confined within a high-Q cavity.1–3 The cavity

discretizes the photonic modes inside the cavity and separates these cavity modes

from the external photon field. Thus, one can realize a well-isolated quantum sys-

tem composed of atoms and cavity photons, which is weakly coupled to the exter-

nal photon field that acts as a reservoir. Furthermore, the external photonic modes
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can be utilized as a probe for inferring the quantum states of the nearly isolated

atom-cavity system. Cavity QED systems are therefore quite suitable for funda-

mental tests of quantum dynamics of open systems and also for quantum-state

engineering utilizing the internal dynamics of the atom-cavity system.4–12

When photons are inputted into the cavity from the external space, these in-

put photons are usually reflected by one of the mirrors constituting the cavity (the

isolation effect). However, the role of the cavity is not restricted to isolation of the

internal system. If the energy of the input photon is close to one of the resonance

frequencies of the internal atom-cavity system, the photon can enter the cavity.

Furthermore, the field intensity per photon is drastically enhanced inside the cav-

ity, compared to that for free photons. Namely, the cavity can work as an amplifier

for resonant input photons. Conventionally, it has been supposed that strong fields

are indispensable for the induction of significant nonlinear optical effects.13–15 How-

ever, by placing nonlinear optical media inside of a cavity and utilizing this field-

amplification effect, considerable nonlinear effects can be expected, even by weak

input fields. Actually, through an experiment using a two-level atom as an nonlinear

optical agent, Turchette et al. indicated optical nonlinearity sensitive to individual

photons,16,17 which is extremely valuable in quantum information processing.18 To-

gether with rapid improvements in photon generation technology,19–24 induction of

optical nonlinear effects by only two photons is one of the main goals in current

quantum control technology.

In the present article, we theoretically analyze the nonlinear dynamics of two

photons mediated by cavity-QED systems. Since a two-photon state does not belong

to classical (coherent) states, theoretical analysis of two-photon dynamics requires

a fully quantum mechanical framework, in which not only the optical media but

also the photon field is quantized. In the field of quantum optics,25–28 nonlinear

interaction among several photonic modes has been briskly discussed, employing

a phenomenological interaction Hamiltonian based on the single-mode approxima-

tion.29–31 The implicit assumption behind the single-mode approximation is that

the spatial shapes of photonic pulses are unchanged during the interaction with

the optical media, and therefore the optical media are almost dispersionless around

the energies of the input photons. These assumptions can be justified when the

input photons are off-resonant with respect to the optical media. However, our in-

terest here lies in the cases in which the input photons are close to the resonance

of the optical system in order to make maximum use of the strong nonlinearity

around the resonance. Then, the photonic pulse shapes are expected to be signif-

icantly deformed so that the single-mode approximation cannot be applied. Thus,

the present analysis is based on a formalism in which the multi-mode nature of the

free-space photon field is rigorously taken into account.32–36 This formalism allows

us to handle the full information on the input and output photons, namely, the

spatial wavefunction of photons.

The present article is organized as follows. In Sec. 2, we present the Hamiltonian

for the cavity-QED system including the external photon field. In Sec. 3, we discuss
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the optical response of the cavity-QED system when classical light fields (coherent

states) are inputted. In Sec. 4, we examine how the input two-photon wavefunction

is transformed through the interaction with the cavity-QED system, and evaluate

the optical nonlinearity appearing in the output two-photon wavefunction. Finally,

a summary is presented in Sec. 5.

2. Cavity-QED System

In this section, we present a theoretical model for a cavity-QED system and discuss

its basic properties. The model system discussed in the present study is schemat-

ically illustrated in Fig. 1. A one-sided cavity is formed by two spherical mirrors.

The mirror on the right is weakly transmissive and allows interaction between cav-

ity photons and external photons. As an optically active medium, a single two-level

system (hereinafter referred to as an “atom”) is placed inside of the cavity. Our

main interest is how the input photons are transformed after interaction with this

cavity-QED system.

In order to theoretically analyze this problem, the following two points should

be kept in mind: (i) A cavity-QED system is a typical open quantum system,

exposed to two kinds of photonic continua, noncavity modes and the input/output

field, as illustrated in Fig. 1. These continua should be treated as active mechanical

degrees of freedom in order to analyze the quantum states of input/output photons.

(ii) When the energies of input photons are close to the resonance of the system, the

shapes of the photonic pulses are largely deformed in the output, since the system

is highly dispersive around the resonance. Hence, the single-mode approximation

is inadequate in this frequency region. The above two points are naturally resolved

by the multimode treatment for the photonic continua, as is done in the following.

2.1. Hamiltonian

Here, we present the Hamiltonian for the case in which a single two-level atom

is placed inside of a cavity. The system is composed of the following four parts:

noncavity modes

input/output fieldcavity mode

γ

g κ
r

r=0

Fig. 1. Schematic illustration of a cavity-QED system composed of a two-level atom and a cavity.
The meanings of the parameters are noted in Table 1.
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Table 1. Meanings of the principal parameters of a cavity-QED system.

Parameter Meaning

ωa Transition frequency of the two-level atom
ωc Resonance frequency of the cavity mode
g Coupling between the atom and the cavity mode
κ Escape rate of the cavity photon into the external field
γ Atomic spontaneous emission rate into noncavity modes

ω̃a(≡ ωa − iγ/2) Complex frequency of the two-level atom
ω̃c(≡ ωc − iκ/2) Complex frequency of the cavity mode

a two-level atom, a cavity mode, the input/output field, and non-cavity modes.

The annihilation operators for these elements are denoted by s, c, bk, and dk,

respectively, where k is a continuous label representing the photonic wavenumber.

The Hamiltonian for the whole system is given by

H = Hsys + Hce + Han , (1)

Hsys = ωas
†s+ ωcc

†c+ g(s†c+ c†s) , (2)

Hce =

∫

dk

[

kb†kbk +

√

κ

2π
(c†bk + b†kc)

]

, (3)

Han =

∫

dk

[

kd†kdk +

√

γ

2π
(s†dk + d†ks)

]

, (4)

where Hsys is called the Jaynes–Cummings Hamiltonian37 and describes a com-

pletely isolated atom-cavity system, Hce describes the interaction between the cav-

ity mode and the input/output field, and Han describes the atomic radiative dissi-

pation to noncavity modes. The meanings of the parameters (ωa, ωc, g, κ and γ)

are summarized in Table 1. Unless specified, ωa = ωc is assumed in the following.

Note that s is a Pauli operator, whereas c, bk and dk are bosonic operators. The

commutators are given by

[s, s†] = 1 − 2s†s , (5)

[c, c†] = 1 , (6)

[bk, b
†
k′ ] = δ(k − k′) , (7)

[dk, d
†
k′ ] = δ(k − k′) . (8)

The origin of nonlinearity in this system is attributed solely to the saturation effect

of the atom, i.e. deviation from the bosonic operator in Eq. (5).

As observed in Fig. 1, the input and output fields exist only in the r > 0

region; the input field propagates in the negative direction whereas the output field
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propagates in the positive direction. However, it is convenient to treat the input

field as if it had propagated in the positive direction in the r < 0 region.38 Adopting

this convention, the real-space representation of the input/output field is given by

b̃r =
1√
2π

∫

dkeikrbk , (9)

the commutator of which is given by [b̃r, b̃
†
r′ ] = δ(r − r′). Similarly, the real-space

representation of the noncavity modes can be formally defined as

d̃r =
1√
2π

∫

dkeikrdk , (10)

the commutator of which is given by [d̃r, d̃
†
r′ ] = δ(r − r′).

There are two observations regarding this Hamiltonian. (i) The transverse profile

of the input/output field is determined by the radiation pattern from the cavity

mode.39,40 Thus, the input/output field is treated one-dimensionally. (ii) In Hce

(Han), the coupling constant between c and bk (s and dk) is approximated to be

independent of the photonic energy k. This flat-band approximation is equivalent

to the Markov approximation. Under this approximation, the decay of the cavity

mode into the output field occurs purely exponentially.41

2.2. Complex eigenfrequencies

Let us discuss the eigenenergies of the atom-cavity system in an intuitive manner.

The role of Hce (Han) in Eq. (1) is to make the cavity mode (atomic excitation)

decay with a rate of κ (γ). Adopting these dissipative effects as the imaginary

parts of frequencies, we obtain a phenomenological Hamiltonian for the atom-cavity

system as follows:

Hph
sys = ω̃as

†s+ ω̃cc
†c+ g(s†c+ c†s) , (11)

where ω̃a(= ωa − iγ/2) and ω̃c(= ωc − iκ/2) are the complex frequencies for the

atom and cavity mode.

Since this Hamiltonian conserves the number of total quanta, s†s + c†c, the

Hilbert space can be divided according to the number of quanta. The one-quantum

space is spanned by s†|0〉 and c†|0〉. The complex eigenenergies ω̃1 and ω̃2 in the

one-quantum space are defined by

(z − ω̃a)(z − ω̃c) − g2 = (z − ω̃1)(z − ω̃2) . (12)

In the two-quanta space spanned by s†c†|0〉 and 2−1/2c†c†|0〉, the complex eigenen-

ergies ν̃1 and ν̃2 are defined by

(z − ω̃a − ω̃c)(z − 2ω̃c) − 2g2 = (z − ν̃1)(z − ν̃2) . (13)

Note that all of ω̃1, ω̃2, ν̃1 and ν̃2 lie in the lower half plane. Interestingly, these

complex eigenfrequencies often appear during rigorous quantum mechanical calcu-

lations based on Eq. (1).
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Fig. 2. Locations of ω̃1 and ω̃2 on the complex plane for (a) the weak-coupling case and (b) the
strong coupling case. γ < κ is assumed in this figure but is not necessary. The arrows indicate the
directions into which ω̃1 and ω̃2 move as the coupling g is increased.

2.2.1. Weak coupling and strong coupling

Here, we investigate how ω̃1 and ω̃2 behave as functions of g. Assuming ωa = ωc,

they are given by Eq. (12) as

ω̃1,2 = ωc − i
κ+ γ

4
±

√

g2 −
(

κ− γ

4

)2

. (14)

In the weak-coupling case satisfying g < |κ − γ|/4, only the imaginary parts

are modified by the atom-cavity coupling g, as shown in Fig. 2(a). In this case, the

atom and cavity are regarded as essentially independent optical agents. The effect

of g appears as the modification of the decay rates of the atom and cavity.

On the other hand, this simple picture breaks down in the strong-coupling case

of g > |κ−γ|/4, where the real parts of the eigenenergies split, as shown in Fig. 2(b).

In this regime, the internal dynamics of the isolated atom-cavity system becomes

important; the atom and the cavity mode interchange the energy quanta during

the decay, leading to a phenomenon called the collapse and revival.

2.3. Coupling between the atom and the photon field

2.3.1. Quasi-cavity continuum

In the Hamiltonian of Eq. (1), the atom is coupled via the cavity mode to the

continuum of the input/output field. By diagonalizing the relevant part (ωcc
†c +

Hce), c and bk can be recast into a single continuum, denoted by Ck and referred

to as the quasi-cavity continuum. Applying the Fano method,42 Ck is given by

Ck = η(k)c+

∫

dqζ(k, q)bq , (15)

η(k) =

√

κ

2π

1

k − ω̃c
, (16)

ζ(k, q) =
κ

2π

1

(k − ω̃c)(k − q + iδ)
+ δ(k − q) . (17)
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It is orthonormalized as [Ck, C
†
k′ ] = δ(k − k′). Inversely, the original operators are

given by c =
∫

dkη∗(k)Ck and bq =
∫

dkζ∗(k, q)Ck. The function η(k) has meaning

as the dressed Green’s function for the cavity photon (see Appendix C). In terms

of Ck, the real-space representation b̃r of the input/output field is given by

b̃r =



















(2π)−1/2

∫

dkeikr η
∗(k)

η(k)
Ck (input field, r < 0)

(2π)−1/2

∫

dkeikrCk (output field, r > 0) .

(18)

2.3.2. Form factors of the atom-photon interaction

Using the quasi-cavity operator Ck, the original Hamiltonian is recast into the

following form:

H = ωas
†s+

∫

dk[kC†
kCk + (gη∗(k)s†Ck + H.c.)] + Han . (19)

Thus, the atom is coupled to two kinds of photonic continua: the quasi-cavity

continuum (Ck) and the noncavity modes (dk). The squared coupling constants to

these continua, referred to as the form factors and denoted by |ξc(k)|2 and |ξn(k)|2,
are given by

|ξc(k)|2 = |gη(k)|2 =
g2κ

2π

1

|k − ω̃c|2
, (20)

|ξn(k)|2 =
γ

2π
. (21)

|ξc(k)|2 is a Lorentzian with half-width κ and area g2. The overall form factor

|ξt(k)|2 is defined by

|ξt(k)|2 = |ξc(k)|2 + |ξn(k)|2 . (22)

The shapes of these form factors are shown in Fig. 3(a).

k kωc ωc

2g2/πκ

γ/2π

κ

Fig. 3. (a) Form factors for the Hamiltonian of Eq. (19). |ξc(k)|2 and |ξt(k)|2 are plotted by the
solid and broken lines, respectively. (b) Form factors for a one-dimensional atom.
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2.3.3. One-dimensional atom

In the limit of extremely weak coupling satisfying κ� g, |ξc(k)|2 can be regarded as

an almost constant function (∼2g2/πκ) around the resonance frequency, as shown

in Fig. 3(b). Furthermore, if g2/κ� γ is satisfied, the atom is coupled principally

to the quasi-cavity continuum. In this case, most of the emission from the atom

is directed to the one-dimensional output field (the leak pattern from the cavity).

Hence, the system is called a one-dimensional atom16,17 in this parameter region

(κ� g2/κ� γ). The parameters that characterize a one-dimensional atom are the

overall coupling Γ and the fraction β, which are given by

Γ = γ + 4g2/κ , (23)

β = (4g2/κ)/Γ . (24)

2.4. Cavity-QED parameters for a planar cavity

When a cavity is formed by two spherical mirrors as in Fig. 1, the geometry of

the cavity uniquely specifies the spatial form of the privileged cavity mode.39,40

g and κ are determined by the geometrical parameters (atomic position, cavity

length, curvature of the mirrors, etc.), while κ is determined by the transmissivity

of the mirrors. In contrast, for the case of a planar cavity, one can choose the

lateral profile of the input beam more arbitrarily. The input beam profile is then

relevant for determination of the effective cavity mode function and, therefore, of

the cavity-QED parameters, g, κ and γ (see Sec. 2.4.1). Here, we present a method

by which to determine these parameters for the case of planar cavity on the basis

of a three-dimensional formalism.43

The configuration of the system considered is illustrated in Fig. 4. A planar

one-sided cavity is formed by a perfect mirror at z = −l and a leaky mirror with

transmissivity T at z = 0. Therefore, the cutoff frequency ωcut for the intra-cavity

field is given by ωcut = π/l. A two-level atom with resonance frequency ωa and

z

z=0z=−l

atom

T

input  photon

Fig. 4. Configuration of a planar cavity-QED system. The left mirror at z = −l is perfect, whereas
the right mirror at z = 0 has a small transmissivity T . The atom is placed at R = (X, Y,Z), where
−l < Z < 0. The lateral profile of the input beam is assumed to be z-independent.
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transition dipole ℘ is placed at R = (X,Y, Z). We consider the case of ωa ' ωcut,

where only the lowest subband of the intra-cavity field is relevant. The input beam

propagates along the z-axis with a fixed lateral profile, assuming that the beam

diameter is well above the diffraction limit.

2.4.1. Intuitive consideration

Before proceeding to rigorous analysis, we estimate the parameters g and κ intu-

itively as follows. The lateral profile of the input beam is denoted by ϕ(x, y), which

is normalized as
∫

dxdy|ϕ(x, y)|2 = 1. Then, the normalized cavity-mode function

is given by fcav(r) = (2ωcut/π)1/2 sin(ωcutz) × ϕ(x, y). Therefore, the atom-cavity

coupling g is expected to be

gest =
℘ωa√
2ωcut

fcav(R) =
℘ωa√
π

sin(ωcutZ)ϕ(X,Y ) . (25)

The escape rate of the cavity photon is expected to be

κest = T/2l = Tωcut/2π . (26)

The validity of these estimations is examined in the following part of this section.

2.4.2. Three-dimensional Hamiltonian

The system is composed of three parts: the atom, the intra-cavity field (−l < z < 0),

and the external field (0 < z). Because kz is fixed at ωcut inside the cavity, the

intra-cavity field is labeled by a two-dimensional in-plane wavevector ~k = (kx, ky),

whereas the external field is labeled three-dimensionally by k = (kx, ky, kz). The

Hamiltonian is given by

Hplanar = ωas
†s+

∫

d2~k[ω~kc
†
~k
c~k + (λ~ks

†c~k + H.c.)]

+

∫

d3
k

[

ωkb
†
k
bk +

(

c†~kbk
√

2πτ~k
+ H.c.

)]

, (27)

where c~k and bk are the annihilation operators for the intra-cavity field and the

external field, normalized as [c~k, c
†
~k′

] = δ2(~k−~k′) and [bk, b
†
k′ ] = δ3(k− k

′). ω~k and

ωk denote the frequencies for c~k and bk, which are given by ω~k = (ω2
cut + |~k|2)1/2

and ωk = |k|. τ~k denotes the lifetime of c~k, which is given by τ~k = 2πω~k/Tω
2
cut.

Finally, the atom-photon coupling λ~k reads

λ~k =
℘ωa
√

2ω~k

f~k(R) , (28)

where f~k(r) =
√

ωcut/2π3 sin(ωcutz) exp[i(kxx+ kyy)] is the spatial mode function

for c~k. Note that the in-plane wave vector ~k is conserved during the interaction

between the c~k and bk due to the in-plane translational symmetry.



July 18, 2006 10:59 WSPC/140-IJMPB 03470

2460 K. Koshino & H. Ishihara

2.4.3. Form factors

Based on the above Hamiltonian and the lateral profile ϕ(x, y) of the input beam,

one can calculate the form factors, |ξt(ω)|2 and |ξc(ω)|2, introduced in Sec. 2.3.2.

They are given by

|ξt(ω)|2 =

∫

d2~k|λ~kη~k(ω)|2 , (29)

|ξc(ω)|2 =

∣

∣

∣

∣

∫

d2~kλ~kη~k(ω)ϕ̃(~k)

∣

∣

∣

∣

2

, (30)

where ϕ̃(~k) is the Fourier transform of ϕ(x, y), and η~k(ω) is the dressed Green’s

function for c~k, as given by

η~k(ω) =
(2πτ~k)−1/2

ω − ω~k + i/2τ~k
. (31)

These formulas are derived in Appendix A.

The overall form factor |ξt(ω)|2 governs the dynamics of spontaneous decay of

an excited atom. Expectedly, |ξt(ω)|2 is independent of the in-plane atomic position

(X,Y ) and also of the input beam profile. In contrast, |ξc(ω)|2 is sensitive to the

location of the effective cavity mode generated by the input beam. By the Schwartz

inequality, |ξc(ω)|2 ≤
∫

d2~k|ϕ̃(~k)|2 ×
∫

d2~k|λ~kη~k(ω)|2 = |ξt(ω)|2, in accordance with

the definitions of these form factors.

The concrete forms of the form factors are shown in Fig. 5. It is assumed that the

atom is placed at the center of the cavity, i.e. R = (0, 0,−l/2), and that the lateral

beam profile is Gaussian with diameter 2d, i.e. ϕ(x, y) = (πd2)−1/2 exp[−(x2 +

y2)/2d2]. The overall form factor |ξt(ω)|2 is independent of the beam profile and

is determined solely by the transmissivity. In addition, |ξt(ω)|2 shows a step-like

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.998  0.999  1  1.001  1.002  1.003

ω (unit: ωc)

|ξ
(ω

)|2   (
un

it:
 p

2 ω
c3 /2

π2 )

Fig. 5. Form factors for a planar cavity geometry: |ξt(ω)|2 (thin line) and |ξc(ω)|2 (bold lines).
Transmissivity is fixed at T = 10−3 . The beam diameter is chosen at d = 20ω−1

cut (dashed line),
50ω−1

cut (dotted line), and 200ω−1
cut (solid line).
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ωcd

1
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0.1

κ / κest

g / gestg 
/ g

es
t  
, κ

 / 
κ e

st

Fig. 6. Plot of g/gest and κ/κest as functions of beam diameter 2d. The transmissivities are
chosen at T = 10−2 (solid lines), T = 10−3 (dotted lines) and T = 10−4 (dashed lines).

behavior characteristic to the two-dimensional photon field.44 Approximating τ~k by

τ~0 in Eq. (29), |ξt(ω)|2 is obtained analytically as

|ξt(ω)|2 =
℘2ω3

cut

2π2

[

1

2
+

1

π
arctan

(

4π

Tωcut
(ω − ωcut)

)]

. (32)

On the other hand, |ξc(ω)|2 is sensitive to the input beam profile. When the beam

diameter is large (bold solid line in Fig. 5), |ξc(ω)|2 reduces to a genuine Lorentzian,

which agrees well with Eq. (20), with estimated parameters gest and κest given

by Eqs. (25) and (26). As the beam is collimated, the atom–cavity coupling is

strengthened and |ξc(ω)|2 becomes larger (dotted line in Fig. 5). However, |ξc(ω)|2
cannot grow freely due to the upper bound imparted by the condition |ξc(ω)|2 ≤
|ξt(ω)|2. This upper bound is expected to become important when d is sufficiently

small to satisfy ωcutd . 4T−1/2.a When the beam diameter is smaller than this

value, |ξc(ω)|2 deviates considerably from a Lorentzian (dashed line in Fig. 5).

2.4.4. Connection to the cavity-QED parameters

One can determine the cavity-QED parameters from these two form factors, by

comparing them with the form factors for a (g, κ, γ)-model given by Eqs. (20)–(22).

Equation (20) suggests that the area and half-width of |ξc(ω)|2 correspond to g2

and κ, respectively. Figure 6 plots g and κ thus obtained as functions of the beam

diameter 2d. In the large diameter region, g and κ are in good agreement with

the estimations, gest and κest. However, in the small diameter region specified by

ωcutd . 4T−1/2, g and κ deviate appreciably from the estimations.

On the other hand, γ is determined from the coupling to noncavity modes,

given by |ξn(ω)|2 = |ξt(ω)|2 − |ξc(ω)|2. As observed in Fig. 5, |ξn(ω)|2 is highly

aThis condition is obtained by comparing |ξt(ω)|2 [Eq. (29)] and |ξc(ω)|2 [Eq. (20) with Eqs. (25)
and (26)] at ω = ωcut.
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dispersive around the cutoff energy, although such dispersion is neglected in the

conventional (g, κ, γ)-model of Eq. (1). Reviving the ω-dependence, γ(ω) is given

by γ(ω) = 2π(|ξt(ω)|2 − |ξc(ω)|2).
As an realistic example, we here consider the case in which the “atom” is a

quantum dot with ωa = 1 eV and a diameter of 10 nm.b When T = 10−3 and

d = 50ω−1
cut ' 10 µm in reference to the dotted line in Fig. 5, g/ωcut ' 6×10−5 and

κ/ωcut ' 4×10−4. γ is best suppressed at ω ' 0.9998ωcut, where γ/ωcut ' 7×10−7.

3. Optical Response Against Classical Light

In this section, we investigate the optical response of cavity-QED systems when

classical light fields are inputted. Since the outputs from conventional lasers are

classical regardless of whether they are pulsed or continuous, the analysis presented

in this section covers most experiments using conventional laser fields. Furthermore,

as will be revealed later (see Sec. 4.3), the linear and nonlinear responses to a pulsed

classical light are closely related to the nonlinear interaction between two photons.

The analysis in this section is restricted for simplicity to the single-atom case, the

Hamiltonian of which has been presented in Sec. 2.1. Extension to more complicated

situations (e.g. excitonic systems inside of a cavity) is straightforward, as shown in

Appendix B.

3.1. Basic equations of motion

3.1.1. Initial state

As the initial moment t0, we choose an arbitrary moment at which the input field

has not arrived at the cavity. Denoting the field amplitude at t0 by fin(r), which is

nonzero only in the r < 0 region, the initial quantum state is given by

|Φin〉 = exp

(

−
∫

dr|fin(r)|2/2
)

exp

(
∫

drfin(r)b̃†r

)

|0〉 , (33)

where b̃r is the real-space representation of the input/output field, defined in Eq. (9).

As usual, the other parts of the system (the atom, the cavity mode, and the output

field) are assumed to be in the ground state initially. In this section, we will inves-

tigate the quantum time evolution from the above initial state, determined by the

Hamiltonian of Eq. (1).

3.1.2. Heisenberg equations

Cavity-QED systems are typical open quantum systems, in which relevant me-

chanical degrees of freedom (atom and cavity mode) are coupled to heat baths

bThe diameter a of a quantum dot roughly determines the transition dipole moment ℘. Denoting
the electronic charge by q, the dipole moment is given by ℘ ' qa.



July 18, 2006 10:59 WSPC/140-IJMPB 03470

Two-Photon Nonlinear Interaction Mediated by Cavity QED Systems 2463

(input/output field and noncavity modes). When discussing open systems, the me-

chanical degrees of freedom for the heat baths are often eliminated. However, in

the present problem, the continuum bk (the input/output field) should not be elim-

inated because we are interested in the input and output photons. Here, we present

a method to handle the photonic continua as active mechanical degrees of freedom,

that is known as the input-output formalism.27,28

The Heisenberg equation for bk is given, using Eq. (3), by

ḃk = −ikbk − i
√

κ/2π c . (34)

Denoting the initial and final moments by t0 and t1, the operator at time τ (t0 <

τ < t1) is represented in two ways:

bk(τ) = bk(t0)e
−ik(τ−t0) − i

√

κ

2π

∫ τ

t0

dτ ′c(τ ′)e−ik(τ−τ ′) (35)

= bk(t1)e
−ik(τ−t1) + i

√

κ

2π

∫ t1

τ

dτ ′c(τ ′)e−ik(τ−τ ′) . (36)

Using the above two forms of bk(τ),
∫

dkbk(τ) is recast into the following two forms:

∫

dkbk(τ) =
√

2π b̃t0−τ (t0) − i

√

πκ

2
c(τ) (37)

=
√

2π b̃t1−τ (t1) + i

√

πκ

2
c(τ) , (38)

with the help of Eq. (9). Equating the right hand sides and introducing new labels

r(= t1 − τ) and t(= t1), we obtain the input-output relation, as given by

b̃r(t) = b̃r−t+t0(t0) − i
√
κ c(t− r) , (39)

where 0 < r < t− t0. Thus, the output field operator at time t is expressed in terms

of the input field operator at t0 and the cavity-mode operator at t − r. Similarly,

the input-output relation for d̃r is given by

d̃r(t) = d̃r−t+t0(t0) − i
√
γ s(t− r) . (40)

The Heisenberg equations for the atomic operator s and the cavity-mode operator

c are obtained from Eqs. (1)–(4). Choosing ωa(= ωc) as the origin of frequency and

using Eq. (37) and its counterpart for
∫

dkdjk , they are given by

d

dt
s = −γ

2
s− ig(1 − 2s†s)c− i

√
γ(1 − 2s†s)d̃t0−t(t0) , (41)

d

dt
c = −κ

2
c− igs− i

√
κ b̃t0−t(t0) . (42)

Equations (41) and (42), together with Eqs. (39) and (40), are the basic equations

in the analysis in this section.
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3.1.3. Semiclassical equations

Since we are working in the Heisenberg representation, the mean value of an oper-

ator A at time t is given by

〈A〉 = 〈Φin|A(t)|Φin〉 , (43)

where |Φin〉 is the initial state vector given by Eq. (33). Recall here that |Φin〉 is in

the coherent state and therefore

b̃r(t0)|Φin〉 = fin(r)|Φin〉 , (44)

d̃r(t0)|Φin〉 = 0 . (45)

These equations imply that the input field operator b̃r(t0) can be replaced with a

c-number fin(r), and that the terms containing d̃r(t0) vanish.c The equations of

motion for 〈s〉 and 〈c〉 are given by

d

dt
〈s〉 = −γ

2
〈s〉 − ig(〈c〉 − 2〈s†sc〉) , (46)

d

dt
〈c〉 = −κ

2
〈c〉 − ig〈s〉 − i

√
κfin(t0 − t) . (47)

The input field operators are now reduced to classical field amplitudes. Namely,

semiclassical equations of motion for the atom-cavity system are obtained. The

above simultaneous equations of motion are not closed within 〈s〉 and 〈c〉, but

contain a higher-order quantity, 〈s†sc〉. The handling of such higher-order terms

by the perturbation method is discussed in Sec. 3.3 and Appendix B. Finally, the

amplitude fout(r, t) of the output field is given, using Eqs. (39), by

fout(r, t) ≡ 〈b̃r(t)〉 = fin(r − t+ t0) − i
√
κ〈c(t− r)〉 . (48)

3.2. Example: One-dimensional atom

3.2.1. Basic equations

As has been observed, the equation of motion for the atom-cavity system are not

closed in general. However, the equations of motion become closed for the case of

a one-dimensional atom (Sec. 2.3.3), which is realized when κ � g2/κ � γ. Since

damping of the cavity mode occurs much faster than other processes (κ � g, γ),

Eq. (42) can be solved adiabatically. The cavity operator c is given by

c = −2ig

κ
s− 2i√

κ
b̃t0−t(t0) . (49)

cThe direct meaning of Eqs. (44) and (45) is that such replacements are possible only when b̃r(t0)
or d̃r(t0) appears in the rightmost position in the term. However, this restriction is unnecessary. For
example, a term 〈s†d̃t0−t(t0)c〉 appears in the equation of motion for 〈s†sc〉. However, b̃t0−t(t0)
and d̃t0−t(t0) are composed of only annihilation operators at time t, as can be observed in Eq. (37).
Therefore, b̃t0−t(t0) and d̃t0−t(t0) are commutable with any annihilation operator at t and so can
always be transferred to the rightmost position.
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Substituting Eq. (49) into Eq. (41), we obtain

d

dt
s = −Γ

2
s−

√

βΓ (1 − 2s†s)b̃t0−t(t0) − i
√

(1 − β)Γ (1 − 2s†s)d̃t0−t(t0) , (50)

where Γ and β denote the overall decay rate and the fraction to the quasi-cavity

continuum, defined by Eqs. (23) and (24), respectively. From Eq. (50), the equations

of motion for 〈s〉 and 〈s†s〉 are derived as follows:

d

dt
〈s〉 = −Γ

2
〈s〉 −

√

βΓ (1 − 2〈s†s〉)fin(t0 − t) , (51)

d

dt
〈s†s〉 = −Γ〈s†s〉 −

√

βΓ (f∗
in(t0 − t)〈s〉 + c.c.) . (52)

Thus, the above equations are closed within 〈s〉 and 〈s†s〉. The amplitude of the

output field is given, from Eqs. (48) and (49), by

fout(r, t) = −fin(r − t+ t0) −
√

βΓ〈s(t− r)〉 . (53)

3.2.2. Stationary solution

We here consider the simplest case in which the input field is monochromatic as

fin(r) = Eeikr, where E is the amplitude and k is the frequency measured from

ωa. Since fin(t0 − t) depends on time as fin(t0 − t) ∼ e−ikt, 〈s〉 depends on time

as 〈s〉 ∼ e−ikt and 〈s†s〉 becomes independent of time in the stationary state. The

stationary solutions of Eqs. (51) and (52) are given by45

〈s〉 = −
√
βΓ (Γ/2 + ik)

|Γ/2− ik|2 + 2βΓ|E|2Ee
ik(t0−t) , (54)

〈s†s〉 =
βΓ|E|2

|Γ/2− ik|2 + 2βΓ|E|2 . (55)

The mean intracavity photon number 〈c†c〉 and the output amplitude fout(r, t) are

given by

κ〈c†c〉 =

(

4 − β(2 − β)Γ2

|Γ/2− ik|2 + 2βΓ|E|2
)

|E|2 , (56)

fout(r, t) = A× fin(r − t+ t0) , (57)

where the factor A is given by

A =
βΓ(Γ/2 + ik)

|Γ/2 − ik|2 + 2βΓ|E|2 − 1 . (58)

The nonlinear effects have already been included in the above equations, for ex-

ample, as the 2βΓ|E|2 term in the denominator of Eq. (54). Equation (57) shows

that the output field acquires a factor A as a result of the interaction with a one-

dimensional atom.
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Fig. 7. Modulus and phase of A as functions of the detuning k of the input field. It is assumed
that the atom-cavity system is dissipationless (γ=0, β = 1). The linear case (|E|2/Γ → 0) is
plotted by the dotted lines, whereas the nonlinear case (|E|2/Γ = 0.1) is plotted by the solid lines.
The parameters g and κ are chosen at 20 and 80 MHz (Γ = 20 MHz), respectively.

3.2.3. Linear and nonlinear phase shift

In the linear limit of |E|2 → 0, the factor A is recast into the following form:

Alin =
(β − 1/2)Γ + ik

Γ/2− ik
. (59)

In the dissipationless limit of β → 1, the modulus of field amplitude is conserved,

i.e. |Alin| = 1. The output field suffers a linear phase shift θ that is determined by

the following equation: eiθ = (Γ/2+ik)/(Γ/2−ik). This linear phase shift is plotted

in Fig. 7(b) by a dotted line as a function of the input frequency k. In contrast, when

the system is dissipative (β < 1), the output field becomes attenuated as expected.

The output field is in the coherent state, and the excess energy is radiated into the

noncavity modes.

The nonlinear effect alters the phase and the modulus of A, which are plotted

in Fig. 7 as functions of the input energy k for the dissipationless case of β =

1. Figure 7(a) shows that the output amplitude becomes attenuated around the

resonance, i.e. |A| < 1, even in the dissipationless case.45,46 Since the field energy

must be conserved, the field energy is larger than the squared amplitude in the

output port. Namely, the output field is not in a genuine coherent state.d In the

off-resonant region, the output amplitude is almost maintained, i.e. |A| ' 1, and the

nonlinear effect appears principally as the phase shift. Defining the nonlinear phase

shift by arg(A)−arg(Alin), the nonlinear phase shift is plotted in Fig. 8 as a function

dThe field energy is generally larger than the squared amplitude, except for the case of a genuine
coherent state.
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Fig. 8. Nonlinear phase shift, arg(A) − − arg(Alin), as a function of the intracavity photon
number 〈c†c〉 calculated by Eq. (56). (g, κ, γ) are the same as those of Fig. 7, and the detuning
of the input frequency is chosen at 30 MHz, by which k/Γ = 1.5.

of the mean intracavity photon number given by Eq. (56). Figure 8 shows that a

significant nonlinear phase shift (several tens of degrees) can be expected, even

by several intracavity photons. Thus, a one-dimensional atom has strong optical

nonlinearity sensitive to individual photons.

3.3. Linear and nonlinear outputs for pulsed input

Now let us return to the general situation discussed in Sec. 3.1. In order to obtain

the output field by Eq. (48), the mean amplitude 〈c〉 of the cavity field must be

calculated. However, the equations of motion that determine 〈c〉 are not closed in

general. (The equation of motion for 〈s〉, Eq. (46), contains a third-order quantity,

〈s†sc〉. The equations of motion for this quantity, which are obtained by combining

Eqs. (41) and (42), contain further higher-order quantities.) A standard method to

solve such nonlinear equations is perturbation. The equations of motion up to third-

order quantities are presented in Appendix B. The linear and nonlinear components

of the output field are given by f
(1)
out(r, t) = fin(r − t + t0) − i

√
κ〈c(1)(t − r)〉 and

f
(3)
out(r, t) = −i√κ〈c(3)(t − r)〉, where 〈c(1)〉 and 〈c(3)〉 denote the linear and third-

order components of 〈c〉.
Figure 9 plots f

(1)
out(r, t) and f

(3)
out(r, t), where the system is in the weak coupling

regime (κ/g = 5, γ = 0). A Gaussian wavepacket is assumed for the input field:

fin(r) =

(

2

πd2

)1/4

exp[−(r/d)2 + ikr] , (60)

where d and k represent the pulse length and the central frequency, respectively. It

is readily confirmed that this wavepacket is normalized as
∫

dr|fin(r)|2 = 1. Namely,

this is an extremely weak pulse, containing only one photon on average.

In general, due to the interaction with the optical media, the output pulse

is deformed and delayed in comparison with the input pulse. In the off-resonant
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Fig. 9. Envelopes for the input and output pulses observed from a moving coordinate with

the light velocity: fin (thin dotted line), f
(1)
out (solid line), and f

(3)
out (dashed line). The system

parameters are κ/g = 5 and γ = 0, and the pulse length is chosen at d = κ/g2. The input field is
off-resonant (k/g = 1.5) in (a), and resonant (k = 0) in (b).

case [see Fig. 9(a)], this delay is slight and the pulse shape is kept almost unchanged.

The third-order component f
(3)
out is much smaller than the linear component f

(1)
out.

Contrarily, in the resonant case [see Fig. 9(b)], the output pulse is delayed and

deformed significantly. Furthermore, it should be remarked that the third-order

component f
(3)
out has an amplitude that is comparable to the linear component f

(1)
out,

despite the fact that an extremely weak field at the one-photon level is input. This

fact demonstrates the strong nonlinearity inherent in this system, which may appear

even between individual photons.

4. Nonlinear Interaction Between Two Photons

In Sec. 3, the optical response of a cavity-QED system to classical light fields is

analyzed. It was revealed that a cavity-QED system may exhibit significant nonlin-

ear effects even by an extremely weak input field at the single photon level. Recent

progress in photon generation techniques19–24 has enabled the use of not only classi-

cal light fields but also individual photons (single photons, entangled photon pairs,

etc.) as input for cavity QED-systems. In this section, we investigate theoretically

the linear and nonlinear dynamics when two photons are simultaneously inputted

into a cavity-QED system.

In the field of quantum optics, the interaction between photons mediated by

nonlinear optical media has been briskly discussed.29–31 However, the theories were
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often based on a phenomenological interaction Hamiltonian with the single-mode

approximation for photons, which is validated only when the input photons are

off-resonant with the media and the media can be regarded as approximately dis-

persionless. Here, in order to maximize the nonlinear effect, we are also interested

in the resonant region, where the system becomes highly dispersive and significant

changes in the pulse shape are inevitable. Therefore, it is indispensable to use the

Hamiltonian given by Eqs. (1)−(4), where the photon field is rigorously treated as

a continuum.32–36

4.1. Input and output wavefunctions

Our main concern here is to investigate how the input one- and two-photon pulses

are transformed after interaction with the atom-cavity system. The state vectors

for the input one- and two-photon states are given by

|Ψ(1)
in 〉 =

∫

drψ(r)b̃†r |0〉 , (61)

|Ψ(2)
in 〉 = 2−1/2

∫

dr1dr2ψ(r1)ψ(r2)b̃
†
r1
b̃†r2

|0〉 , (62)

where ψ(r) denotes the input pulse shape, which is localized in the input port

(r < 0 region) and is normalized as
∫

dr|ψ(r)|2 = 1. Throughout the present study,

we discuss a case in which the two input photons have identical wavefunction ψ(r),

as given by Eq. (62).

After photons have interacted with the system, they appear either in the output

field (b̃†r with r > 0) or in the noncavity modes (d̃†r). The output state vectors are

denoted bye

|Ψ(1)
out〉 = e−iHt|Ψ(1)

in 〉 =

∫

drψ̄(r)b̃†r|0〉 + · · · , (63)

|Ψ(2)
out〉 = e−iHt|Ψ(2)

in 〉 = 2−1/2

∫

dr1dr2ϕ̄(r1, r2)b̃
†
r1
b̃†r2

|0〉 + · · · , (64)

where the ellipses imply the terms containing photons in noncavity modes. The

output two-photon wavefunction ϕ̄(r1, r2) has the symmetry of ϕ̄(r2, r1) = ϕ̄(r1, r2)

and is not factorizable in general, in contrast to the factorizable input wavefunction

given by Eq. (62). Namely, two photons become correlated after the interaction

mediated by nonlinear optical media. Except for the lossless case of γ = 0, the

output wavefunctions are attenuated, i.e.
∫

dr|ψ̄(r)|2 < 1 and
∫

dr1dr2|ϕ̄(r1, r2)|2
< 1.

eStrictly speaking, the output wavefunctions are dependent on the time t and should be denoted
as, for example, ψ̄(r, t). However, if t is sufficiently larger than the interaction time, the output
photons move at the speed of light while maintaining the pulse shape. The time variable t is thus
omitted.
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4.2. Quantification of two-photon nonlinearity

4.2.1. Linear output two-photon wavefunction

In order to quantify the nonlinear effect appearing in the output two-photon wave-

function ϕ̄(r1, r2), we define the linear output two-photon wavefunction ϕ̄lin(r1, r2).

It is defined as the output from a linear system, i.e. a system in which the atoms

are replaced with harmonic oscillators with the same transition frequencies, and

therefore the atomic nonlinearity (saturation) is completely removed. In such linear

systems, the two-photon output is simply obtained as a product of the one-photon

output. Thus, ϕ̄lin(r1, r2) is given by

ϕ̄lin(r1, r2) = ψ̄(r1)ψ̄(r2) . (65)

4.2.2. Measure of two-photon nonlinearity

As the measure of two-photon nonlinearity, we employ the following complex num-

ber α:

α =

∫

dr1dr2ϕ̄
∗
lin(r1, r2)ϕ̄(r1, r2)

√
∫

dr1dr2|ϕ̄lin(r1, r2)|2
√
∫

dr1dr2|ϕ̄(r1, r2)|2
, (66)

which gives the angle between ϕ̄ and ϕ̄lin. α always lies in the unit circle (|α| ≤
1) due to Schwartz’s inequality, and α = 1 when the response of the system is

completely linear (ϕ̄ = ϕ̄lin). Thus, the nonlinear effect appears as the deviation of

α from unity. In the lossless case, the norms of ϕ̄ and ϕ̄lin become unity, and α is

simply reduced to the overlap integral between ϕ̄ and ϕ̄lin.

4.2.3. Connection to controlled phase gates

The strong optical nonlinearity that is sensitive to individual photons seems quite

suitable for use in the construction of an optical quantum gate. Let us consider the

optical circuit illustrated in Fig. 10, called the Fredkin gate.18,30,47,48 The Fredkin

gate is constructed by two 50:50 beamsplitters and two identical nonlinear optical

system. As the nonlinear optical system, we consider here a lossless cavity QED

system.

P1

P2

P3

P4

P5

P6
NL

NL

BS BS

Fig. 10. Schematic diagram of the Fredkin gate, which is made up of two beamsplitters (BS) and
two nonlinear optical systems (NL).
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The circuit supports two input paths, P1 and P2. With respect to quantum

gates, the following four input states are relevant:

|00〉 = |0〉 ,
|10〉 = B†

1|0〉 ,
|01〉 = B†

2|0〉 ,
|11〉 = B†

1B
†
2|0〉 ,

where B†
j ≡

∫

drψ(r)b†j,r creates a single photon with wavefunction ψ(r) in Pj.

Thus, the state |m,n〉 has m (n) photons in P1 (P2). The optical paths P1 and P2

are connected to P3 and P4 through the first beamsplitter. These paths are related

by the following unitary transformation:

b†1,r → 2−1/2(b†3,r + b†4,r) , (67)

b†2,r → 2−1/2(b†3,r − b†4,r) . (68)

A remarkable role of a beamsplitter is that it transforms the |11〉 state asB†
1B

†
2|0〉 →

2−1(B†
3B

†
3−B†

4B
†
4)|0〉. Namely, two photons always appear in the same path (HOM

interference49). The nonlinear systems placed in P3 and P4 make the following

transformations on the one- and two-photon wavefunctions:

ψ(r) → ψ̄(r) , (69)

ψ(r1)ψ(r2) → ϕ̄(r1, r2) . (70)

The action of the second beamsplitter is the same as that of the first. Finally, the

state vectors of the output photons appearing in P5 and P6 are given by

|00〉 → |0〉 ≡ |0̄0̄〉 , (71)

|10〉 → B̄†
5|0〉 ≡ |1̄0̄〉 , (72)

|01〉 → B̄†
6|0〉 ≡ |0̄1̄〉 , (73)

|11〉 →
∫

dr1dr2ϕ̄(r1, r2)b
†
5,r1

b†6,r2
|0〉 , (74)

where B̄†
j ≡

∫

drψ̄(r)b†j,r creates a photon with ψ̄(r), and |m̄, n̄〉 denotes a state

with m̄ (n̄) photons with wavefunction ψ̄(r) in P5 (P6).

Now let us consider the connection to the measure α of two-photon nonlinearity.

When |α| = 1, the two-photon output wavefunction ϕ̄ is necessarily given by

ϕ̄(r1, r2) = αϕ̄lin(r1, r2) = αψ̄(r1)ψ̄(r2) . (75)

In this case, Eq. (74) is recast into the following form:

|11〉 → αB̄†
5B̄

†
6|0〉 ≡ eiθ|1̄1̄〉 , (76)

where θ is the argument of α. By combining Eqs. (71), (72), (73) and (76), the

action of this optical circuit is given by |m,n〉 → exp(imnθ)|m̄, n̄〉. Thus, this gate
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operates as a controlled phase gate, and α gives the phase factor of this gate.

However, in general, the shape of ϕ̄ is different from that of ϕ̄lin and |α| becomes

smaller than unity. When |α| is considerably smaller than unity, this gate can no

longer be regarded as a controlled phase gate.

4.3. Connection to semiclassical theories

In order to pursue the two-photon dynamics theoretically, the quantum-mechanical

temporal evolution must be investigated while treating the two photonic continua

(the input/output field and noncavity modes) as quantized fields. This analysis is

carried out in Sec. 4.4 and Appendix C. Such a fully quantum-mechanical analysis

is usually a heavy theoretical task, particularly when the optical media have many

mechanical degrees of freedom. In contrast, if the input field is classical, as in

Sec. 3, much simpler analysis is possible in the semiclassical framework, in which

two photonic continua can be treated as classical (c-number) fields. Here, we show

that the results of such a semiclassical analysis can be applied to evaluate the

two-photon nonlinearity α, bypassing the fully quantum-mechanical analysis.35

For the purpose of considering the dynamics of two photons, the state vector

of which is given by Eq. (62), we consider as the input state a classical pulse with

mean amplitude ψ(r). Since ψ(r) is normalized as
∫

dr|ψ(r)|2 = 1, this classical

pulse contains one photon on average. The state vector of this classical pulse is

given by

|Ψ(c)
in 〉 = exp

(

−
∫

dr|ψ(r)|2/2
)

exp

(
∫

drψ(r)b̃†r

)

|0〉 , (77)

which is composed of superposition of different number states, as is characteristic

to the classical (coherent) state. Following the notations of Sec. 4.1 and assuming

that the system is free from dissipation (γ = 0), the zero-, one-, and two-photon

components are transformed, after the interaction with the system, as

|0〉 → |0〉 , (78)

∫

drψ(r)b̃†r |0〉 →
∫

drψ̄(r)b̃†r |0〉 , (79)

2−1/2

∫

dr1dr2ψ(r1)ψ(r2)b̃
†
r1
b̃†r2

|0〉 → 2−1/2

∫

dr1dr2ϕ̄(r1, r2)b̃
†
r1
b̃†r2

|0〉 . (80)

Thus, for up to two-photon states, the output wavefunction is given by

|Ψout〉 = exp

(

−
∫

dr
|ψ(r)|2

2

)[

1 +

∫

drψ̄(r)b̃†r

+

∫

dr1dr2
ϕ̄(r1, r2)

2
b̃†r1
b̃†r2

]

|0〉 . (81)

Using this output wavefunction, the output field amplitude fout(r) = 〈Φout|b̃r|Φout〉
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is given, up to the third-order response, by

fout(r) = f
(1)
out(r) + f

(3)
out(r) + O(f

(5)
out) , (82)

f
(1)
out(r) = ψ̄(r) , (83)

f
(3)
out(r) =

∫

dr′ψ̄∗(r′)ϕ̄(r, r′) − ψ̄(r)

∫

dr′|ψ̄(r′)|2 . (84)

The linear output f
(1)
out(r) is identical to the one-photon output wavefunction ψ̄(r),

while the third-order output f
(3)
out(r) contains contracted information of the two-

photon output wavefunction ϕ̄(r1, r2). Remembering that ψ̄(r) is normalized as
∫

dr|ψ̄(r)|2 = 1, it is confirmed that the following quantity,

α′ = 1 +

∫

dr(f
(1)
out(r))

∗f
(3)
out(r) , (85)

is identical to the two-photon nonlinearity parameter α defined by Eq. (66). As

will be confirmed numerically in Sec. 4.4, α and α′ show complete agreement.

Thus, we can evaluate the two-photon nonlinearity parameter α from f
(1)
out(r) and

f
(3)
out(r), which are the linear and the third-order output fields for a classical input

field with mean amplitude ψ(r). Since these quantities can be calculated within

the semiclassical theory, as in Sec. 3.3, one can determine α while avoiding fully

quantum-mechanical calculation.

In the above discussion, it is assumed that the input photons appear in the

output port without leaving any elementary excitations in the system. However, no

system-dependent features are used. Therefore, this semiclassical evaluation method

is applicable to any optical system in the dissipation-free limit. This method would

be particularly valuable in evaluating the two-photon nonlinearity in complex sys-

tems, such as excitonic systems (see Sec. 4.5), where full quantum-mechanical anal-

yses are much more difficult than semiclassical analyses.

4.4. Single-atom in a cavity

Here, we actually evaluate the measure α of two-photon nonlinearity for the sim-

plest case of a single atom in a cavity. To this end, two distinct analyses are used.

One is a fully quantum-mechanical analysis, where temporal evolution of the input

photons is pursued by solving the Schrödinger equation. The one- and two-photon

propagators, denoted by Gr′→r(t) and Gr′

1
,r′

2
→r1,r2

(t), respectively, are obtained an-

alytically, as shown in Appendix C. The one- and two-photon output wavefunctions

are given by

ψ̄(r) =

∫

dr′Gr′→r(t)ψ(r′) , (86)

ϕ̄(r1, r2) =

∫

dr′1dr
′
2Gr′

1
,r′

2
→r1,r2

(t)ψ(r′1)ψ(r′2) . (87)
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The target quantity α is evaluated by Eq. (66). In this method, complete informa-

tion on the output photons (photonic correlations, etc.) can be accessed in terms

of the two-photon wavefunction, ϕ̄.

The other method is a semiclassical analysis discussed in Sec. 4.3. This is much

simpler theoretical analysis compared to the fully quantum-mechanical analysis.

However, only a limited class of information on the output photons is available,

since a contracted wavefunction [the first term in the right hand side of Eq. (84)]

is calculated effectively.

In Secs. 4.4 and 4.5, a Gaussian wavepacket is employed for input photons:

ψ(r) =

(

2

πd2

)1/4

exp

(

− r
2

d2
+ i(ωc + q)r

)

. (88)

The parameters that characterize this wavefunction are the central frequency q

(measured from the cavity frequency) and the coherent length d.

4.4.1. Numerical results

Here, we present the numerical results obtained for the lossless cases of γ = 0.

The atom-cavity system is then characterized solely by the ratio κ/g. Recalling

Sec. 2.2.1, the weak (strong) coupling regime is specified by the inequality κ/g & 4

(κ/g . 4).

The numerical results for weak coupling cases (κ/g = 5, 10) are plotted in

Fig. 11, where the magnitude of nonlinearity is evaluated by |α− 1|. The frequency

of input photons is set at q = 0, since the resonance condition is given by q = 0 in

the weak coupling regime and nonlinearity appears most strongly at this frequency.

Figure 11 indicates that |α−1| depends solely on g2d/κ in the weak coupling regime.

As discussed in Sec. 2.3.3, the atom-cavity system in this regime may be regarded

d  (unit: κ/g2)
0 1 20.5 1.5

0

0.5

1

1.5

2

|α
−1

|

Fig. 11. Dependence of |α−1| on the pulse length d. The solid and dashed lines show the results
for κ/g = 5 and κ/g = 10, respectively. The gray cross marks indicate the results for κ/g = 5
calculated by the semiclassical evaluation method. The frequency of the photons is q = 0.
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d  (unit: κ−1)

0

0.5

1

1.5

2

|α
−1

|

0 4 82 6

Fig. 12. Dependence of |α − 1| on the pulse length d in the strong coupling regime, κ/g = 0.5.
The input frequency is set at q/g = 0.9 (dashed line) and q/g = 1 (solid line). The gray cross
marks indicate the results for q/g = 1 calculated by the semiclassical evaluation method.

as a “one-dimensional atom” with a coupling constant of Γ = 4g2/κ. The optimum

pulse length to maximize the nonlinearity is given by d ∼ 0.5κ/g2.

The numerical results for a strong coupling case (κ/g = 0.5) are plotted in

Fig. 12. In contrast to the weak coupling regime, weak nonlinearity results for the

q = 0 photons, since they are no longer resonant due to the Rabi splitting of

the eigenenergies of the atom-cavity system. Instead, large nonlinearity is obtained

when the input photons are tuned to the Rabi-split frequency, q ∼ ±g. The maxi-

mum value of |α− 1| is approximately 1.5, which is approximately the same as the

value reached in the weak coupling regime. The optimum pulse length is given by

d ∼ 4/κ.

In Figs. 11 and 12, the lines represent the results obtained by the fully quantum-

mechanical formalism, and the gray cross marks represent the results obtained by

the semiclassical formalism. The validity of the semiclassical evaluation method is

proved by their complete agreement.

4.4.2. Optimum pulse for maximizing nonlinearity

In Sec. 4.4.1, the optimum frequency q and the length d for maximizing the non-

linearity are clarified to be (d, q) ∼ (0.5κ/g2, 0) in the weak coupling regime and

(d, q) ∼ (4/κ,±g) in the strong coupling regime. Here, we account for these opti-

mum conditions from a unified perspective.

To this end, we consider such a single photon pulse ψopt(r) that will completely

be absorbed by the atom. This single photon pulse is determined by

eiHts†|0〉 =

∫

drψopt(r)b
†
r |0〉 , (89)

where t is much larger than the atomic radiative lifetime. If the input pulse ψ(r)
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resembles ψopt(r) in shape, the two input photons try to occupy the atom simulta-

neously and strong nonlinear effects are expected.

ψopt(r) has the following form:

ψopt(r) =











igκ1/2

ω̃∗
1 − ω̃∗

2

(eiω̃∗

1
(r+t) − eiω̃∗

2
(r+t)) (−t < r < 0)

0 (otherwise) ,

(90)

where ω̃1 and ω̃2 are the complex eigenfrequencies defined in Eq. (14). In the weak

coupling regime, ω̃1 and ω̃2 are approximately given by −iκ/2 and −2ig2/κ. Because

κ� g2/κ in this regime, the optimum frequency q and pulse length d are given by

q ∼ 0 and d ∼ κ/2g2. On the other hand, in the strong coupling regime, ω̃1 and ω̃2

are approximately given by −iκ/4±g. Therefore, the optimum q and d are roughly

estimated at q ∼ ±g and d ∼ 4/κ.

4.5. Excitonic system in a cavity

In Sec. 4.4, we have evaluated the two-photon nonlinearity obtained by a single two-

level atom inside of a cavity. However, optical media have many more mechanical

degrees of freedom in general and cannot be modeled by a single two-level system.

Here, as an example of more complicated optical systems, we discuss a Frenkel

excitonic system placed in a cavity.36 (This model is also applicable to atomic gas

systems by neglecting the hopping interaction between the sites.)

4.5.1. Model and method

A Frenkel excitonic system is modeled by N identical two-level systems (called

“atoms”) with the excitation-hopping interaction among them. Generalizing

Eq. (2), the system part of the Hamiltonian is given by

H′
sys = ωa

∑

j

s†jsj + ωcc
†c+ g

∑

j

(s†jc+ c†sj) +
∑

j 6=i

Vjis
†
jsi , (91)

where j(= 1, . . . , N) is the site index and the last term describes the hopping inter-

action. In general, the atom-cavity coupling g depends on j through the locations

of each site and the directions of the transition dipole moments; however, this j

dependence is negligible in Frenkel excitonic systems since the atoms are closely

arranged. As the form of Vji, we employ the following mean-field form:f

Vji =











− V

N − 1
(j 6= i)

0 (j = i) .

(92)

fThe results are qualitatively unchanged if we choose a more realistic form of Vji, such as the
nearest-neighbor coupling.36
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The ground state is given by |x1〉 =
∑N

j=1 N
−1/2s†j |0〉, the eigenenergy of which is

given by ωa − V . Other levels lie at ωa + V/(N − 1) with (N − 1)-fold degeneracy.

We hereinafter treat the case in which the ground state is resonant with the cavity,

i.e. ωa −V = ωc, and set ωa −V (= ωc) as the origin of the frequency. The coupling

strength between the cavity mode and the ground state is given by
√
Ng, whereas

other eigenstates completely lose coupling to the cavity mode.

If the hopping interaction is not present, all of the atomic levels are degener-

ate. Therefore, the nonlinearity inherent in the system due to saturation effect is

expected to be weakened as the system size N increases. However, the hopping

interaction lifts the degeneracy and would recover the saturation effect. In particu-

lar, if the energy separation V exceeds by far the other relevant energy scales, the

system would behave as an effective two-level system, showing strong nonlinearity.

These points will be revealed in the following calculations.

The calculation of the two-photon nonlinearity is carried out by the semiclassical

method discussed in Sec. 4.3. Assuming the lossless limit of γ → 0, the Hamiltonian

of the whole system is given by H′ = H′
sys +Hce, where H′

sys and Hce are given by

Eqs. (91) and (3), respectively. The resulting semiclassical equations are presented

in Appendix B.

4.5.2. Results

In order to observe the size effects, the two-photon nonlinearity parameter α is

plotted on the complex plane in Fig. 13, varying the system size N . The system

is in the strong coupling regime (κ/g = 0.5). The hopping interaction exists in

Fig. 13(a) and does not exist in Fig. 13(b). Regarding input photons, the optimum

pulse shape revealed in Sec. 4.4.2 is assumed. Since the atom-cavity coupling is

size-enhanced to be
√
Ng, the optimum pulse is given by d = 4/κ and q = −

√
Ng

(the lower Rabi-split frequency).

1
2

4
8

16

(b)

1
2
4

8 16
32

(a)

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Fig. 13. Plot of α on the complex plane. The dotted line shows the unit circle. The integers near

each point represent the system size N . For each N , the optimum pulse shape for maximizing
nonlinearity is employed. The system parameters are chosen as follows: κ/g = 0.5, ωa − V = ωc,
and V/g = 5 in (a) and 0 in (b).
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In Fig. 13(b), in which all of the atomic levels are degenerate, the two-photon

nonlinearity due to saturation effect becomes weaker monotonously as N increases.

In Fig. 13(a), in which the degeneracy is lifted by the finite hopping interaction, α

remains almost unchanged if the system size is small (N . 10). This is because the

lowest excitonic state behaves as an isolated level due to the large energy separation.

Thus, a quantum dot can be regarded as an “artificial two-level atom” although

they are actually composed of many two-level atoms.

It is commonly observed in both figures that the two-photon nonlinearity be-

comes weaker as the system size N becomes larger (α → 1 as N → ∞), as expected.

For large N , the nonlinear effect mainly appears in the phase of α, keeping |α| ' 1.

In other words, for large N , the nonlinear effect appears as the nonlinear phase

shift in the output wavefunction, keeping the shape of the output pulse unchanged

from the linear case.

5. Summary

It has been pointed out that induction of nonlinear optical effects by only two

photons would be possible by utilizing the field-amplification effect of a cavity.

In the present article, we have reviewed our recent analysis on the two-photon

dynamics occurring in a cavity-QED system. Since a cavity-QED system is highly

dispersive around its resonances, phenomenological treatments based on the single-

mode approximation cannot be applied. Our analysis is based on a theoretical

model in which the external photon field is treated rigorously as a continuum,

which enables us to handle the photonic wavefunction in the spatial representation.

In Sec. 2, the Hamiltonian describing a cavity-QED system is presented, and its

basic properties are discussed. The Hamiltonian includes three principal parame-

ters: the atom-cavity coupling g, the damping rate κ of the cavity mode, and the

radiative decay rate γ of the atom into non-cavity modes. In a cavity-QED system,

the atom placed inside of a cavity is coupled to two kinds of photonic continua,

namely, the quasi-cavity continuum and non-cavity modes. We have observed how

the three parameters are reflected in the form factors for the atom-photon interac-

tion. The method by which to determine the cavity-QED parameters for a planar

cavity is also discussed.

In Sec. 3, the optical response of a cavity-QED system to classical light fields

(coherent state) is investigated. In this case, the input fields can be treated as c-

number fields. In other words, a semiclassical theory is rigorously derived from a

fully quantum-mechanical formalism. In Sec. 3.3, we examined the optical response

to an extremely weak input pulse at the single-photon level. If the input pulse is

resonant with the cavity-QED system, the shape of the output pulse is deformed

significantly from the input as shown in Fig. 9(b), suggesting inapplicability of the

single-mode approximation. Furthermore, the third-order response has a compara-

ble magnitude to that of the linear response, indicating a strong optical nonlinear

effect, even by a weak input field at the single-photon level.
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In Sec. 4, the dynamics of two photons inputted simultaneously into a cavity-

QED system is investigated. The wavefunction of the output photons is calculated

using the propagator presented in Appendix C, and the optical nonlinearity appear-

ing in the output wavefunction is quantified by comparing it with the linear output

wavefunction. The results of the semiclassical theory presented in Sec. 3.3 can be

applied for evaluation of this two-photon nonlinearity. When the cavity contains

only one atom, significant two-photon nonlinearity can be induced by choosing

optimal pulse shapes for the input photons. As the number of atoms increases,

the nonlinear effect becomes smaller. However, if the hopping interaction exists be-

tween atoms (e.g. Frenkel exciton system), it lifts the degeneracy of atomic energies

and revives the two-photon nonlinearity. As is shown in Fig. 13, the two-photon

nonlinearity appears not purely as a phase shift in the output wavefunction. The

degradation of the fidelity between the output wavefunction and the linear output

wavefunction always occurs, which hinders application of this nonlinear effect as a

quantum phase gate. However, the large two-photon optical nonlinearity attainable

in cavity-QED systems will likely find other novel applications in future quantum

control technology.
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Appendix A. Form Factors for a Planar Cavity Geometry

Here, we derive the form factors of Eqs. (29) and (30) from the three-dimensional

Hamiltonian of Eq. (27). First, we diagonalize the photonic part of the Hamiltonian.

Recall here that the in-plane wavevector ~k is conserved in the interaction between

c~k and bk. The eigenmode operator B~kω (with the in-plane wavevector ~k and the

eigenfrequency ω) is given, after employing an approximation of ωk ' kz , by

B~kω = η~k(ω)c~k +

∫

dkzζ~k(ω, kz)bk , (A.1)

where

η~k(ω) =
(2πτ~k)−1/2

ω − ω~k + i/2τ~k
, (A.2)

ζ~k(ω, kz) =
(2πτ~k)−1

(ω − ω~k + i/2τ~k)(ω − kz + iδ)
+ δ(ω − kz) . (A.3)
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B~kω is normalized as [B~kω, B
†
~k′ω′

] = δ2(~k − ~k′)δ(ω − ω′). Inversely, c~k =
∫

dωη∗~k(ω)B~kω. In terms of B~kω, the original Hamiltonian of Eq. (27) is recast into

the following form:

Hplanar = ωas
†s+

∫

d2~kdω[(λ~kη
∗
~k
(ω)s†B~kω + H.c.) + ωB†

~kω
B~kω] . (A.4)

From this form of Hamiltonian, the overall form factor is readily obtained as

|ξt(ω)|2 =

∫

d2~k|λ~kη~k(ω)|2 . (A.5)

Next, we determine the quasi-cavity continuum. The input photon profile now

becomes important at this stage. Choosing a single-photon state as input, its state

vector is given by

|in〉 =

∫

d3
rϕ(x, y)ψ(z)b†r |0〉 , (A.6)

where ψ(z) is the vertical profile of the input photon, which is localized in the z < 0

region and is normalized as
∫

dz|ψ(z)|2 = 1, and br is the annihilation operator for

the external field in the space representation, br = (2π)−3/2
∫

d3
keik·rbk. Denoting

the Fourier transforms of ϕ(x, y) and ψ(z) by ϕ̃(~k) and ψ̃(kz), respectively, the

above state vector can be rewritten as

|in〉 =

∫

d2~kdωψ̃(ω)ϕ̃(~k)
η~k(ω)

η∗~k
(ω)

B†
~kω

|0〉 . (A.7)

To relate the present problem to the conventional (g, κ, γ)-model, the quasi-cavity

continuum should be defined so as to contain the input photon state completely.

The quasi-cavity continuum Cω is thus defined by

C†
ω =

∫

d2~kϕ̃(~k)
η~k(ω)

η∗~k
(ω)

B†
~kω
. (A.8)

Note that Cω is normalized as [Cω, C
†
ω′ ] = δ(ω − ω′). Thus, |ξc(ω)|2 is given by

|ξc(ω)|2 = |〈0|sHplanarC
†
ω|0〉|2 =

∣

∣

∣

∣

∫

d2~kϕ̃(~k)λ~kη~k(ω)

∣

∣

∣

∣

2

. (A.9)

Appendix B. Semiclassical Equations for Excitonic Systems

Here, we present the semiclassical equations of motion for an excitonic system

in a cavity, up to the third-order quantities. The Hamiltonian upon which these

equations are based is given by Eq. (91). The equations for the single atom case,

which have been used in the analysis of Sec. 3.3, can be obtained by setting Vji = 0.

(Note that 〈smsn〉, 〈s†msnsl〉 and 〈c†smsn〉 vanish because ss = 0 in the single atom

case.)
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Dividing 〈c〉 and 〈sm〉 into the linear and third-order components as 〈c〉 =

〈c1〉 + 〈c3〉 and 〈sm〉 = 〈s1,m〉 + 〈s3,m〉, and denoting the detuning ωa − ωc by Ω,

the equations of motion for the linear quantities are given by

d

dt
〈c1〉 = −κ

2
〈c1〉 − ig

∑

j

〈s1,j〉 − i
√
κfin(t0 − t) , (B.1)

d

dt
〈s1,m〉 = −iΩ〈s1,m〉 − i

∑

j(6=m)

Vmj〈s1,j〉 − ig〈c1〉 . (B.2)

The equations of motion for the second-order quantities are given by

d

dt
〈s†msn〉 = i

∑

j(6=m)

Vjm〈s†jsn〉 − i
∑

j(6=n)

Vnj〈s†msj〉 − ig(〈s†mc〉 − 〈s†nc〉∗) , (B.3)

d

dt
〈s†mc〉 = (iΩ − κ

2
)〈s†mc〉 + i

∑

j(6=m)

Vjm〈s†jc〉 − ig
∑

j

〈s†msj〉 + ig〈c†c〉

−i
√
κfin(t0 − t)〈s1,m〉∗ , (B.4)

d

dt
〈c†c〉 = −κ〈c†c〉 + ig

∑

j

(〈s†jc〉 − c.c.) + (i
√
κf∗(t0 − t)〈c1〉 + c.c.) , (B.5)

d

dt
〈smsn〉 = −2iΩ〈smsn〉 − i

∑

j(6=m)

Vmj〈sjsn〉 − i
∑

j(6=n)

Vnj〈smsj〉

− ig(〈snc〉 + 〈smc〉) , (B.6)

d

dt
〈smc〉 =

(

−iΩ − κ

2

)

〈smc〉 − i
∑

j(6=m)

Vmj〈sjc〉 − ig〈cc〉

− ig
∑

j

〈smsj〉 − i
√
κfin(t0 − t)〈s1,m〉 , (B.7)

d

dt
〈cc〉 = −κ〈cc〉 − 2ig

∑

j

〈sjc〉 − 2i
√
κfin(t0 − t)〈c1〉 . (B.8)

The equations of motion for the third-order quantities are given by

d

dt
〈s†msnsl〉 = −iΩ〈s†msnsl〉 + i

∑

j(6=m)

Vjm〈s†jsnsl〉 − i
∑

j(6=n)

Vnj〈s†msjsl〉

− i
∑

j(6=l)

Vlj〈s†msnsj〉 + ig(〈c†snsl〉 − 〈s†mslc〉 − 〈s†msnc〉) , (B.9)
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d

dt
〈s†msnc〉 = −κ

2
〈s†msnc〉 + i

∑

j(6=m)

Vjm〈s†jsnc〉 − i
∑

j(6=n)

Vnj〈s†msjc〉

+ ig(〈c†snc〉 − 〈s†mcc〉) − ig
∑

j

〈s†msnsj〉

− i
√
κfin(t0 − t)〈s†msn〉 , (B.10)

d

dt
〈s†mcc〉 = (iΩ − κ)〈s†mcc〉 + i

∑

j(6=m)

Vjm〈s†jcc〉 − 2ig
∑

j

〈s†msjc〉

+ ig〈c†cc〉 − 2i
√
κfin(t0 − t)〈s†mc〉 , (B.11)

d

dt
〈c†smsn〉 =

(

−2iΩ− κ

2

)

〈c†smsn〉 − i
∑

j(6=m)

Vmj〈c†sjsn〉

− i
∑

j(6=n)

Vnj〈c†smsj〉 − ig(〈c†snc〉 + 〈c†smc〉)

+ ig
∑

j

〈s†jsmsn〉 + i
√
κf∗(t0 − t)〈smsn〉 , (B.12)

d

dt
〈c†smc〉 = (−iΩ− κ)〈c†smc〉 − i

∑

j(6=m)

Vmj〈c†sjc〉 + ig
∑

j

〈s†jsmc〉

− ig
∑

j

〈c†smsj〉 − ig〈c†cc〉 + i
√
κf∗(t0 − t)〈smc〉

− i
√
κfin(t0 − t)〈c†sm〉 , (B.13)

d

dt
〈c†cc〉 = −3κ

2
〈c†cc〉 + ig

∑

j

〈s†jcc〉 − 2ig
∑

j

〈c†sjc〉

+ i
√
κf∗(t0 − t)〈cc〉 − 2i

√
κfin(t0 − t)〈c†c〉 , (B.14)

d

dt
〈c3〉 = −κ

2
〈c3〉 − ig

∑

j

〈s3,j〉 , (B.15)

d

dt
〈s3,m〉 = −iΩ〈s3,m〉 − i

∑

j(6=m)

Vmj〈s3,j〉 − ig〈c3〉 + 2ig〈s†msmc〉

+ 2i
∑

j(6=m)

Vmj〈s†msmsj〉 . (B.16)
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Appendix C. Propagators

In this Appendix, we outline the derivation of the one- and two-photon propaga-

tors for the single-atom case. Our starting point is the Hamiltonian of the form

of Eq. (19). We use the following abbreviations for the atom-photon coupling

constants,

gk = gη∗(k) =

√

g2κ

2π

1

k − ω̃∗
c

, (C.1)

γk =

√

γ

2π
. (C.2)

C.1. One-photon propagator

The one-photon propagator is defined by

Gr′→r(t) = 〈b̃re−iHtb̃†r′〉v , (C.3)

where r′ < 0 < r, and 〈· · ·〉v indicates a vacuum expectation value, i.e. 〈· · ·〉v ≡
〈0| · · · |0〉. Using Eq. (18) and noting that r′ < 0 < r, one can switch to the

wavenumber space:

Gr′→r(t) =
i

(2π)2

∫

dkdk′dωei(kr−k′r′−ωt) η(k
′)

η∗(k′)

〈

Ck
1

ω −H + iδ
C†

k′

〉

v

, (C.4)

C.1.1. Green’s function method

Here, we evaluate the resolvent in Eq. (C.4), using the Green’s function method.

First, we define the bare Green functions for the atom and photons. These bare

Green’s functions are related to the free dynamics of the atom and photons. De-

noting the non-interacting Hamiltonian by H0, they are given by

A(ω) =

〈

s
1

ω −H0 + iδ
s†
〉

v

=
1

ω − ωa + iδ
, (C.5)

Pk′→k(ω) =

〈

Ck
1

ω −H0 + iδ
C†

k′

〉

v

=
δ(k − k′)

ω − k + iδ
≡ δ(k − k′)Q(ω − k) . (C.6)

In the Feynman diagrams, these bare Green’s functions are represented by solid

and dotted lines, as shown in Figs. C.1(a) and C.1(b).

The dressed atomic Green’s function, which includes the effects of the atom-

photon interaction, is defined by

Ā(ω) =

〈

s
1

ω −H + iδ
s†
〉

v

. (C.7)
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(a) atom (bare) (b) photon (bare)

(c) atom (dressed)

k’ k

=

+

+

+ ...
q’ q

gq’* gq

(d) photon (dressed)

k’ kk’ k

k’ q’ q k

gq*gq’

=

+

Fig. C.1. Feynman diagrams for the one-particle problem: (a) bare atomic Green’s function,
A(ω), (b) bare photonic Green’s function, Pk′→k(ω), (c) bare atomic Green’s function, Ā(ω), and
(d) bare atomic Green’s function, P̄k′→k(ω).

It is known that the dressed atomic Green’s function can be expanded in terms of

the bare Green’s functions as follows:

Ā(ω) = A(ω) +A(ω)Σ(ω)A(ω) +A(ω)Σ(ω)A(ω)Σ(ω)A(ω) + · · ·

=
A(ω)

1 −A(ω)Σ(ω)
, (C.8)

where Σ(ω), which is referred to as the self-energy, is given by

Σ(ω) =

∫

dq′dq(g∗q′gq + γ∗q′γq)Pq′→q(ω) =
g2

ω − ω̃c
− iγ

2
. (C.9)

The Feynman diagrams corresponding to Eq. (C.8) are drawn in Fig. C.1(c). Com-

bining Eqs. (C.8) and (C.9), the dressed atomic Green’s function is given by

Ā(ω) =
ω − ω̃c

(ω − ω̃1)(ω − ω̃2)
, (C.10)

where ω̃1 and ω̃2 are the complex eigenfrequencies of the atom-cavity system defined

by Eq. (12).

The Feynman diagrams for the dressed photonic Green’s function, P̄k′→k(ω) =

〈Ck
1

ω−H+iδC
†
k′ 〉v, are shown in Fig. C.1(d). With the help of this diagram, P̄k′→k(ω)

is obtained as

P̄k′→k(ω) = P̄
(0)
k′→k(ω) + P̄

(2)
k′→k(ω) , (C.11)
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where

P̄
(0)
k′→k(ω) = Pk′→k(ω) = δ(k − k′)Q(ω − k) , (C.12)

P̄
(2)
k′→k(ω) =

∫

dq′dqPk′→q′(ω)gq′Ā(ω)g∗qPq→k(ω)

= g2η∗(k′)η(k)Q(ω − k′)Ā(ω)Q(ω − k) . (C.13)

C.1.2. Space representation

Substituting Eq. (C.11) into Eq. (C.4), the one-photon propagator in the real-space

representation is given by

Gr′→r(t) = G
(0)
r′→r(t) +G

(2)
r′→r(t) , (C.14)

where

G
(0)
r′→r(t) = δ(r − r′ − t) − κθ(r′ + t− r)eiω̃c(r−r′−t) , (C.15)

G
(2)
r′→r(t) = κθ(r′ + t− r)

[

eiω̃c(r−r′−t) − ω̃2 − ω̃c

ω̃2 − ω̃1
eiω̃1(r−r′−t)

− ω̃1 − ω̃c

ω̃1 − ω̃2
eiω̃2(r−r′−t)

]

. (C.16)

The one-photon propagator is a function of a single argument, r − r′ − t. The

propagator vanishes in the region of r > r′ + t in agreement with the causality.

C.2. Two-photon propagator

Since the completeness relation in the two-photon space is given by

1̂ = 2−1
∫

dr1dr2b̃
†
r1
b̃†r2

|0〉〈0|b̃r1
b̃r2

, the two-photon propagator is identified as

2−1〈b̃r1
b̃r2
e−iHtb̃†r′

1

b̃†r′

2

〉v. This quantity is composed of two types of terms. In the

first (second) type, the photons initially located at r′1 and r′2 (r′2 and r′1) are scat-

tered to r1 and r2, respectively. Both types yield the same output wavefunction,

because the two-photon wavefunction is symmetric with respect to the interchange

of the space coordinate, i.e. ϕ(r′1, r
′
2) = ϕ(r′2, r

′
1). Therefore, we can regard only the

first type as the two-photon propagator. The two-photon propagator is given by

Gr′

1
,r′

2
→r1,r2

(t) = 〈b̃r1
b̃r2
e−iHtb̃†r′

1

b̃†r′

2

〉v|r′

1
→r1,r′

2
→r2

. (C.17)

Using Eq. (18), we can switch to the wavenumber representation:

Gr′

1
,r′

2
→r1,r2

(t) =
i

(2π)3

∫

d2kd2k′dωei(k1r1+k2r2−k′

1
r′

1
−k′

2
r′

2
−ωt) η(k′1)η(k

′
2)

η∗(k′1)η
∗(k′2)

×
〈

Ck1
Ck2

1

ω −H + iδ
C†

k′

1

C†

k′

2

〉

v

∣

∣

∣

∣

k′

1
→k1,k′

2
→k2

. (C.18)
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(b) bare two photon

k1’ k1

k2’ k2

(c) dressed atom with free photon

k’ k

(a) 

k1

k’2 k2

P(6,a) k’1

k1

k’2 k2

P(4,a) k’1

k1

k’2 k2

P(6,b) k’1

k1

k’2 k2

P(4,b) k’1

k1

k’2 k2

P(2,b) k’1
k1

k’2 k2

P(2,a) k’1 q’ q

q’’’ q’’

gq*gq’

k1

k’2 k2

P(0) k’1

k1

k’2 k2

k’1 k2

k’2 k1

k’1=

(d) 

+ ......

P(4,b) P(4,a) with  k1      k2

Fig. C.2. Feynman diagrams for the two-particle problem: (a) diagrams constituting the dressed
two-photon Green’s function, (b) bare two-photon Green’s function, Pk′

1
→k1,k′

2
→k2

(ω), (c) dressed

atomic Green’s function with a free photon, Āk′→k(ω), (d) equivalence between P̄ (j,b) and P̄ (j,a)

with k1 ↔ k2.

C.2.1. Green’s function method

We can apply the diagram technique also to two-quanta problems. The quantity to

evaluate is the dressed two-photon Green’s function,

P̄k′

1
→k1,k′

2
→k2

(ω) =

〈

Ck1
Ck2

1

ω −H + iδ
C†

k′

1

C†

k′

2

〉

v

∣

∣

∣

∣

k′

1
→k1,k′

2
→k2

. (C.19)

Noting that the atom cannot absorb two photons simultaneously, the low-order

diagrams for this quantity are drawn in Fig. C.2(a). These diagrams are composed of

two elementary components: the bare two-photon Green’s function and the dressed

atomic Green’s function with a non-interacting photon, the diagrams of which are

drawn in Figs. C.2 (b) and (c), respectively. They are given by

Pk′

1
→k1,k′

2
→k2

(ω) = δ(k1 − k′1)δ(k2 − k′2)Q(ω − k1 − k2) , (C.20)
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Āk′→k(ω) = δ(k − k′)Ā(ω − k) , (C.21)

where Q(ω) and Ā(ω) are defined by Eqs. (C.6) and (C.10). The dressed Green’s

function is given by

P̄k′

1
→k1,k′

2
→k2

(ω) = P̄ (0) +
∑

j=2,4,...

(P̄ (j,a) + P̄ (j,b)) , (C.22)

where the arguments (k′1, k
′
2, k1, k2 and ω) are omitted in the right hand side. Fig-

ure C.2 shows that P̄ (0) is simply the bare two-photon Green’s function given by

Eq. (C.20). Furthermore, since the input wavenumbers k′1 and k′2 are interchange-

able, P̄ (j,b) can be viewed as P̄ (j,a) with k1 ↔ k2, as illustrated in Fig. C.2(d). The

higher-order terms take complicated forms, but they can be obtained systematically

with the help of the diagram. For example, P̄ (2,a) is given by

P̄ (2,a) =

∫

d4qPk′

1
→q′,k′

2
→q′′′ (ω)gq′Āq′′′→q′′ (ω)g∗qPq→k1,q′′→k2

(ω)

= g2η∗(k′1)η(k1)Q(ω − k′1 − k′2)Ā(ω − k2)Q(ω − k1 − k2)

× δ(k2 − k′2) . (C.23)

Similarly, P̄ (4a) and P̄ (6a) are given by

P̄ (4a) = g4η∗(k′1)η
∗(k′2)η(k1)η(k2)Q(ω − k′1 − k′2)Ā(ω − k′2)

×Q(ω − k1 − k′2)Ā(ω − k1)Q(ω − k1 − k2) , (C.24)

P̄ (6a) = g6η∗(k′1)η
∗(k′2)η(k1)η(k2)Q(ω − k′1 − k′2)Ā(ω − k′2)Ā(ω − k2)

×Q(ω − k1 − k2)

∫

dq|η(q)|2Q(ω − q − k′2)Ā(ω − q)

×Q(ω − q − k2) (C.25)

= g6η∗(k′1)η
∗(k′2)η(k1)η(k2)Q(ω − k′1 − k′2)Ā(ω − k′2)Ā(ω − k2)

×Q(ω − k1 − k2)Q(ω − ω̃c − k′2)Ā(ω − ω̃c)Q(ω − ω̃c − k2) . (C.26)

As observed in Eq. (C.25), for P (j) with j ≥ 6, integrals over q’s (inner photon

wavenumber) remain. However, as in Eq. (C.26), such integrals can be evaluated

simply by replacing q with ω̃c.
g

The infinite sum appearing in Eq. (C.22) can be obtained as

P̄ (∞,a) ≡ P̄ (6,a) + P̄ (8,b) + P̄ (10,a) + P̄ (12,b) + · · ·

gTypically, the integral over an inner wavenumber takes the following form:
∫

dq|η(q)|2Q(ω − q−
z1)Ā(ω − q)Q(ω − q − z2), where Im z1, Im z2 ≤ 0. Because the integrand has only one pole (at
ω̃c) in the lower half-plane, we obtain the following formula,
∫

dq|η(q)|2Q(ω − q − z1)Ā(ω − q)Q(ω − q − z2) = Q(ω − ω̃c − z1)Ā(ω − ω̃c)Q(ω − ω̃c − z2) .

By this formula, all integrals over the inner wavenumbers can be carried out.
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= P̄ (6,a) × 1

1 − g2Ā(ω − ω̃c)Q(ω − 2ω̃c)

= P̄ (6,a) × (ω − ω̃c − ω̃1)(ω − ω̃c − ω̃2)

(ω − ν̃1)(ω − ν̃2)
, (C.27)

where ν̃1 and ν̃2 are the complex eigenenergies with two quanta, defined by Eq. (13).

The dressed two-photon Green’s function is finally given by

P̄ (ω) = P̄ (0)(ω) +
∑

x=a,b

{P̄ (2,x)(ω) + P̄ (4,x)(ω) + P̄ (∞,x)(ω)} . (C.28)

C.2.2. Space representation

Combining Eqs. (C.18) and (C.28), the two-photon propagator in the real-space

representation is given by

Gr′

1
,r′

2
→r1,r2

(t) = G(0) +
∑

x=a,b

{G(2,x) +G(4,x) +G(∞,x)} , (C.29)

where

G
(0)
r′

1
,r′

2
→r1,r2

(t) = G
(0)
r′

1
→r1

(t) ×G
(0)
r′

2
→r2

(t) , (C.30)

G
(2,a)
r′

1
,r′

2
→r1,r2

(t) = G
(2)
r′

1
→r1

(t) ×G
(0)
r′

2
→r2

(t) , (C.31)

G
(4,a)
r′

1
,r′

2
→r1,r2

(t) = I(4)(r1 − r2, r
′
1 − r′2, r2 − r′1 − t) , (C.32)

G
(∞,a)
r′

1
,r′

2
→r1,r2

(t) = I(∞)(r2 − r1, r
′
1 − r′2, r1 − r′1 − t) , (C.33)

and

I(4)(x, y, z) = − ig
4κ2

8π3

∫

dkdk′dω
eikx+ik′y+iωzJ(k, k′, ω)

ω − k − k′ + iδ
, (C.34)

I(∞)(x, y, z) = − ig
6κ2

8π3

∫

dkdk′dω eikx+ik′y+iωzJ(k, k′, ω)(ω − 2ω̃c)

(ω − k − ω̃c)(ω − k′ − ω̃c)(ω − ν̃1)(ω − ν̃2)
, (C.35)

J(k, k′, ω) =
∏

q=k,k′

1

(q − ω̃c)(ω − q − ω̃1)(ω − q − ω̃2)
. (C.36)

G(j,b) is obtained from G(j,a) by interchanging r1 and r2.
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