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Abstract

It was predicted that frequently repeated measurements on an unstable quantum state may alter the decay rate
of the state. This is called the quantum Zeno effect (QZE) or the anti-Zeno effect (AZE), depending on whether
the decay is suppressed or enhanced. In conventional theories of the QZE and AZE, effects of measurements are
simply described by the projection postulate, assuming that each measurement is an instantaneous and ideal one.
However, real measurements are not instantaneous and ideal. For the QZE and AZE by such general measurements,
interesting and surprising features have recently been revealed, which we review in this article. The results are based
on the quantum measurement theory, which is also reviewed briefly. As a typical model, we consider a continuous
measurement of the decay of an excited atom by a photodetector that detects a photon emitted from the atom
upon decay. This measurement is an indirect negative-result one, for which the curiosity of the QZE and AZE is
emphasized. It is shown that the form factor is renormalized as a backaction of the measurement, through which
the decay dynamics is modified. In a special case of the flat response, where the detector responds to every photon
mode with an identical response time, results of the conventional theories are reproduced qualitatively. However,
drastic differences emerge in general cases where the detector responds only to limited photon modes. For example,
against predictions of the conventional theories, the QZE or AZE may take place even for states that exactly follow
the exponential decay law. We also discuss relation to the cavity quantum electrodynamics.
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1. Introduction

The standard quantum theory assumes two principles for time evolution[1,2]; the continuousuni-
tary evolutionin the absence of measurement, and the projection postulate connecting the pre- and
post-measurement states. Using these principles, an interesting prediction was obtained by analyzing
the gedanken experiment in which the initial state of a quantum system is unstable and one repeatedly
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checks whether the unstable state has decayed or not[3–5]. Until the system is measured, the state
vector undergoes the unitary evolution according to the Schrödinger equation. It is then shown that at
the very beginning of the decay the survival probabilitys(t) of the unstable state decreases very slowly
as a function of the elapsed timet as 1− s(t) ∝ t2, whereas in the later time stages(t) decreases
much faster, typically exponentially. The time scaletj at which the crossover between these different
behaviors takes place is called thejump time[6]. On the other hand, the projection postulate tells us
that at every moment an observer confirms the survival of the system through the measurement, the
quantum state of the system is reset to the initial undecayed one. Combining these two observations,
one is led to an interesting conclusion that the decay rate is reduced if the intervals�i of the repeated
measurements is shorter thantj . In the limit of �i/tj → +0, in particular, the decay is completely
suppressed, i.e., the system is frozen to the initial undecayed state. This phenomenon is called thequan-
tum Zeno effect(QZE) [7–10]. It was also predicted later that for slightly longer�i (∼tj ) the opposite
effect, i.e., acceleration of decay, can occur in some quantum systems. This is called thequantum anti-
Zeno effect(AZE) or inverse Zeno effect[11–14]. The QZE and AZE are sometimes called simply
theZeno effect.

Most importantly, the reasoning leading to these predictions is independent of details of
quantum systems, and thus the Zeno effect is expected to occur widely in quantum systems. In
particular, the complete suppression of the decay in the limit of�i/tj → +0 is universal, common
to all quantum systems. However, the reasoning leading to such interesting and universal conclusions
needs to be reexamined, because it assumes that each measurement is aninstantaneous ideal
measurement. Here, the term ‘instantaneous’ means that the response time�r of the measuring ap-
paratus is much shorter than other relevant time scales such as�i . The term ‘ideal’ means that the
post-measurement state is given by the projection postulate, which implies many conditions such as
the measurement error is zero. Unfortunately, these conditions are not strictly satisfied in
real measurements. Therefore, the Zeno effect by suchgeneral measurementsis interesting and to
be explored.

To study the time evolution of quantum systems under general measurements, one must apply the
quantum measurement theory, which has been developed for several decades[1,15–23]. The point of the
quantum measurement theory is that one must apply the laws of quantum theory to the joint quantum sys-
tem composed of the target system S of interest and (a part of) the measuring apparatus A. In other words,
the ‘Heisenberg cut’separating the quantum system and the rest of the world should be located not between
S and A but between S+A and the rest A′. Although the boundary between A and A′ can be taken quite
arbitrarily, one can obtain the same results if S+A is taken to be large enough, i.e., if the Heisenberg cut is
properly located[1]. One can then calculate all relevant quantities, including the response time, measure-
ment error, range of the measurement, and the post-measurement state, and so on. One can thus calculate
the decay rate under general measurements as a function of these relevant quantities. Furthermore, al-
though the necessity of the projection postulate in the analysis of the Zeno effect has been a controversial
point for a long time[10], the quantum measurement theory gives a clear answer: As far as the Zeno
effect is concerned one can analyze it without using the projection postulate at all if S+A is taken to be
large enough.

The purpose of the present article is to review results for the Zeno effect by general measurements. We
show that the conclusions of the conventional theories, which assume instantaneous ideal measurements,
are modified drastically depending on the natures of real measurements. In particular, some of common
wisdoms deduced by the conventional theories break in general measurement processes. For example, the



K. Koshino, A. Shimizu / Physics Reports 412 (2005) 191–275 195

Zeno effect can take place even for systems withtj → +0 [24,25], for which the conventional theories
predicted that the Zeno effect never occurs.

Note that in the original papers of the QZE a truly decaying state was analyzed, for whichs(t) in the
absence of measurements decreases monotonically. However, the Zeno effect has also been discussed on
other classes of states such as states for whichs(t)oscillates witht (Rabi oscillation)[26,27]. Furthermore,
although the QZE was discussed as a result of measurements in the original papers, some works use the
term QZE or AZE for changes of the decay rate induced by any external perturbations such as external
noises[28–30]. The former may be called the Zeno effect in the narrow sense, whereas the latter may
be called the Zeno effect in the broad sense. Moreover, it is sometimes argued that the Zeno effect is
curious or surprising only when the measurements are indirect and negative-result ones[10]. Although
these different views concern merely the definition of the terms QZE and AZE, they have been the origins
of certain confusion or controversy. We will therefore notice the above points where it is needed.

The present article is organized as follows. In Section 2, we review thefree quantum dynamics of
unstable states, i.e., the dynamics while the system is not being measured, by solving the Schrödinger
equation. After presenting a typical model of unstable systems, we describe a simple technique to solve
the model, and explain characteristics of the survival probability of the unstable state. By combining
the results of Section 2 and the projection postulate, we review in Section 3 the conclusions of the
conventional theories of the Zeno effect, which assumed instantaneous ideal measurements. The de-
cay rate under repeated measurements is presented as a function of the measurement intervals�i , and
the conditions for inducing the QZE or AZE by instantaneous ideal measurements are clarified. The
quantum measurement theory is briefly reviewed in Section 4, in such a way that it provides for ba-
sic knowledge that are required to understand not only the Zeno effect but also many other topics
of quantum measurements. After presenting the prescription for analyzing general measurements, we
summarize relevant quantities such as the measurement error and the range of the measurement, as
well as useful concepts, such as indirect measurements and negative-result measurements. We also
explain why one can analyze the Zeno effect without using the projection postulate. We then give a
simple explanation of the Zeno effect using the quantum measurement theory. In Section 5, we an-
alyze the Zeno effect by the quantum measurement theory. We employ a model which describes a
continuous indirect negative-result measurement of an unstable state. It is shown that the form factor
is renormalized as an inevitable backaction of measurement, and this renormalization plays a cru-
cial role in the Zeno effect. We study the case of a continuous measurement with flat response in
Section 5.3, and show that the results almost coincide with those obtained by the conventional the-
ories, which assumed repeated instantaneous ideal measurements. In contrast, we show in Sections
5.4–5.6 that dramatic differences emerge if the response is not flat. In Section 6, relation between
the Zeno effect and other phenomena, such as the motional narrowing, is discussed. In particular, we
discuss the close relationship between the cavity quantum electrodynamics (QED) and the Zeno ef-
fect by a continuous indirect measurement. Using the results of the cavity QED, we touch on the
Zeno effect in case where the detectors are spatially separated from the target atom in Section 6.4.
InSection 7, we introduce experimental studies on the Zeno effect on monotonically decaying un-
stable states. We also discuss how toavoid the Zeno effect in general experiments, which are de-
signed not to detect the Zeno effect but to measure the free decay rate accurately. Finally, the main
points of this article are summarized in Section 8. Since Sections 4 and 5 are rather long, guide-
lines are given at the beginnings of these sections, which will help the readers who wish to read
them faster.
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(a) (b)

Fig. 1. Schematic energy diagram of the Hamiltonian in (a) the raw form [Eq. (1)], and (b) after the interaction modes are
extracted [Eq. (15)].

2. Fundamental properties of unstable quantum systems

2.1. A typical model of unstable quantum systems

In this section, we review the intrinsic dynamics of unstable states in quantum systems, which occurs
while the system is not being measured. There are many examples of unstable quantum systems: excited
atoms[31,32], unstable nuclei[9], and so on. The dynamics of these systems are characterized by
irreversibility; the initial unstable state decays with a finite lifetime, and the system never returns to the
initial state spontaneously. Such an irreversible dynamics takes place when the initial state is coupled
to continua of states, whose energies extend over a wide energy range. In the following, we employ an
excited two-level atom with a finite radiative lifetime as a typical example of unstable quantum systems,
but the main features of the dynamics are common to most unstable systems.

The system is composed of a two-level atom and a photon field. The eigenmodes of the photon field are
labeled by the wavevectork and the polarization�. For notational simplicity, we hereafter omit the label�
and employ a single labelk to discriminate photon eigenmodes. We denote the atomic raising (lowering)
operator by�+ (�−), the creation (annihilation) operator of a photon byb†

k (bk), and the vacuum state (no
atomic excitation and no photons) by|0〉. At the initial moment (t = 0), the atom is in the excited state
and there are no photons. Takingh̄= c = 1, the Hamiltonian of this system is given by

ĤS = ��+�− +
∫

dk [(gk�+bk + H.c.)+ εkb
†
kbk] , (1)

where� is the atomic transition energy,εk is the energy of the modek, andgk is the atom–photon coupling.
The schematic energy diagram is shown inFig. 1(a). Here, the dimension ofk is arbitrary, and no specific
forms ofεk andgk are assumed.

Regarding the atom–photon interaction, the rotating-wave approximation is employed[31,32], i.e., the
counter-rotating terms such as�−bk and�+b†

k are neglected. The effect of counter-rotating terms may be
partly incorporated by renormalizing the atom–photon couplinggk for off-resonant photons. Under the
rotating-wave approximation, the number of quanta, which is defined by

N̂ = �+�− +
∫

dkb†
kbk , (2)

is conserved in this system, i.e.,[ĤS, N̂ ] = 0. Because we have one quantum (atomic excitation) in
the initial state, the state vector evolves restrictedly in the one-quantum space, which is spanned by the
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following states:

|x〉 = �+|0〉 , (3)

|g, k〉 = b†
k|0〉 , (4)

where|x〉 and|g〉 in the left-hand-side represent the excited and ground states of the atom, respectively.
The initial state vector,|i〉, is given by|i〉 = |x〉.

Throughout this article, we employ the Schrödinger picture for describing temporal evolution. The
state vector evolves as

|�(t)〉 = exp(−iĤSt)|i〉 , (5)

which may be written as follows:

|�(t)〉 = f (t)|x〉 +
∫

dkfk(t)|g, k〉 , (6)

where

f (t)= 〈x|exp(−iĤSt)|i〉 , (7)

fk(t)= 〈g, k|exp(−iĤSt)|i〉 . (8)

f (t) is called the survival amplitude of the initial state, and its square gives the survival probabilitys(t);

s(t)= |f (t)|2 . (9)

2.2. Initial behavior of survival probability

In this subsection, we briefly discuss short-time behaviors of the survival probability. Expanding
exp(−iĤSt) in Eq. (7) in powers oft, f (t) is given by

f (t)=
∞∑
j=0

(−it)j

j ! 〈(ĤS)j 〉 , (10)

where〈(ĤS)j 〉 = 〈i|(ĤS)j |i〉. 1 s(t) is thus given by

s(t)= 1− 〈(�ĤS)2〉t2 + O(t4) , (11)

where〈(�ĤS)2〉 ≡ 〈Ĥ 2
S 〉 − 〈ĤS〉2 is a positive quantity. It is easily confirmed that

s(t)= |〈exp(−iĤSt)〉|2 = |〈exp(iĤSt)〉|2 = s(−t) , (12)

which implies thats(t) is an even function oft and therefore contains only even powers oft. Eq. (11)
states thats(t) decreases quadratically in time at the beginning of decay, whereas in a later periods(t)

1 This expansion is valid when〈(ĤS)j 〉 is finite for anyj. Although this assumption seems to be satisfied in real physical
systems,〈(ĤS)j 〉 can diverge if one takes a certain limit, such as the� → ∞ limit taken in Section 5.5.1. Physically, such a
limit should be understood as an abbreviated description of the case where� is larger than any other relevant energy scales.
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behaves differently depending on details of the system (see Section 2.6 and Refs.[3–5,8,33–35]). The
quadratic decrease becomes important when we consider the effects of frequently repeated measurements
on the system (see Section 3.3).

2.3. Form factor

Before investigating the temporal evolution in the whole time region, we transform the above Hamil-
tonianĤS into a simpler form, where the atom is coupled to a single continuum which is labeled one-
dimensionally by the energy.

2.3.1. Interaction mode and the form factor
In order to explain the basic idea, we preliminarily consider a simplified case where the atom interacts

only with two photon modesb1 andb2 of the same energy�. The Hamiltonian for this simplified system
is given by

Ĥsim = ��+�− + �b†
1b1 + �b†

2b2 + (�1�+b1 + �2�+b2 + H.c.) .

By the following linear transformation:(
B1
B2

)
= 1√

�2
1 + �2

2

(
�1 �2
−�2 �1

)(
b1
b2

)
,

the Hamiltonian can be recast into the following form:

Ĥsim = ��+�− + �B†
1B1 +

[√
�2
1 + �2

2 �+B1 + H.c.

]
+ �B†

2B2 .

Here, onlyB1 interacts with the atom with the renormalized coupling constant
√

�2
1 + �2

2, while B2 is
decoupled from the atom. We callB1 the interaction mode[36,37].

Now we return to the original Hamiltonian̂HS , Eq. (1). We define the interaction mode at energy� by

B� = g−1
�

∫
dk 	(εk − �) gk bk , (13)

whereg� is theform factorof the interaction, which is defined by2

|g�|2 =
∫

dk|gk|2	(εk − �) . (14)

Here,g� has been determined so as to normalizeB� as[B�, B
†
�′ ] = 	(�− �′). Using these quantities, the

Hamiltonian Eq. (1) is transformed into the following form:

ĤS = ��+�− +
∫

d� [(g��+B� + H.c.)+ �B†
�B�] + Ĥrest , (15)

2 The phase ofg� can be taken arbitrary. For example, one can take it asg� �0.
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whereĤrestconsists of modes that do not interact with the atom. The schematic energy diagram after this
transformation is shown inFig. 1(b). Due to our initial condition, the existence ofĤrest does not affect
the decay dynamics at all.

In Eq. (15), the atom is coupled to a single continuumB�. This type of Hamiltonian is called the
Friedrichs model[38]. In this model, the dynamics is determined solely by the functional form of|g�|2.
For example, if we apply the Fermi golden rule[39], the radiative decay rate of the atom is given by


FGR= 2�|g�|2 = 2�

∫
dk|gk|2	(εk − �) . (16)

In the following parts of this subsection, concrete forms of the form factor are presented for three realistic
cases.

2.3.2. Free space
Firstly, we consider a case where an atom is placed in a free space[32]. The form factor is dependent

on the dimension of the space. Here, we discuss the three-dimensional case as an example. Imposing the
periodic boundary condition with the quantization lengthL, and reviving here the index� representing
the photonic polarization, the eigenmodes and eigenenergies are given by

fk�(r)= L−3/2 eik·rek� , (17)

εk� = |k| , (18)

whereek� is a unit vector in the direction of polarization, which is normal to the wavevectork. k is
discretized ask = 2�/L× (nx, ny, nz), wherenx,y,z = 0,±1,±2, . . . . The atom–photon couplinggk�

is given by

gk� =− e
m

√
2�

εk�
〈x|p · fk�(r)|g〉 , (19)

wherem, e, r, and p are the mass, charge, position, momentum of the electron in the atom. If the
r-dependence offk�(r) within the atom is negligible (dipole approximation), we obtain

gk� =−i�

√
2�

εk�
�atom · fk�(r) , (20)

where�atom= e〈x|r|g〉 is the transition dipole moment of the atom.
It should be noted that the atom is coupled only to photons within a finite energy range. The lower-

bound originates in the positiveness of the photonic energy. The higher-cutoff�c is introduced by the
fact that〈x|p · fk�(r)|g〉 almost vanishes when|k| is large, due to rapid oscillation offk�(r).

Now we determine the form factor, using Eq. (20). The form factor is given, using the formula
Eq. (14), by

|g�|2 =
∑
k,�

|gk�|2	(εk − �) . (21)



200 K. Koshino, A. Shimizu / Physics Reports 412 (2005) 191–275

(a)

(b)

(c)

Fig. 2. Schematic view of the form factors in (a) a three-dimensional free space, (b) a perfect cavity, and (c) a leaky cavity.

Taking theL→ ∞ limit and replacing the summation overk with the integral, we obtain the following
form factor:

|g�|2 =
{

2�2|�atom|2�
3�

(���c)

0 (���c)
. (22)

Thus, the form factor has a continuous spectrum in a free space, as shown inFig. 2(a).

2.3.3. Perfect cavity
Next, we discuss a case where the atom is placed in a perfect cavity, whose eigenmodes do not suffer

attenuation at all. As a model of such a perfect cavity, we consider a photon field bounded by perfect
mirrors placed atx=0 andlx , y=0 andly , z=0 andlz. The eigenmodes and eigenenergies are given by

fk�(r)=
√

8

lx lylz
sin(kxx) sin(kyy) sin(kzz)ek� , (23)

εk� = |k| , (24)

wherek= (nx�/lx, ny�/ly, nz�/lz)with nx,y,z=1,2, . . . . The atom–photon coupling constant and the
form factor are determined by Eqs. (19) and (21), respectively.

A distinct difference from the free-space case is that the photonic modes are discretized. In the present
case, the summation overk cannot be replaced with the integral, and the form factor is composed of delta
functions located at eigenenergies, as shown inFig. 2(b). The energy separation becomes larger as the
cavity lengths (lx, ly, lz) are decreased. By using a small cavity, one may realize a situation where the
atom effectively interacts only with a single eigenmode of the cavity. Then, denoting the annihilation
operator of that eigenmode bya, the Hamiltonian of the whole system reads

Ĥpc = ��+�− + (g�+a + H.c.)+ �0a
†a , (25)
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where�0 is the energy of the eigenmode, andg is the coupling constant between the atom and the
eigenmode.

2.3.4. Leaky cavity
In usual optical cavities, in order that one can input photons into the cavity from external photon modes,

one (or more) mirror composing the cavity should be weakly transmissive. In this case, photons inside
the cavity gradually escape into external modes through the transmissive mirror, i.e., the cavity is leaky.
Considering for simplicity a case where the atom effectively interacts with a single cavity mode, the
Hamiltonian for the whole system is given, extending Eq. (25), by

Ĥlc = ��+�− + (g�+a + H.c.)+ �0a
†a +

∫
d�

[√


2�
(a†b� + b†

�a)+ �b†
�b�

]
, (26)

whereb� denotes the annihilation operator for the external photon mode with energy� [40]. The lifetime
of the cavity mode is given by−1, and theQ-value of the cavity is given by�0/.

It is straightforward to derive the form factor from the above Hamiltonian, by diagonalizing the interac-
tion part of the Hamiltonian between the cavity modea and the external modesb�. To this end, hereafter
denoting an infinitesimal positive constant by	, we define the following operator[41],

B� = �(�)a +
∫

d��(�,�)b� , (27)

where

�(�)= (/2�)1/2

� − �0 + i/2
, (28)

�(�,�)= /2�

(� − �0 + i/2)(� − � + i	)
+ 	(� − �) . (29)

Note thatB� is orthonormalized as[B�, B
†
�′ ] = 	(� − �′). The original operators,a andb�, are given in

terms ofB� by

a =
∫

d��∗(�)B� , (30)

b� =
∫

d��∗(�, �)B� . (31)

UsingB�, Eq. (26) is rewritten as

Ĥlc = ��+�− +
∫

d�[(g�∗(�)�+B� +H.c.)+ �B†
�B�] , (32)

in which the atom is coupled to a single continuum ofB� and the energy diagram ofFig. 1(b) is realized.
Therefore, the form factor takes the following Lorentzian form:

|g�|2 = |g�∗(�)|2 = g2 /2�

(� − �0)
2 + (/2)2 , (33)
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which satisfies the following sum rule:∫
d�|g�|2 = g2 , (34)

which holds for any.
To summarize, when the cavity is perfect and has no leak, the form factor is composed of delta

functions, as shown inFig. 2(b). Contrarily, when the cavity is leaky, each delta function is broadened to
be a Lorentzian, keeping the sum rule of Eq. (34), as shown inFig. 2(c).

2.4. Perturbation theory

In the following part of Section 2, we investigate how the initial unstable state evolves in time by
the Schrödinger equation, Eq. (5). Here, we calculate the survival probabilityetc by an elementary
perturbation theory. For this purpose, we divide the Hamiltonian Eq. (1) into the diagonal and interaction
parts as

ĤS = Ĥ0 + Ĥ1 , (35)

Ĥ0 = ��+�− +
∫

dkεkb
†
kbk , (36)

Ĥ1 =
∫

dk (gk�+bk + H.c.) . (37)

It is easy to derive the following perturbative expansion for the evolution operator exp(−iĤSt):

exp(−iĤSt)= exp(−iĤ0t)

×
[

1̂+ (−i)
∫ t

0
dt ′Ĥ1(t

′)+ (−i)2
∫ t

0
dt ′
∫ t ′

0
dt ′′Ĥ1(t

′)Ĥ1(t
′′)+ · · ·

]
, (38)

whereĤ1(t) is the interaction representation ofĤ1, which is given by

Ĥ1(t)= eiĤ0t Ĥ1e−iĤ0t =
∫

dk (gk�+bke−i(εk−�)t + H.c.) . (39)

Now we calculate the decay amplitudefk(t) defined in Eq. (8) within the lowest-order perturbation,
where the second-order and higher powers ofĤ1 are neglected in Eq. (38). Then,fk(t) is reduced to the
following form:

fk(t) � −i〈0|bkeiĤ0t

∫ t

0
dt ′Ĥ1(t

′)�+|0〉 = −ie−i(�+εk)t/2 g∗k t sinc[(εk − �)t/2] . (40)

The decay probability to the photonk is given by|fk(t)|2. The survival probability is therefore given by

s(t)= 1−
∫

dk|fk(t)|2 = 1− t2
∫

dk|gk|2sinc2[(εk − �)t/2] (41)

=1− t2
∫

d�|g�|2sinc2[(� − �)t/2] . (42)
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In deriving the last equality, Eq. (14) has been used. Because Eq. (42) is based on the perturbation theory,
it is valid only for smallt; deviation from an exact result becomes significant for larget, as we will see
in Fig. 6. However, Eq. (42) serves as a convenient tool as long as the short-time behavior is concerned,
such as discussion of the QZE and AZE.

Relation to the initial quadratic decay law, Eq. (11), is easily observed. At the very beginning of decay
(more strictly, whent−1 is much larger than the spectral width of|g�|2), one can regard that sinc[(εk −
�)t/2] � 1, so the right-hand-side of Eq. (42) is approximated ass(t) � 1−t2 ∫ d�|g�|2=1−〈(�ĤS)2〉t2.

2.5. Green function method

In the previous subsection, the temporal evolution of unstable system is investigated by the perturbation
theory, which is valid only for smallt in principle. Here, we summarize the Green function method
[42,43], which is standardly used in calculating the temporal evolution of general quantum systems and
gives reliable results even for longt.

First, we define thebareatomic and photon Green functions in the frequency representation. They are
given, in terms of the diagonal Hamiltonian̂H0, by

A(�)= 〈0|�− 1

� − Ĥ0 + i	
�+|0〉 = 1

� − � + i	
, (43)

P(�, k, k′)= 〈0|bk′
1

� − Ĥ0 + i	
b

†
k|0〉 =

	(k − k′)
� − εk + i	

. (44)

These bare Green functions are related, through the Fourier transformation, to the non-interacting dy-
namics of the atom and the photons. For example,

i

2�

∫
d�e−i�tA(�)= 〈0|�− e−iĤ0t�+|0〉 = e−i�t . (45)

Similarly, we define thedressedatomic Green function by

Ā(�)= 〈0|�− 1

� − ĤS + i	
�+|0〉 . (46)

The dressed atomic Green function is related to the survival amplitude of the atomf (t) by

i

2�

∫
d�e−i�t Ā(�)= 〈0|�− e−iĤS t�+|0〉 ≡ f (t) . (47)

It is known that the dressed atomic Green function can be expanded in terms of the bare Green functions
as follows,

Ā(�)= A(�)+ A(�)�(�)A(�)+ A(�)�(�)A(�)�(�)A(�)+ · · ·
= A(�)

1− A(�)�(�) , (48)

where the self-energy�(�) is given by

�(�)=
∫ ∫

dk1 dk2g
∗
k1
gk2P(�, k1, k2)=

∫
dk

|gk|2
� − εk + i	

=
∫

d�
|g�|2

� − � + i	
. (49)
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Fig. 3. (a) Feynman diagrams for the dressed atomic Green function. The solid and dotted lines on the right hand side represent
the bare atom and photon Green functionsA(�) andP(�, k), respectively, while the bold line on the left hand side represents
the dressed Green function. (b) Feynman diagram representing the decay to photonk.

The Feynman diagrams corresponding to Eq. (48) are drawn inFig. 3(a). Eq. (14) is used in deriving the
third equality of Eq. (49). We can reconfirm by Eqs. (47)–(49) that the decay dynamics of the atom is
determined completely by the form factorg�.

We also note that, besides the survival amplitude, the decay amplitude to a photon of a specific mode
k can be obtained using the dressed atomic Green function as

〈0|bk
1

� − ĤS + i	
�+|0〉 =

∫
dk′g∗k′Ā(�)P (�, k

′, k)= g∗k Ā(�)
� − εk + i	

. (50)

The Feynman diagram corresponding to this amplitude is drawn inFig. 3(b).

2.6. Decay dynamics under the Lorentzian form factor

The Green function method is applicable to any forms ofεk andgk. In this section, we practically use
the Green function method to calculate the survival probability of an unstable state. Here, we discuss the
case where the form factor is given by a single Lorentzian as follows;

|g�|2 = �

2�

�2

(� − �0)
2 + �2

. (51)

Here,�0 and� denote the central energy and the spectral width of the form factor, respectively, and
�/2� = |g�0|2 characterizes the magnitude of the form factor (seeFig. 4).

Such a Lorentzian form factor is realized, for example, by an atom placed in a leaky optical cavity, as
has been shown in Section 2.3.4.Although the form factors of general unstable systems are not necessarily
approximated by Lorentzian, it is expected that qualitative features of quantum dynamics are inferable by
considering the case of a Lorentzian form factor, as long as the form factor is single-peaked. For example,
the decay dynamics in a free space, whose form factor is schematically shown inFig. 2(a), would be
qualitatively reproducible by the Lorentzian form factor if we take�>�0.

2.6.1. Exact formulas
In the case of the Lorentzian form factor, we can exactly calculate the self-energy�(�), the dressed

Green functionĀ(�), and the survival amplitudef (t)= 〈i|exp(−iHt)|i〉 as follows:
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Fig. 4. View of the Lorentzian form factor. The atomic transition energy� is arbitrary.

Fig. 5. Solutions�1 and�2 of Eq. (55) are plotted in the complex�-plane. Dotted curves show the trajectories when� is changed,
and arrows indicate the directions into which�’s move as� is increased.

�(�)= ��

2(� − �0 + i�)
, (52)

Ā(�)= � − �0 + i�

(� − �)(� − �0 + i�)− ��/2
, (53)

f (t)= �1 − �0 + i�

�1 − �2
exp(−i�1t)+ �2 − �0 + i�

�2 − �1
exp(−i�2t) . (54)

Here,�1 and�2 are the poles of the dressed Green functionĀ(�), and satisfy

(� − �)(� − �0 + i�)− ��/2= (� − �1)(� − �2) . (55)

Both of them lie in the lower half plane as shown inFig. 5, and we choose them to satisfy|Im(�1)|�
|Im(�2)|. The survival probabilitys(t) is exactly given by

s(t)= |f (t)|2 =
∣∣∣∣�1 − �0 + i�

�1 − �2
exp(−i�1t)+ �2 − �0 + i�

�2 − �1
exp(−i�2t)

∣∣∣∣
2

. (56)

On the other hand, the Fermi golden rule, Eq. (16), yields the approximate decay rate as


FGR= �
�2

�2 + (� − �0)
2 . (57)

We will compare
FGR with the rigorous result Eq. (56) in the latter part of Section 2.6 (Fig. 7).
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Fig. 6. Temporal evolution of the survival probabilitys(t), for �0 − � = 0. � = 0.2� in (a), and� = 10� in (b). The solid lines
are drawn by the exact formula, Eq. (56). The thin dotted lines are the results of perturbation: combining Eqs. (42) and (51), the
survival probability is approximately given bys(t) � 1− ��2|�0 − � + i�|−2t − ��Re[(1− ei(�0−�+i�)t )(�0 − � + i�)−2].

2.6.2. Symmetric case
When the form factor is symmetric about the atomic transition energy, i.e.,�0=�, the above equations

are particularly simplified;

�1,2 = � − i�
1±√

1− 2�/�

2
, (58)

f (t)= 1+√
1− 2�/�

2
√

1− 2�/�
exp(−i�1t)− 1−√

1− 2�/�

2
√

1− 2�/�
exp(−i�2t) . (59)

The temporal evolution of the survival probabilitys(t) is plotted inFig. 6, for small and large�.
First, we discuss a case of small� (satisfying�<2�), in which Im(�1)= Im(�2) and Re(�1) �= Re(�2).

In this case,s(t) shows a damped Rabi oscillation, as shown inFig. 6(a), which implies that the emitted
photon may be reabsorbed by the decayed atom. This phenomenon, called the collapse and revival, has
actually been observed in an atom in a high-Q cavity [44–46]. In the limit of� → 0 (and simultaneously
� → ∞, keeping

∫
d�|g�|2 = ��/2 at a finite value), the Rabi oscillation continues forever without

damping. Obviously, we cannot define the decay rate in the presence of the Rabi oscillation.
Next, we discuss a case of large�. In this case,s(t) decreases monotonously as shown inFig. 6(b).

The radiative decay of an atom in free space belongs to this case. In order to clarify the meanings of the
parameters� and�, we focus on a case of�?� in the following. Then,�1 and�2 are approximated by

�1 � � − i�/2 , (60)

�2 � � − i� . (61)

At the beginning of the decay, one can easily confirm, by expanding Eq. (59) in powers oft, that s(t)
decreases quadratically as

s(t)= 1− ��t2/2+ O(t4) . (62)

Noticing that〈(�ĤS)2〉 = ��/2 in our example, Eq. (62) is in accordance with Eq. (11). On the other
hand, in the later stage of the decay (t��−1), the second term of Eq. (59) becomes negligible ands(t)



K. Koshino, A. Shimizu / Physics Reports 412 (2005) 191–275 207

follows the exponential decay law as

s(t) � Zexp(−
(∞)t) , (63)

where

Z=
∣∣∣∣�1 − �0 + i�

�1 − �2

∣∣∣∣
2

, (64)


(∞)=−2 Im(�1) . (65)

The decay rate in the later stage of decay (t��−1) is rigorously given by Eq. (65). We confirm that the
rigorous rate
(∞) agrees to the lowest order of�/� with the golden-rule decay rate
FGR, which is given
by Eq. (57). Thus,
FGR serves as a good approximation of
(∞), as long as�?�.

In concluding this subsection, we summarize the results for the case of�?�, which is satisfied in most
unstable states of interest. At the beginning of decays(t) decreases quadratically obeying Eq. (62), and
later follows the exponential decay law, Eq. (63). The transition between these two behaviors occurs at

t ∼ �−1 ≡ tj , (66)

which is called thejump time3 [6]. The decay rate
(∞) in the later stage is approximated well by the
golden-rule decay rate
FGR.

2.6.3. Asymmetric case
Now we discuss the asymmetric case, where�0 is not necessarily equal to�. The crossover between

the damped Rabi oscillation and the monotonous decrease, which was observed inFig. 6, is also observed
in this case. Here we focus on the latter situation assuming�?�, which is usually satisfied in most of
monotonically decaying systems.

Throughout this article, much attentions are paid to the decay rate of an unstable quantum state. The
decay rate at timet is conventionally defined by


con(t)= −
(

ds

dt

)/
s =− d

dt
ln s(t) . (67)

In Fig. 7(a), 
con(t) is plotted for three different values of|�0 − �|. However, in the discussion of the
Zeno effect, the following quantity is more significant:


(t)=− ln s(t)

t
. (68)

In Section 3.3, it will be revealed that
(�i) gives the decay rate under repeated instantaneous ideal
measurements with intervals�i . 
(t) is plotted inFig. 7(b). ComparingFigs. 7(a) and (b), we find that
the discrepancy between
con(t) and
(t) is significant in the early time stage,t�tj ; in particular, at the
beginning of decay,
con(t)= 2
(t). However, the discrepancy becomes less significant as time evolves.

Focusing on
(t), the following features are observed in common in three lines inFig. 7(b): Initially
(t>tj ), s(t) is given by Eq. (62) regardless of|�0−�|. Therefore,
(t) is approximately given by a linear

3 Note that definition of the jump time is slightly different from the original one: In Ref.[6], the jump time is defined as
tj ≡ 
(∞)/〈(�ĤS)2〉, which is reduced here totj � 2�/[�2 + (� − �0)

2].
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Fig. 7. Temporal evolution of (a)
con(t) and (b)
(t). We take�=20� (tj =0.05�−1), and|�0−�|=0,�,2�. The corresponding

golden-rule decay rates,
FGR= 2�|g�|2, are�, 0.5�, and 0.2�, respectively.

function oft, 
(t)=��t . Sufficiently after the jump time (t?tj ), 
(t) approaches a constant value,
(∞),
which is given by Eq. (65). As is observed inFig. 7, 
(∞) is in good agreement with the golden-rule
decay rate,
FGR.

On the other hand, there is a remarkable qualitative difference in the intermediate time region,t ∼ tj .
For the case of|�0 −�| = 0, 
(t) is a monotonously increasing function oft and
(t)<
(∞) for anyt.
Contrarily, for the case of|�0 −�| = 2�, 
(t) is not a monotonic function and there exists a time region
in which 
(t)>
(∞). This difference is crucial in determining whether repeated measurements result
in suppression of decay (QZE) or enhancement of decay (AZE), as will be discussed in Section 3.4.

3. Conventional theories of quantum Zeno and anti-Zeno effects

In this section, we summarize the main results of conventional theories of the quantum Zeno and anti-
Zeno effects, where it is assumed that instantaneous and ideal measurements to check the decay of the
unstable state are repeated frequently.

3.1. Ideal measurement on the target system

In the previous section, we have reviewed thefree unitary time evolution of an unstable quantum
state, where the system is not being measured. When one performs a measurement, on the other hand,
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the measurement accompanies considerable backaction on the measured system, according to quantum
theory. If the measurement is an ideal one, its influence on the quantum state of the measured system is
described as follows. Let us consider a situation in which one measures a physical quantityQof the system,
whose operator̂Q is assumed to have discrete eigenvalues. The projection operator onto the subspace
belonging to the eigenvalueq of Q̂ is denoted byP̂(q), and the state vector before the measurement is
denoted by|�〉. Then, the probability of obtainingq as a measured value is given by

P(q)= ‖P̂(q)|�〉‖2 = 〈�|P̂(q)|�〉 , (69)

and the state vector just after the measurement is given by

|�q〉 =
1√
P(q)

P̂(q)|�〉 , (70)

which is called theprojection postulateof measurement[1].
Now we apply this prescription to a situation in which an observer makes a measurement on the atom

to check whether the atom has decayed or not. In this case, the physical quantity to be measured is the
number of excitations in the atom,�+�−. The eigenvalues of the operator�+�− are 1 and 0, and the
corresponding projection operators are given by

P̂(1)= |x〉〈x| = �+|0〉〈0|�− , (71)

P̂(0)=
∫

dk|g, k〉〈g, k| =
∫

dkb†
k|0〉〈0|bk . (72)

If the state vector att = 0 is given by|i〉 = |x〉 = �+|0〉, the state vector at timet is given by Eq. (6). The
probability of observing the survival of the atom is given, using Eqs. (69) and (71), by

P(1)= |f (t)|2 = s(t) , (73)

and the state vector just after this observation is given, using Eqs. (70), (71), and (73), by

|�1〉 = �+|0〉 = |i〉 , (74)

neglecting an irrelevant phase factorf (t)/|f (t)|. Thus, when the survival of the atom is confirmed, the
state vector is reset to the initial one (the product of the atomic excited state and the photon vacuum) as
a backaction of the measurement.

3.2. Decay rate under repeated measurements

In the preceding subsection, we have summarized the influence of a single ideal measurement on the
atomic state. We now investigate, using the projection postulate, how the decay dynamics is affected by
repeated measurements to check the decay of the atom, assuming that each measurement is instantaneous
and ideal.

Suppose that instantaneous ideal measurements are performed periodically att = j�i (j = 1,2, . . .),
where�i is the intervals between measurements. We hereafter denote the survival probability just after
thenth measurement byS(t = n�i). This probability is identical to the probability of confirming survival
of the atom in all measurements (j = 1,2, . . . , n), because, once the atom has decayed and emitted
a photon, the revival probability is negligibly small in monotonically decaying systems. Noticing that
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Fig. 8. Calculation of the decay rate
(�i) under repeated measurement.
(�i) is given by integrating the form factor|g�|2 with
a weight functionfc(�).

(i) if the atom is in the excited state att = 0, the survival probability att = �i is given bys(�i), and that
(ii) the state is reset to the atomic excited state after every confirmation of survival, we obtainS(t = n�i)

simply as

S(t = n�i)= [s(�i)]n = [s(�i)]t/�i . (75)

Therefore, the decay rate
 under such repeated measurements is given, as a function of the measurement
intervals�i , by


(�i)=−�−1
i ln s(�i) . (76)

This equation clearly demonstrates that the decay rate depends not only on the original unitary dynamics
of the system [which determiness(t)] but also on the measurement intervals�i .

Throughout this article, our main concern is focused on the case of short�i . As we have observed in
Section 2.4, the initial behavior of the survival probabilitys(t) can be well evaluated by Eq. (42). Using
Eq. (42), Eq. (76) is recast into the following form[51]:


(�i)=
∫

d�|g�|2 × fc(�) , (77)

fc(�)= �i sinc2
[

�i(� − �)

2

]
. (78)

Namely, the decay rate under repeated instantaneous ideal measurements is given by integrating the form
factor |g�|2 with a weight functionfc(�), as illustrated inFig. 8. The weight functionfc(�) has the
following properties: (i)fc(�) is a positive function centered at the atomic transition energy� with a
spectral width∼ �−1

i , and (ii)fc(�) is normalized as
∫

d�fc(�)= 2�.
As a reference, we first consider a situation where the unstable state is not measured, namely,�i → ∞.

In this limit, the weight function is reduced to a delta function asfc(�)→ 2�	(�−�), so
 → 2�|g�|2.
This is nothing but the Fermi golden rule for an unobserved system, Eq. (16).

Generally,
(�i) depends on the measurement intervals�i through the width of the weight function
fc(�). However, there exists a notable exception: a system whose form factor is a constant function as
|g�|2 = �/2�. It is known that such a system follows an exact exponential decay law,s(t)= e−�t , as can
be seen by taking the� → ∞ limit of the results of Section 2.6. For such a system, the measurement-
modified decay rate, Eq. (77), is always reduced to thefreedecay rate�, irrespective of�i . Thus, we are
led to a well-known conclusion that the decay rate of exactly exponentially decaying systems are not
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affected by repeated measurements at all. Note, however, that we have assumed that each measurement is
instantaneous and ideal. For general measurements, the above conclusion isnotnecessarily true, as will
be shown in Section 5.

3.3. Quantum Zeno effect

In the preceding subsection, it is observed that the decay rate
 is generally modified by repeated
measurements, and
 is dependent on the measurement intervals�i .A particularly interesting phenomenon
is expected when�i is extremely short: for very smallt, the behavior ofs(t) is described by the quadratic
decay law, Eq. (11). Combining Eqs. (11) and (76), the decay rate under very frequent measurements is
given by


(�i)= 〈(�ĤS)2〉�i , (79)

which states that the decay rate is proportional to the measurement intervals�i .4 Thus, as one measures
the system more frequently (i.e., as�i is made shorter), the decay of the system is more suppressed. In the
limit of infinitely frequent measurements (�i → 0), the decay of the system is perfectly inhibited. This
phenomenon is called thequantum Zeno effect[5] (or several other names[47–49]), which is hereafter
abbreviated as the QZE.

Note that the above argument does not invoke any system-dependent features. Thus, the QZE is a uni-
versal phenomenon, which is expected in general quantum systems if instantaneous ideal measurements
are possible for the unstable states of interest.

3.4. Quantum anti-Zeno effect

In the preceding subsection, the QZE is derived by combining the initial quadratic decrease, Eq. (11),
and the measurement-modified decay rate, Eq. (76). However, Eq. (11) holds only for extremely smallt,
and hence Eq. (79) is not applicable for longer measurement intervals�i . In this subsection, we study the
case of longer�i . For simplicity, we focus on an unstable state with the Lorentzian form factor, for which
the rigorous form ofs(t) is known for anyt, as discussed in Section 2.6.

Combining Eqs. (56) and (76), we can obtain the decay rate for general values of�i . Since the decay
rate under repeated instantaneous ideal measurements is given by Eq. (76),
(�i) has already been plotted
in Fig. 7(b), if one regards the horizontal axis as the measurement intervals�i (in units of�−1). In order
to emphasize the effect of measurements, we plot the normalized decay rate
(�i)/
(∞) in Fig. 9, where

(∞) is the free decay rate. The three curves correspond to three different values (0,�, and 2�) of the
energy discrepancy between the atomic transition energy� and the central energy of the form factor�0.
It should be recalled that the jump time is related to the width of the form factor and is roughly evaluated
astj ∼ �−1. [Since a multiplicative factor of order unity is unimportant, we have definedtj astj ≡ �−1

in Eq. (66).]
The following points are observed in common: (i) When the measurement intervals�i is long (�i?tj ),

the decay rate is almost unaffected by measurement, i.e.,
(�i) � 
(∞). (ii) A large deviation from the

4 Eq. (79) can also be obtained by Eqs. (77) and (78); When�i is very short [�−1
i ? (spectral width of|g�|2)], fc(�) � �i

and
(�i) � �i ×
∫

d�|g�|2 = �i〈(�ĤS)2〉.
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Fig. 9. The decay rate
(�i), normalized by the free decay rate
(∞), under repeated instantaneous ideal measurements with
intervals�i , for the case of the Lorentzian form factor, Eq. (51). The parameters are chosen as follows:� = 20� (which gives
tj ∼ 0.05�−1) and|�− �0| = 0,�,2�. In the case of|�− �0| = 2� and�i ∼ tj , it is observed that the decay is accelerated from

the unobserved case (the anti-Zeno effect). The decay rate is maximized when�i � 0.066�−1.

unobserved decay rate is observed when�i is short enough to satisfy

�i�tj . (80)

This condition is in accordance with our expectation, becauses(t) significantly deviates from the expo-
nential law only fort�tj . (iii) When�i is extremely short (�i>tj ), 
(�i) is proportional to�i , in accordance
with Eq. (79).

Qualitative difference is observed in the intermediate region,�i ∼ tj . In the case of�− �0=0,
(�i) is
always smaller than the free decay rate
(∞). The decay is more suppressed as the measurements become
more frequent. Thus, in this case, the argument of Section 3.3 can be smoothly extended to a larger�i
region without qualitative change. Contrarily, in the case of�−�0=2�,
(�i) is not a monotonous function
of �i , and
(�i) may become larger than the free decay rate for�i ∼ tj . Thus, the decay isaccelerated
by successive measurements. This opposite effect is called thequantum anti-Zeno effect[12,13,50–52],
which is hereafter abbreviated as the AZE, or theinverse-Zeno effect[14,53,54]. The QZE and AZE are
sometimes called simply theZeno effect.

3.5. QZE–AZE phase diagram

It should be remarked that, whereas the QZE may be observed for any unstable quantum system if�i is
sufficiently small, the AZE does not necessarily takes place; a counterexample is the case of|�−�0|=0,
where decay is always suppressed for any�i (seeFig. 9). From this respect, quantum unstable states can
be classified into the following two types: (a) The QZE is always observed for any value of�i , and (b)
the QZE is observed for�i < �∗, whereas the AZE is observed for�i > �∗, i.e., the QZE–AZE transition
takes place at�i = �∗.

By analyzing Eqs. (56) and (76), a phase diagram discriminating the QZE and AZE is generated in
Fig. 10for the case of the Lorentzian form factor, Eq. (51), as a function of|� − �0| and�i . The phase
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Fig. 10. The phase diagram of the QZE and AZE under repeated instantaneous ideal measurements, for the case of the Lorentzian
form factor [Eq. (51)].The solid line divides the QZE region and theAZE region.The broken line shows the optimum measurement
intervals�i , at which the decay rate is maximized, for each value of|� − �0|. Although� = 40� in this figure, the results are
insensitive to the value of�. In fact, the thin dotted lines, for which�=20�, almost overlap the corresponding lines for�=40�.

boundary (solid line) is drawn by solving the following equation:


(�∗)= 
(∞) . (81)

If Eq. (81) has a solution in 0< �∗<∞, the unstable system belongs to type (b). In case of the Lorentzian
form factor,Fig. 10 indicates that the system belongs to type (a) if|� − �0|<�, and to type (b) if
|� − �0|>�.

In order to judge whether Eq. (81) has a solution or not, it is useful to remember the fact that,s(t)

generally follows the exponential decay law in the later stage of decay ass(t) � Zexp(−
(∞)t), where
Z is a positive constant. For example, in the case of Lorentzian form factor,s(t) behaves as Eq. (63)
in the later stage of decay. Therefore, the asymptotic form of
(t) is given by
(t) = 
(∞) − lnZ/t .
We thus find that, ast → ∞, 
(t) approaches to
(∞) from below whenZ>1, and from above when
Z<1. Combining this fact and the fact that
(t) → 0 ast → 0, one is intuitively led to the following
criterion: a system belongs to type (a) whenZ>1, and to type (b) whenZ<1 [14,53].

Now we check the validity of this criterion for the case of Lorentzian form factor, as an example. In
this case,Z is given by Eq. (64), where�1 and�2 are given by Eq. (55). When� is small,�1 and�2 are
approximated as

�1 = � + ��

2

1

� − �0 + i�
, (82)

�2 = �0 − i� − ��

2

1

� − �0 + i�
. (83)

Z is therefore approximately given by

Z �
∣∣∣∣1− ��

2(� − �0 + i�)2

∣∣∣∣
2

� 1− ��
(� − �0)

2 − �2

|� − �0 + i�|4 . (84)
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Thus, the condition of type (a), i.e.,Z>1, is reduced to|�−�0|<�. This is in agreement with numerical
results (seeFig. 10), which indicates the validity of the criterion.

To summarize this subsection, there are two types of unstable systems. In type (a), only the QZE is
induced by repeated measurements. The decay is more suppressed as the measurements become more
frequent. In type (b), whereas the QZE is induced when the measurements are very frequent, the opposite
effect—the AZE—takes place when the measurements are less frequent. The decay rate depends on�i
in a non-monotonous way. The former (latter) type of systems satisfyZ>1 (Z<1), whereZ is the
prefactor of the exponential decay law in the later stage of decay.

These conclusions have been drawn under the assumptions that each measurement is instantaneous
and ideal. However, as we will discuss in Section 4.5.6, such measurements are unrealistic and in some
sense unphysical. Therefore, we must explore the Zeno effect in realistic measurement processes. For
this purpose, we should apply the quantum measurement theory, which is briefly summarized in the next
section.

4. Quantum measurement theory

Since quantum systems exhibit probabilistic natures, one has to perform many runs of measurements
in an experiment. In ordinary experiments, one resets the system before each run in order to prepare the
same quantum state|�〉 for all runs. Or, alternatively, one prepares many equivalent systems in the same
state|�〉, and performs the same measurement independently for each system. In either case, one does
not need to know thepost-measurement state|�′〉 (i.e., the state after the measurement) in order to predict
or analyze the results of the experiment.

However, one can perform another measurement (of either the same observable or a different observ-
able) on|�′〉 before he resets the system. That is, one can perform two subsequent measurements in
each run, one for the pre-measurement state|�〉 and the other for the post-measurement state|�′〉. Or,
alternatively, if one prepares many equivalent systems in the same state|�〉, he can perform the two
subsequent measurements for each system. In order to predict or analyze the results of such subsequent
measurements, one needs to know|�′〉, i.e., the state after the first measurement. To calculate|�′〉, one
must use something like the so-called projection postulate (Section 4.1). By many studies in the last
several decades, it has been revealedboth theoretically and experimentallythat a naive application of the
projection postulate gives wrong results that donotagree with experiments on subsequent measurements.
To resolve this discrepancy, the quantum measurement theory has been developed[1,15–23], which will
be briefly explained in this section. Although Landau and Lifshitz[55] were pessimistic about the pos-
sibility of the calculations of the post-measurement states, it has been revealed that the calculationsare
possible in many cases. Furthermore, most importantly, the results of the calculations have beenconfirmed
by many experiments(mostly on quantum optics; see, e.g., Refs.[21,32]). This demonstrates the power
of the quantum measurement theory.

To explain all the points which may be questioned in studying the Zeno effect, we describe all the
basic things of the quantum measurement theory in this section. As a result, this section provides for
basic knowledge that are required to understand not only the Zeno effect but also many other topics of
quantum measurements. Actually, the full powers of the quantum measurement theory are manifest in
studying the other topics, such as those in Refs.[16–20,22,23,56–61], whereas in studying the Zeno effect
one can make great simplifications for the reasons explained in Section 4.7 if the underlying logic and
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approximations are taken for granted. Hence, if the reader is interested only in the Zeno effect and wish
to read this section faster, we suggest the reader to read only Sections 4.1, 4.2, 4.3.2, 4.3.3, 4.6, and 4.7.5

When a question arises on the underlying logic upon reading later sections, the reader can go back to the
rest of this section.

4.1. Ideal measurement

Consider measurement of an observableQ of a quantum system S. The observableQ can be either the
position, momentum, spin, or any other observable. However, for simplicity, we assume throughout this
section that the operator̂Q representingQ has discrete eigenvalues. The case of continuous eigenvalues
can be described in a similar manner, which, however, requires some technical cares concerning the
mathematical treatment of continuous eigenvalues.

In an early stage of the development of quantum theory, measurement ofQ is formulated simply as
follows. The probabilityP ideal

R (r) of getting a valuer of the readout observableRof a measuring apparatus
is given by

P ideal
R (r)=

{
P(q) for r = q, an eigenvalue of̂Q ,

0 otherwise,
(85)

where

P(q) ≡
∥∥∥P̂(q)|�〉∥∥∥2

(86)

is the probability given by the Born rule. Here,P̂(q) denotes the projection operator onto the subspace
belonging to the eigenvalueq of Q̂, and |�〉 is thepre-measurement state, i.e., the state vector of S
just before the measurement. When an eigenvalueq is obtained as readoutr of this measurement, the
post-measurement state|�ideal

q 〉, i.e., the state vector of S just after the measurement, is given by

|�ideal
q 〉 = 1√

P(q)
P̂(q)|�〉 , (87)

where the prefactor 1/
√
P(q) is simply a normalization factor. In other words, the density operator of S

just after the measurement is given by

�̂ideal
q = |�ideal

q 〉〈�ideal
q | = 1

P(q)
P̂(q)|�〉〈�|P̂(q) . (88)

This postulate is often called theprojection postulateafter the work of von Neumann[1], although he
considered not̂�ideal

q but the following mixture;

�̂ideal
vN ≡

∑
q

P (q)�̂ideal
q =

∑
q

P̂(q)|�〉〈�|P̂(q) , (89)

which we call thevon Neumann mixture. Its physical meaning will be described in Section 4.3.3.

5 The readers who are quite familiar with the quantum measurement theory can skip directly to Section 4.7, and then to
Section 5.
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Fig. 11. A schematic diagram of a general measurement of an observableQ of a quantum system S using a measuring apparatus
A, whose readout observable isR.

A measurement process satisfying Eqs. (85) and (87) is called anideal measurementor aprojective
measurement.6 The conventional theories of the Zeno effect in Section 3 assumed that measurements
are ideal (and instantaneous). However, real measurement processes do not satisfy Eqs. (85) and (87)
strictly, and thus are calledgeneral measurementsor imperfectmeasurementsornon-idealmeasurements.
For example, a real measuring apparatus has a non-vanishing error, and thus Eqs. (85) and (87) are
satisfied only approximately. In order to analyze such general measurements, one has to use the quantum
measurement theory.

4.2. Time evolution of the system and apparatus

The starting point of the quantum measurement theory is the key observation that not only the system
S to be observed but also the measuring apparatus A should obey the laws of quantum theory. Therefore,
one must analyze the time evolution of the joint quantum system S+A using the laws of quantum theory,
as schematically shown inFigs. 11and12 [1,16–21,56,57,62]. In this case, A is sometimes called aprobe
quantum system.

If S and A can be described by the Hilbert spacesHS andHA, respectively, then the joint system S+A
can be described by the product spaceHS+A ≡ HS⊗HA. If the Hamiltonians of S and A arêHS (which
operates onHS) andĤA (onHA), respectively, the Hamiltonian of S+A is given by

ĤS+A = ĤS ⊗ 1̂+ 1̂⊗ ĤA + Ĥint , (90)

which is simply written asĤS+A = ĤS + ĤA + Ĥint.
Assuming that any correlations are erased during the preparation processes of the measurement, we

can take the pre-measurement state (i.e., the state just before the measurement att = 0) of S+A as a
simple product state,

|�(0)〉 = |�〉|�A〉 (∈ HS+A), (91)

where|�〉 (∈ HS) and|�A〉 (∈ HA) denote the pre-measurement states of S and A, respectively. Here,
we assume for simplicity that the pre-measurement states are pure states. The generalization to a mixed
state is straightforward, and one will then find that the main conclusions and ideas that will be explained
in the following are not changed at all.

6 It is sometimes called afirst-kind measurement. However, this term is also used for a general measurement in which the
post-measurement state is in the subspace that is spanned by the eigenvectors belonging to eigenvalues which are close to the
readoutr. If [Q̂, ĤS] = 0, in particular, a first-kind measurement in this sense is called aquantum non-demolition measurement
[19,58,59]. A measurement which is not of the first kind is said to be of the second kind. In this article, however, we do not use
these terms in order to avoid possible confusions.
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Fig. 12. The time evolution of the joint quantum system which is shown inFig. 11. The unitary evolution during 0� t��,
by which correlations between the observableQ and the readout observableR is established, is called theunitary partof the
measurement. See the text for details.

Let |q, l〉’s (∈ HS) be orthonormalized eigenvectors ofQ̂, the operator representing the observableQ
to be measured. Here,q is an eigenvalue of̂Q andl denotes a set of quantum numbers labeling degenerate
eigenvectors. Since|q, l〉’s form a complete set ofHS, we can expand the pre-measurement state of S as

|�〉 =
∑
q,l

�(q, l)|q, l〉 . (92)

The readout is an observable ofA, because it will be observed by another apparatus or an observer (see
Section 4.3 for details). It is denoted byR, and the operator (onHA) representing it byR̂. Let |r,m〉’s
(∈ HA) be orthonormalized eigenvectors ofR̂, wherer is an eigenvalue of̂R andm denotes a set of
quantum numbers labeling degenerate eigenvectors. We can expand the pre-measurement state of A as

|�A〉 =
∑
m

�A(m)|r0,m〉 , (93)

wherer0 is the pre-measurement value of the readout. Note that every operator of S commutes with every
operator of A. For example,[Q̂, R̂] = [Q̂, ĤA] = [ĤS, R̂] = [ĤS, ĤA] = 0, which will be used in the
following calculations.

If S+A can be regarded as an isolated system in the time interval 0� t�� during which the interaction
between S and A takes place, its state vector evolves into

|�(�)〉 = e−iĤS+A�|�〉|�A〉 (94)

=
∑
q,l

∑
m

�(q, l)�A(m)e
−iĤS+A�|q, l〉|r0,m〉 . (95)



218 K. Koshino, A. Shimizu / Physics Reports 412 (2005) 191–275

Let us express the factor in the last line as the superposition of|q ′, l′〉|r ′,m′〉’s as

e−iĤS+A�|q, l〉|r0,m〉 =
∑
q ′,l′

∑
r ′,m′

u
q ′,l′,r ′,m′
q,l,m |q ′, l′〉|r ′,m′〉 , (96)

where the coefficientuq
′,l′,r ′,m′
q,l,m is a function ofĤS+A, � andr0, all of which can be tuned by tuning the

experimental setup.7 Then, Eq. (95) can be expressed as

|�(�)〉 =
∑
q,l


�(q, l)

∑
q ′,l′


|q ′, l′〉 ∑

m,r ′,m′
�A(m)u

q ′,l′,r ′,m′
q,l,m |r ′,m′〉




 . (97)

As we will show shortly, the results for a general measurement reduce to those for an ideal one ifu
q ′,l′,r ′,m′
q,l,m

takes the following form;8

u
q ′,l′,r ′,m′
q,l,m = um′

q,m	q ′,q	l′,l	r ′,q . (99)

In this case, Eq. (97) reduces to

|�(�)〉 =
∑
q,l


�(q, l)|q, l〉


∑
m,m′

�A(m)u
m′
q,m|q,m′〉




 , (100)

which clearly shows that S and A get entangled,9 by the interactionĤint in ĤS+A, in such a way thatQ
andRare strongly correlated. This is the main part of the measurement process, which we call theunitary
part, because it is described as a unitary evolution due to the Schrödinger equation. SinceQ andR are
correlated, one can get information aboutQby measuringR, as shown below. For general measurements,
the correlation betweenQandRmay be weaker than that in Eq. (100). However, non-vanishing correlation
shouldbe established in order to get non-vanishing information. Since non-vanishing information should
be obtained by any measurement (see Section 4.5.4),Ĥint should be such an interaction that creates
non-vanishing correlation betweenQ andR.

For t > �, for which the interaction is over (or ineffective),10 the state vector further evolves as

|�(t)〉 = e−i(ĤS+ĤA )(t−�)|�(�)〉 (101)

until the readoutR is measured by another apparatus or an observer A′ at t = �′ (��). If this measurement
of Rat t = �′ can be regarded as an instantaneous ideal measurement ofR (notof Q), then the probability

7 Note that one can tune not onlŷHS+A and� but alsor0. The significance of this fact is discussed in Refs.[19,20].
8A more general form of Eq. (99) is

u
q ′,l′,r ′,m′
q,l,m

= um′
q,m	q ′,q	l′,l	r ′,f (q) . (98)

wheref is an invertible function ofq. By relabelingr appropriately, we can reduce this to Eq. (99).
9 That is, this state is not generally a simple product of two vectors, one is inHS and the other is inHA.
10 For example, when the wavefunction of S takes a wavepacket form the interaction becomes ineffective after the wavepacket

passes through the apparatus.
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PR(r) of getting a readoutr (which is an eigenvalue of̂R) is given by

PR(r)= ‖P̂R(r)|�(�′)〉‖2 (102)

=‖P̂R(r)e−i(ĤS+ĤA )(�′−�)|�(�)〉‖2 . (103)

Here,P̂R(r) denotes the projection operator onto the subspace belonging to the eigenvaluer of 1̂⊗ R̂;

P̂R(r) ≡ 1̂⊗
∑
m

|r,m〉〈r,m| . (104)

When an eigenvaluer is thus obtained as the readout, the post-measurement state|�r (�′)〉 of S+A is
given by

|�r (�′)〉 = 1√
PR(r)

P̂R(r)|�(�′)〉 (105)

= 1√
PR(r)

P̂R(r)e
−i(ĤS+ĤA )(�′−�)|�(�)〉 . (106)

If we denote the trace operation overHA by TrA, the post-measurement state of S is represented by the
reduced density operator,

�̂r (�
′)= TrA(|�r (�′)〉〈�r (�′)|) , (107)

because the expectation value〈X〉r of any observableX of S is given by

〈X〉r = 〈�r (�′)|X̂|�r (�′)〉 = Tr[�̂r (�′)X̂] . (108)

Since the entanglement of S and A is not generally dissolved in|�r (�′)〉, �r (�
′) generally becomes a

mixed state.
Eqs. (102) and (107) for a general measurement ofQ should be compared with Eqs. (85) and (88) for

an ideal measurement. The general equations reduce to the ideal ones if Eq. (99) is satisfied. In fact, we
have in this case

P̂R(r)|�(�)〉 =


(∑
l

�(q, l)|q, l〉
)( ∑

m,m′
�A(m)u

m′
q,m|q,m′〉

)
for r = q,an eigenvalue ofQ̂,

0 otherwise.
(109)

Since we can take�′ = � as will be discussed in Section 4.3.1, and noting that
∑
l �(q, l)|q, l〉=P(q)|�〉,

we find that Eqs. (102) and (107) reduce in this case to Eqs. (85) and (88), respectively. Therefore, in
order to realize an ideal measurement, one must construct an experimental setup by which Eq. (99) is
satisfied. Implications of this condition will be discussed in Section 4.5.6.

4.3. von Neumann chain

In the above argument, the observableQof the quantum system S is measured by the apparatus A, and
the readout observableRof A is measured by another apparatus or an observer A′ [1]. Such a sequence,
as shown inFig. 13, is sometimes called thevon Neumann chain. We here describe its basic notions.



220 K. Koshino, A. Shimizu / Physics Reports 412 (2005) 191–275

'
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Fig. 13. Thevon Neumann chain. To measure an observableQ of a quantum system S, an apparatus A is coupled to S and the
information onQ is transferred to an observableRof A. To measureR, another apparatus A′ is coupled to A and the information
onR is transferred to an observableR′ of A′, and so on. The vertical dotted lines indicate possible locations of theHeisenberg
cut (see Section 4.3.2), inside which the laws of quantum theory are applied whereas the outside is just taken as a device for
measuringR (orR′, orR′′, . . ., depending on the location of the Heisenberg cut).

4.3.1. When measurement is completed?
The measurement process described above is completed att = �′. We now show, however, that one can

also say that the measurement is completed att = �.
To show this, let us calculate the state after�′. For t > �′, S and A evolve freely, hence the state vector

of S+A at t (> �′) is given by

|�r (t)〉 = e−i(ĤS+ĤA )(t−�′)|�r (�′)〉 (110)

= 1√
PR(r)

e−i(ĤS+ĤA )(t−�′)P̂R(r)e
−i(ĤS+ĤA )(�′−�)|�(�)〉 . (111)

For the apparatus A to work well, the readoutRshould be stable fort��. That is,

PR(r)= independent of�′ , (112)

to a good approximation. This is satisfied if

[R̂, ĤA] = 0 , (113)

because this implies[P̂R(r), ĤA] = 0, and Eq. (103) then reduces to

PR(r)= ‖e−i(ĤS+ĤA )(�′−�)P̂R(r)|�(�)〉‖2 = ‖P̂R(r)|�(�)〉‖2 = independent of�′ . (114)

Although Eq. (113) is not a necessary condition but a sufficient condition for Eq. (112),11 we henceforth
assume Eq. (113) for simplicity.12 Then, Eq. (111) reduces to

|�r (t)〉 = 1√
PR(r)

e−i(ĤS+ĤA )(t−�)P̂R(r)|�(�)〉 , (116)

which is independent of�′. Therefore,

�̂r (t)= TrA(|�r (t)〉〈�r (t)|) (117)

11Condition (113) implies Eq. (114) foreveryvector|�(�)〉 in HS+A. However, it is sufficient for Eq. (112) that Eq. (114)
is satisfied only for|�(�)〉 given by Eq. (95).

12 It is worth mentioning that Eq. (113) is a natural assumption ifRandHA are macroscopic variables, because then they
must be additive observables[63,64] and the volumeVA of A is quite large, and thus Eq. (113) isalwayssatisfied to a good
approximation in the sense that[64][

R̂

VA
,
ĤA

VA

]
=O

(
1

VA

)
. (115)
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is also independent of�′. We thus find that the state of S+A, as well as the state of S, fort > �′ (i.e., after
the measurement is completed) are independent of�′, the instance at whichR is read by another apparatus
or an observer.

Because of this reasonable property, one can take�′ as an arbitrary time after�. In particular, we can
take�′ = �, from whichwe can say that the measurement is completed att = �.

4.3.2. Where is the Heisenberg cut?
In the above argument, apparatus A has been treated as a quantum system that evolves according to

the Schrödinger equation. On the other hand, another apparatus or an observer A′ which measures R of A
has been treated as a device that performs the measurement of R. This means that we have assumed in the
von Neumann chain ahypotheticalboundary between A and A′, inside which the laws of quantum theory
are applied, whereas the outside is just taken as such a device. Such a boundary is called theHeisenberg
cut. Since this boundary is hypothetical and artificial, it must be able to be moved to a large extent freely,
without causing any observable effects, for quantum theory to be consistent. von Neumann called this
property thepsychophysical parallelism[1]. He showed that quantum theory indeed has this property in
the following sense.13

Suppose that the Heisenberg cut is moved to the boundary between A′ and A′′ of Fig. 13, and that both
the measurement ofRbyA′ (att=�′> �) and that ofR′ byA′′ (att=�′′> �′) are ideal (and instantaneous,
for simplicity). By calculating the time evolution of the enlarged joint system S+A+A′ in a manner similar
to the calculations of Sections 4.2 and 4.3.1, one can calculate the probability distributionP ′

R′(r ′) of the
readoutr ′ as well as the reduced density operator�̂′r ′(t) of S for t > �′′. From such calculations, one
can show thatP ′

R′(r ′) and �̂′r ′(t) coincide withPR(r) and �̂r (t), which have been obtained above as
Eqs. (102) and (107), respectively. That is,

P ′
R′(·)= PR(·) , (118)

�̂′r ′(t)= �̂r (t) for every pair ofr ′andr such thatr ′ = r . (119)

This shows that the Heisenberg cut can be located either between A and A′ or between A′ and A′′, without
causing any observable effects. In contrast, the Heisenberg cutcannotbe moved to the boundary between
S and A for general measurements, because it would then give Eqs. (85) and (88), which do not agree
with the correct equations (102) and (107).

Therefore, we conclude thatthe Heisenberg cut can be located at any place at which the interaction
process can be regarded as the unitary part(in the terminology of Section 4.2)of an ideal measurement.

4.3.3. Average over all possible values of the readout
Suppose that the Heisenberg cut is located betweenA andA′.The post-measurement state corresponding

to each readoutr is given by

�̂r (�)= TrA(|�r (�)〉〈�r (�)|) , (120)

where we have taken�′ = � as discussed in Section 4.3.1. The expectation value〈X〉r of an observableX
of S is calculated, for each readoutr, as

〈X〉r = Tr[�̂r (�)X̂] . (121)

13Although he showed this for the von Neumann mixture�̂vN, we here show it more generally for�̂r .
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In some cases, the mixture of�̂r (�)’s over all possible values ofr,

�̂vN(�) ≡
∑
r

PR(r)�̂r (�) , (122)

is also used as the post-measurement state. As in the case of an ideal measurement (Section 4.1), we call
it thevon Neumann mixture. This density operator is useful when one discussesaverageproperties of the
post-measurement states. That is, when one is interested in the average〈X〉vN of 〈X〉r over all possible
values ofr, it can be calculated as

〈X〉vN =
∑
r

PR(r)〈X〉r =
∑
r

PR(r)Tr[�̂r (�)X̂] = Tr[�̂vN(�)X̂] . (123)

In this case,̂�vN(�) is equivalent to the set of{PR(r), �̂r (�)}. Notice, however, that̂�vN(�) has less
information in more general cases, such as the case where one is interested in properties of the post-
measurement state corresponding toeachvalue ofr. In fact, the decomposition of�̂vN(�) into the form of
the right-hand side of Eq. (122) is not unique, and hence onecannotget the set of{PR(r), �̂r (�)} uniquely
from �̂vN(�).

Eq. (123) can be simplified if we note that[X̂, P̂R(r)] = 0 for all r (becauseX is an observable of
S whereasR is an observables of A). Using this andP̂R(r)P̂R(r) = P̂R(r) and

∑
rP̂R(r) = 1̂, we can

rewrite Eq. (123) as

〈X〉vN =
∑
r

〈�(�)|P̂R(r)X̂P̂R(r)|�(�)〉 =
∑
r

〈�(�)|P̂R(r)X̂|�(�)〉 = 〈�(�)|X̂|�(�)〉 . (124)

This shows that one can calculate〈X〉vN from |�(�)〉, which is the final state of the unitary part (in the
terminology of Section 4.2). Therefore,when one is interested only in〈X〉vN, it is sufficient to calculate
the unitary part of the measurement process, and one can forget about the ideal measurement ofR by
A′, for which we have used the projection postulate. Note, however, that this is not generally the case for
repeated measurements, as will be discussed in Section 4.6.3.

4.4. Prescription for analyzing general measurements

From discussions in Sections 4.2 and 4.3, we can deduce the prescription for analyzing general mea-
surements as follows:

1. Write down the von Neumann chain S, A1, A2, . . . .
2. Find a place at which the interaction process can be regarded as the unitary part of an ideal measurement.

Locate the Heisenberg cut there. Although two or more such places may be found, you can choose
any of them. However, to simplify calculations, it is better to choose the one that is closest to S.

3. If the Heisenberg cut thus located lies between Ak and Ak+1, apply the laws of quantum theory to
the joint system S+A1 + · · ·Ak, taking Ak+1 as a device that performs an ideal measurement of the
readout observable Rk of Ak. If the interaction in the joint system is effective during the time interval
0� t��, one can say that the measurement is performed during this interval.

4. Evaluate the probability distribution of the readoutrk of Rk and the post-measurement state, in the
same way as we have done in Section 4.2.



K. Koshino, A. Shimizu / Physics Reports 412 (2005) 191–275 223

We can regard the subsystem A1 + · · ·Ak of the joint system S+A1 + · · ·Ak as system A of Section 4.2,
and Ak+1 as A′. We can therefore apply the formulation of Section 4.2 to general cases. We will thus use
the equations and notations of Section 4.2 in the following discussions.

4.5. Properties of general measurements

4.5.1. Response time
In an early stage of the development of quantum theory, it was sometimes argued that the measurement

should be made instantaneously. Such a measurement is called aninstantaneous measurement. However,
as we will discuss in Section 4.5.6, any physical measurement takes a finite time. This finite time� has
been defined in Section 4.2 as the time after which the interaction between S and A becomes ineffective.
Therefore, if the Hamiltonian̂HS+A and the pre-measurement state|�(0)〉 are known, one can evaluate
� by solving the Schrödinger equation. This� is usually called theresponse timeof the apparatus.14

To be more precise,� should be called thelower limit of the response time, becausepractical response
times of real experiments usually become longer for many practical reasons. In the model of Section
5, for example,� (which will be denoted by�r there) is the time required for generating an elementary
excitation in the detector. Such a microscopic excitation should be magnified to obtain a macroscopic
signal. Due to possible delays in the magnification and the signal transmission processes, the practical
response time will become longer in real experiments.

However, in discussing fundamental physics, the limiting value is more significant than practical
values,15 which depend strongly on detailed experimental conditions. For this reason, we simply call
� the response timein this article. For the same reason, we shall drop in the following subsections the
words ‘lower limit of’ or ‘upper limit of’ from the terms such as thelower limit of the measurement error,
theupper limit of the range of measurement, theupper limit of the amount of information obtained by
measurement, and thelower limit of the backaction of measurement.

It is worth stressing that if one makes� shorter without increasing the strength ofĤint then the mea-
surement error would be increased. Therefore, there is a tradeoff between (the reduction of) the response
time and (that of) the measurement error. This and related tradeoffs, as well as their deep implications,
were discussed in Ref.[20].

4.5.2. Measurement error
For general measurements, the probability distributionPR(r) of the readout of measuring apparatus

is different from that for an ideal measurement,P ideal
R (r). This means that a general measurement has a

non-vanishing measurement error.
For example, consider a special case where|�〉 is an eigenstate of̂Q;

|�〉 =
∑
l

�q(l)|q, l〉 ≡ |�q〉 , (125)

14 See Section 4.6.3 for the response time of continuous measurements.
15For example, suppose that the measurement of the readoutRby A′ is performed not att = � but at a later timet = �′> �.

Then the total response time of the experiment becomes longer. However, we have shown in Section 4.3.1 that the value of�′ is
irrelevant.
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where�q(l)’s are arbitrary coefficients satisfying
∑
l|�q(l)|2 = 1. In this case,P ideal

R (r) = 	r,q from
Eqs. (85) and (86), whereasPR(r) (for �′ = �) is evaluated from Eqs. (95), (96) and (102) as

PR(r)= ‖P̂R(r)e−iĤS+A�|�q〉|�A〉‖2

=
∥∥∥∥∥∥
∑
l

�q(l)
∑
m

�A(m)
∑
q ′,l′,m′

uq,l,m(q
′, l′, r,m′)|q ′, l′〉|r,m′〉

∥∥∥∥∥∥
2

. (126)

It is then clear thatPR(r) �= P ideal
R (r) in general, except when condition (99) is satisfied.

Since the predictions of quantum theory are of probabilistic nature, the definition of the measurement
error is not so trivial, as will be discussed shortly. In principle, however, the measurement error should
be quantified by an appropriate measure of the difference betweenPR(r) andP ideal

R (r). For example, it
may be quantified by theKullback–Leider distanceor relative entropy[65];

D(P ideal
R ‖PR) ≡

∑
r

P ideal
R (r) log

P ideal
R (r)

PR(r)
. (127)

One can also useD(PR‖P ideal
R ), which is not equal toD(P ideal

R ‖PR) in general. Or, one can use other
measures which are used in probability theory and/or information theory[65].

However, it is customary, and sometimes convenient, to quantify the measurement error in a different
way using a few parameters. One of such parameters is the difference between the expectation values of
the two probability distributions,

	rbias≡ 〈R〉 − 〈R〉ideal

≡
∑
r

rPR(r)−
∑
r

rP ideal
R (r)

= 〈�(�)|R̂|�(�)〉 − 〈�|Q̂|�〉 . (128)

When	rbias= 0, the measurement is said to beunbiased. In certain cases, one can easily calibrate (i.e.,
relabel)r in such a way that the unbiased condition is satisfied.

Another parameter used to quantify the measurement error is related to the standard deviation. When
the pre-measurement state is an eigenstate ofQ̂, |�q〉, the readoutr of an ideal measurement always
agrees withq, showing no fluctuation. Hence, its standard deviation

	r ideal
sd ≡ [〈(�R)2〉ideal]1/2 ≡

[∑
r

(r − 〈R〉ideal)2P ideal
R (r)

]1/2

(129)

vanishes. On the other hand, for the same state|�q〉, the standard deviation of the readout of a general
measurement

	rsd ≡ [〈(�R)2〉]1/2 ≡
[∑
r

(r − 〈R〉)2PR(r)
]1/2

(130)

is finite. Therefore, a set of	rbias and	rsd may be used to quantify the measurement error when the
pre-measurement state is an eigenstate ofQ̂. However, for a general pre-measurement state|�〉, the
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readout fluctuates even for an ideal measurement, i.e.,	r ideal
sd �0. As a result, there exist various ways of

quantifying the measurement error by (something like) the standard deviation. For example, many works
on quantum non-demolition measurement[17,58,59]quantified it by a set of	rbias and the increase of
the variance[19,20,56,57,62],

(	rsd)
2 − (	r ideal

sd )2 . (131)

Although this quantification is convenient for many applications, one of its disadvantages is that its
vanishment (along with	rbias= 0) does not guaranteePR(r) = P ideal

R (r). Another important work[23]
quantified the measurement error by

〈�H|(R̂H(�)− Q̂H(0))
2|�H〉 , (132)

whereR̂H, Q̂H, |�H〉 areR̂, Q̂, |�〉 in the Heisenberg picture, respectively, i.e.,|�H〉 = |�(0)〉 and so
on. Although this quantity has good mathematical properties, its physical meaning is not clear enough.
For example, suppose that we are given two pieces of apparatus A and Aideal which perform general and
ideal measurements, respectively. By performing two experiments, one usingA and the other usingAideal,
we can measure all of	rbias, 	rsd, 	r ideal

sd andD(P ideal
R ‖PR), for any states. However, it is impossible to

measure the quantity of Eq. (132) using A and Aideal for general states.
In the following, we do not specify the detailed quantification of the measurement error	qerr except

when it is needed.16 However, we simply say that	qerr = 0 whenPR(r)= P ideal
R (r).

4.5.3. Range of measurement
Let us denote the eigenvalue spectrum ofQ̂ byQ, and the number of eigenvalues by|Q|. For example,

whenQ̂ is thezcomponent of the spin of a spin-Ssystem,Q={−Sh̄, . . . , (S−1)h̄, Sh̄} and|Q|=2S+1.
Consider the case where the pre-measurement state is an eigenstate|�q〉 of Q̂. Then,	qerr can be taken

as a set of	rbias and	rsd. Note that both	rbias and	rsd are generally functions ofq, i.e.,	qerr varies in
Q. Let 	q∗err be the upper limit of the measurement error allowable for the purpose of the experiment. For
example, ifQ is a component of a spin and if one wants to distinguish different spin states, then	q∗err
should be less than̄h/2, say	q∗err = h̄/4. In this case,	q∗err is of the same order of magnitude as the
minimum spacing�qmin between the eigenvalues ofQ̂. On the other hand,	q∗err?�qmin in many optical
experiments on condensed-matter physics using photodetectors, in whichQ is the photon number and
thus�qmin = 1.

If 	qerr�	q∗err in a regionQrangein Q, we say that therangeof the measurement (or of the measuring
apparatus) isQrange[19,20]. For an ideal measurement,	qerr= 0 everywhere inQ, and henceQrange=Q.
In this case, we say that the range of the measurement covers the whole spectrum ofQ̂. This is not
necessarily the case for general measurements. For example, a photon counter cannot count the photon
number correctly if the number is too large.

Although the importance of the range of the measurement has not been stressed in many theoretical
works, it often plays crucial roles as stressed in Refs.[19,20], and as will be explained in Sections 4.5.4,
5.4 and 5.6.

16 If the reader feels uneasy about this, you can assume for example that	qerr of an apparatus is defined only for eigenstates
of Q̂, and that	qerr is a set of	rbiasand	rsd.
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4.5.4. Information obtained by measurement
We have seen that for general measurements the measurement error	qerr may be non-zero and the range

Qrangeof the measurement may be narrower than the spectrumQ of the observableQ̂ to be measured.
This implies that the amountI of information that is obtained by the measurement is smaller for a general
measurement than for an ideal measurement[19,20,60].

To see this, consider again the case where the pre-measurement state is an eigenstate|�q〉 of Q̂, for
which	qerr is specified by	rbiasand	rsd. We assume that	rbias=0 for simplicity, so that	qerr=	rsd. Let
J be the number of different eigenstates that can be distinguished from each other by this measurement.
As will be illustrated shortly,J depends on	qerr andQrange. We may defineI by

I ≡ log2 J . (133)

Although more elaborate definition ofI would be possible, this simple definition will suffice the present
discussion.

For an ideal measurement,	qerr = 0 andJ = |Q|. Therefore,I takes the maximum value,

I ideal= log2 |Q| . (134)

For a general measurement, however,I�I ideal in general. For example, when	qerr is smaller than the
minimum spacing�qmin between the eigenvalues ofQ̂, we haveJ � |Qrange|, hence

I � log2|Qrange|�I ideal . (135)

When	qerr��qmin, on the other hand, one cannot distinguish between|�q〉 and|�q ′ 〉 with certainty if
|q − q ′|< 	qerr. Therefore,J < |Qrange| andI becomes even smaller.

It should be stressed thatan interaction process between S and A can be called a measurement process
onlywhen I is large enough(at leastI�1),17 because measurement ofQ is a process by which an observer
gets information aboutQ. For example, as the temperature of A is increasedI is generally decreased
because of the thermal noise, untilI � 0 at a high temperature.18 In such a case, the interaction process
between S and A is not a measurement process because an observer cannot get any information about
Q. Hence, it should be called anon-informative disturbanceof S by A. Another, rather trivial, example
of non-informative disturbances is the case whereĤint is such an interaction that does not generate the
correlation betweenQ andR. It is obvious that such an interaction is possible.

The distinction between measurement and a non-informative disturbance is crucial when discussing
many problems about measurement, such as the quantum non-demolition measurement[19,20]and the
reversible measurement[60]. For example, the state before the interaction with A can be physically
recovered only for a non-informative disturbance[60]. In discussions of the Zeno effect, however, the
distinction was sometimes disregarded in the literature. That is, there are two ways of defining the Zeno
effect: one is as an effect of measurements, which may be called the Zeno effectin the narrow sense,
while the other, which may be called the Zeno effectin the broad sense, is as an effect of any kinds of

17This is common to both quantum and classical physics.
18This may be seen simply as follows: SinceRcan change through the interaction with S, the change ofR is not forbidden by

a boundary condition which could be imposed on A. Then, according to the fluctuation–dissipation theorem[67],Rfluctuates at
a finite temperatureT, and the magnitude of the fluctuation is proportional toT (apart from possibleTdependence of the response
function). Therefore, with increasingT, 	rsd increases, and thus	qerr increases, and consequentlyI decreases, approaching zero
at the high-temperature limit.
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disturbances including non-informative disturbances. In the latter sense, it was concluded for example
that the Zeno effect would become stronger as the temperature of A is increased[66]. Furthermore, the
well-known shortening of lifetimes of quasi-particles with increasing the temperature of solids could
be called the AZE. However, these arenot the Zeno effect in the narrow sense because one cannot
get information from a high-temperature apparatus. It should be noticed that universal conclusions,
which are independent of details of models, can be drawn only for the Zeno effect in the narrow sense
(see Section 4.7).

4.5.5. Backaction of measurement
If the measurement were not made (i.e., ifĤint = 0), the state of S att = � would be given by

�̂free= e−iĤS�|�〉〈�|eiĤS� . (136)

When defining the backaction, however,� in this expression is often taken 0 in order to exclude the
effect of the trivial change induced bŷHS. We will not specify which is used for̂�free, except when the
specification is needed.

If the measurement has been made, the post-measurement state corresponding to each readoutr is
given by Eq. (120). When quantifying the backaction, however, it is customary to take the von Neumann
mixture �̂vN(�), Eq. (122), as the post-measurement state. We call the difference between�̂vN(�) (or
�̂r (�)) and �̂free thebackactionof the measurement. Its magnitude should be quantified by a measure
of the difference between the two density operators. For example, it may be quantified by thequantum
relative entropy[68,69];

D(�̂free‖�̂vN(�)) ≡ Tr[�̂free
(log2 �̂free− log2�̂vN(�))] . (137)

One can also useD(�̂vN(�)‖�̂free
), which is not equal toD(�̂free‖�̂vN(�)) in general. Or, one can use other

measures which are used in quantum information theory[68,69].
However, it is customary, and sometimes convenient, to quantify the backaction in the following way.

If an ideal measurement of an observableX of S is performed for the post-measurement state�̂vN(�), its
probability distribution will be

Tr[�̂vN(�)P̂X(x)] ≡ P vN
X (x) , (138)

whereP̂X(x) denotes the projection operator onto the subspace belonging to an eigenvaluex of X̂. For
�̂free, on the other hand, the probability distribution would be

Tr[�̂freeP̂X(x)] ≡ P free
X (x) . (139)

The backaction is sometimes quantified by the difference betweenP vN
X (x) andP free

X (x) of properly
chosen observables, such asQ and/or its canonical conjugateP.19 In particular, the difference between
P vN
Q (q) andP free

Q (q) is called thebackaction on themeasured observable, whereas the difference between

P vN
P (p) andP free

P (p) may be called thebackaction on the conjugate observable[17,58,59].
The difference betweenP vN

X (x) andP free
X (x) can be quantified, for example, by the relative entropies.

However, they are sometimes quantified more simply by the differences between the averages,〈X〉vN and

19WhenQ is a position coordinate, for example,P is the conjugate momentum.
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〈X〉free, and the variances,〈(�X)2〉vN and〈(�X)2〉free, of P vN
X (x) andP free

X (x);

	〈X〉 ≡ 〈X〉vN − 〈X〉free , (140)

	〈(�X)2〉 ≡ 〈(�X)2〉vN − 〈(�X)2〉free . (141)

In this quantification, the backaction on the measured observable is represented by the set of	〈Q〉
and	〈(�Q)2〉, whereas the backaction on the conjugate observable by the set of	〈P 〉 and	〈(�P)2〉.
Heisenberg used	〈(�P)2〉 in his famous gedanken experiment on the uncertainty principle. It may
thus be tempting to think that the measurement error and the backaction would be related simply by
Heisenberg’s uncertainty relation. However,this is false, as we will explain in Section 4.8.1.

In the following, we do not specify the detailed quantification of the backaction except when it is
needed.

4.5.6. Instantaneous measurement and ideal measurement as limiting cases
It is sometimes assumed that the response time� → +0. In order to get a non-vanishing information

I, however, such aninstantaneous measurementis possible only in the limit of infinite coupling constant
� of Ĥint. In fact, if � is finite we have

lim
�→+0

|�(�)〉 = lim
�→+0

e−iĤS+A�|�〉|�A〉 = |�〉|�A〉 , (142)

which clearly shows that one cannot get any information about S by measuringRof A. Since the coupling
constant of any physical interaction is finite, an instantaneous measurement is, in its exact definition, an
unphysical limit. It becomes physical only in the sense that� is shorter than any other relevant time scales.

On the other hand, an ideal measurement can be regarded as the following limit of a general mea-
surement;	qerr → 0, andQrange→ Q, andI → log2 |Q|, and the backaction→ D(�̂free‖�̂ideal

vN ). These
conditions are satisfied if Eq. (99) is satisfied for everyq, l,m, q ′, l′, r ′,m′. Therefore, to realize an ideal
measurement, one must construct an experimental setup whoseĤS+A, � andr0 satisfy this condition.
This is generally very hard and somewhat unrealistic, particularly when the size of A is small[70,61].
Moreover, a fundamental tradeoff among the measurement error, range, and backaction has been sug-
gested for measurements of a certain classes of physical quantities,20 such as the photon number[20].
Furthermore, it is sometimes assumed that� → +0 for ideal measurements, although such a limit is un-
physical as mentioned above. To avoid confusion, we call such an ideal measurement as aninstantaneous
ideal measurement.

Since most of real measurements do not satisfy these limiting conditions, it is important to explore
properties of general measurements.

4.6. Various types of measurements

In discussing the Zeno effect, more characterizations of measurements are used, which are explained
in this subsection.

20Although such quantities can be measured, it is not obvious whether they can be called observables if the word
“observable” is used only for a quantity of which an ideal measurement is possible, at least in principle, to an arbitrarily
good approximation.
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4.6.1. Direct versus indirect measurements
Suppose that S can be decomposed into two parts, S0 and S′. This does not necessarily mean that S0 and

S′ are spatially separated. They can be, for example, different sets of variables such as different quantized
fields. LetQandQ′ be observables of S0 and S′, respectively, and assume that they are correlated strongly,
whereQ is the observable to be measured. For example,Qmay be the electron energy in an excited atom,
by measurement of which one can detect the decay of the atom, andQ′ the energy of photons emitted
from the atom: They are strongly correlated with each other because of the energy conservation.

Because of the strong correlation, the information aboutQcan be obtained through either an interaction
between S0 and A or another interaction between S′ and A. In the former case, the measurement is called
a direct measurementbecause apparatus A interacts directly with S0 which includesQ, whereas in the
latter case it is called anindirect measurementbecause A does not interact directly with S0.21 When
discussing decay of an unstable state, for example,Q′ may be regarded as adecay product, which is
produced by the decay. In such a case, an indirect measurement is a measurement of a decay product(s).
Note that in indirect measurements properties of the measurement ofQ′ become important. For example,
the rangeQ′

rangeof the measurement ofQ′ plays crucial roles in Sections 5.5 and 5.6.
It is often criticized that the Zeno effect by direct measurements is not the ‘genuine’ Zeno effect[10],

because the appearance of change ofQ is not very surprising if an apparatus acts directly on S0. It seems
therefore that theories and experiments on the Zeno effect by indirect measurements are to be explored
more intensively.

4.6.2. Positive- versus negative-result measurements
Consider an excited atom, which will emit a photon when it decays to the ground state. If one monitors

the decay by a photodetector that detects a photon emitted from the atom, the photodetector reports no
signal if the decay does not occur. One can confirm that the atom does not decay by the fact that nothing
happens. Such a measurement, in which one can get information even when a measuring apparatus reports
no signal, is called anegative-result measurement. In terms of the formulation of Section 4.2, this means
that one can get information even whenr=r0. On the other hand, when the spin of an electron is measured
by the Stern–Gerlach apparatus, the apparatus reports eitherr=+h̄/2 or−h̄/2, whereasr0 takes another
value, sayr0 = 0. Such a measurement, in whichr after the measurement is always different fromr0, is
called apositive-result measurement.

The Zeno effect looks more interesting when it is induced by negative-result measurements than by
positive-result measurements, because seemingly nothing happens in the former case[10]. In Section 5,
we will analyze the Zeno effect induced by indirect negative-result measurements.

4.6.3. Repeated instantaneous measurements versus continuous measurement
Assume that the Heisenberg cut is located between A and A′ in Fig. 13. Suppose that a measurement

of Q is performed, in which the apparatus A interacts with S during 0� t�� andRof A is measured by
A′ at t = �.22 Then, suppose that another measurement is performed, in which A interacts with S again

21 It might be tempting to regard S′ in a indirect measurement as a part of a measuring apparatus. However, this is not
recommended because they are different in the following point: S′ always couples to S0, whereas the apparatus couples to S0
(or S′) only during a measuring process.

22Although we assume in the following equations for simplicity that the measurements ofRbyA′ are ideal and instantaneous,
it is easy to generalize the equations to the case of general measurements ofR using, e.g., the operator̂Om(r) of the POVM
measurement of Section 4.8.3.
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Fig. 14. Repeated measurements with time intervals�i .

during�+ �i � t�2�+ �i andR is again measured by A′ at t = 2�+ �i . By repeating such sequences, one
can performrepeated measurementsofQ of S with time intervals�i , as shown inFig. 14.

Repeated measurements in the limit of� → +0 (while keeping�i finite) may be calledrepeated instan-
taneous measurements.23 To keepI of each measurement constant in this case, one has to increase the
coupling constant� of Ĥint to infinity, as discussed in Section 4.5.6. Therefore, the repeated instantaneous
measurements is a rather unphysical limit.

On the other hand, one can change�i freely without changingI, because�i is basically independent of
I of each measurement. Therefore, the limit of�i → +0 is a physical and realistic limit, which is widely
performed in real experiments. Since the apparatus A interacts continuously with S in such repeated
measurements, it may be called acontinuous measurement.24

23 It is sometimes calledpulsed measurements. To avoid possible confusion, however, we do not use this term in this article.
24This term is widely used when A interacts continuously with S, even when the times and properties (i.e., whether ideal

or general and whether instantaneous or not) of measurements ofRbyA′ are not specified. As will be shown in Section 4.6.4,
such times and properties become irrelevant if one employs the ‘unitary approximation’ and is interested only in〈X〉vN and/or
〈R〉vN, whereX is an observable of S.
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Despite the above-mentioned difference between the two limits, it is sometimes argued that repeated
instantaneous measurements for which(�i, �)=(T ,0) is equivalent to continuous measurement for which
(�i, �)= (0,KT ), whereK is a positive constant of order unity. However, this equivalence holds only for
certain limited cases. In fact, the results of Section 5 show that they are not equivalent, sometimes much
different, in general.

Note that the definition of the response time� becomes ambiguous in the case of continuous measure-
ment, becausêHint is effective for allt�0. In this case,� may be defined as the time scale�r on which the
probability distributionPR(r) becomes significantly different from the initial distributionPR(r)= 	r,r0.
Although only the order of magnitude can be determined according to this definition, it suffices for dis-
cussions on the Zeno effect induced by continuous measurement. Therefore, we will use this definition
in Section 5.

Properties of repeated measurements can be calculated simply as a sequence of general measurements,
which we have discussed so far. In fact, by repeatedly applying Eqs. (94), (102) and (105) (with�′ = �),
we obtain

PR(rn; rn−1, . . . , r1)= ‖P̂R(rn)e−iĤS+A�|�rn−1···r1((n− 1)(� + �i))〉‖2 , (143)

|�rn···r1(n� + (n− 1)�i)〉 = P̂R(rn)e−iĤS+A�√
PR(rn; rn−1, . . . , r1)

|�rn−1···r1((n− 1)(� + �i))〉 , (144)

|�rn···r1(n(� + �i))〉 = e−i (̂HS+HA )�i |�rn···r1(n� + (n− 1)�i)〉 , (145)

for n = 1,2, . . . . From these formulas, one can calculate everything about repeated measurements,
including the Zeno effect. For example, the expectation value〈W 〉rn···r1 of an observableW (of S or A)
for the state afternmeasurements, for which the readouts arer1, . . . , rn, is given by

〈W 〉rn...r1 = 〈�rn···r1(n� + (n− 1)�i)|Ŵ |�rn···r1(n� + (n− 1)�i)〉 . (146)

4.6.4. Unitary approximation
In some cases, one is only interested in the average of〈W 〉rn···r1 over all possible values of the readouts.

Such an average〈W 〉vN is given by

〈W 〉vN =
∑
r1,...,rn

PR(rn; rn−1, . . . , r1)PR(rn−1; rn−2, . . . , r1) · · ·PR(r1)〈W 〉rn···r1 . (147)

Using Eq. (143), and taking�i = 0 for simplicity,25 we can rewrite this equation as

〈W 〉vN =
∑
r1,...,rn

PR(rn−1; rn−2, . . . , r1) · · ·PR(r1)

× 〈�rn−1···r1((n− 1)�)|eiĤS+A�P̂R(rn)Ŵ P̂R(rn)e
−iĤS+A�|�rn−1···r1((n− 1)�)〉,

=
∑
r1,...,rn

〈�(0)|eiĤS+A�P̂R(r1) · · ·eiĤS+A�P̂R(rn)Ŵ P̂R(rn)

× e−iĤS+A� · · · P̂R(r1)e−iĤS+A�|�(0)〉 . (148)

25The corresponding formula for�i >0 can also be obtained easily.
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In practical calculations, this is often approximated by26

〈W 〉vN � 〈�(0)|eiĤS+An�Ŵe−iĤS+An�|�(0)〉 . (149)

According to this approximate formula, one can evaluate〈W 〉vN by simply calculating the unitary evolu-

tion, generated by e−iĤS+A t , of the initial state|�(0)〉 of the composite system S+A. That is, one does not
have to use the projection postulate at all. We thus call this approximation theunitary approximation. For
eachmodel of S+A, the validity of this approximation can be checked by comparing the result obtained
from Eq. (149) with that obtained from Eq. (148).

Note, however, thatgeneraljustification of the unitary approximation is not so simple. In Eq. (148), the
role of the sum of the projection operators

∑
rj
P̂R(rj ) (j=1,2, . . . , n) is to destroy quantum interference

between states corresponding to different values ofrj ’s. Therefore, if environments surrounding S+A are
taken into account, decoherence by the environments would induce the same effects as theirs[72]. It might
thus be tempting to consider that one could reduce Eq. (148) to Eq. (149) simple by using this equivalence.
However, such decoherence effects generally induce noise terms in the Schrödinger equation, which thus
turns into a stochastic one. In general, the time evolution by such a stochastic Schrödinger equation cannot
be described by a unitary evolution such as Eq. (149). In particular, Eq. (149) is obviously wrong in the
limit of � → 0 (while keepingn� finite) because then the Zeno effect onRshould take place. Therefore, to
show the general validity of the unitary approximation one needs to show that Eq. (148) (or the stochastic
Schrödinger equation) reduces to Eq. (149) under certain conditions.

WhenW =X orR, whereX is an observable of S, a sufficient condition for the validity of the unitary
approximation would be thatR is a macroscopic variable, for the following reason. IfR is a macroscopic
variable, the quantum interference destroyed by

∑
rj
P̂R(rj ) is that between macroscopically distinct

states. Such quantum interference can become significant only in limited cases such as (i) a certain
observable is measured which can detect such interference, (ii) the state will evolve back closely to the
initial state, or (iii) the Zeno effect onR occurs. NeitherX norR can be such an observable of case (i).
Furthermore, it seems unlikely that the ‘recurrent’ process of case (ii) could occur in the time scale of
a practical value of� if R is a macroscopic variable, because then A is a macroscopic system which
generally has many degrees of freedom and complicated dynamics. Moreover, the time scale of case (iii)
seems much shorter than the time scale of the Zeno effect onQ, which is a microscopic variable.

Actually, the unitary approximation is used widely in studying the Zeno effect without confirming
its validity, even whenR is taken as a microscopic variable. However, it is generally believed (and
confirmed empirically) that results obtained by this approximation are much better than the results of a
naive application of the projection postulate on S. In Section 5, we will employ the unitary approximation
and discuss its validity for the proposed model.

4.7. A simple explanation of the Zeno effect using the quantum measurement theory

When a quantum system S is not measured, its state|�〉 evolves freely as|�(t)〉=exp[−iĤSt]|�〉, and
the expectation value of an observableQ of S evolves as〈�(t)|Q̂|�(t)〉 ≡ 〈Q(t)〉free. To measureQ, on

26Unlike formula (124) for single measurement, Eq. (149) is not a rigorous formula becauseR̂ does not commute with
ĤS+A (since if they did thenRwould not change by the interaction, and thus no information would be transferred toR), except
for the trivial case where[X̂, ĤS+A ] = 0 andŴ = X̂, for which〈W 〉vN = 〈�(0)|Ŵ |�(0)〉.
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the other hand, one must couple S with an apparatus A via an interactionĤint between them in such a way
that non-vanishing correlation is established betweenQ and an readoutR of A, as discussed in Section
4.2. As a result, S and A evolve as a coupled system as|�(t)〉 = exp[−i(ĤS + Ĥint + ĤA)t]|�〉|�〉A,
and the expectation value ofQ now evolves as〈�(t)|Q̂|�(t)〉 ≡ 〈Q(t)〉int. SinceQ andR undergo a
coupled motion byĤint, 〈Q(t)〉intgenerally evolves differently from〈Q(t)〉free. Even when A reports no
signal (i.e., a negative-result measurement), the presence ofĤint does have an effect. Obviously, the effect
becomes larger as the coupling constant� of Ĥint is increased.

Suppose that one performs repeated measurements, each takes� seconds, with vanishing intervals
(�i = 0). To make the measurements more frequent (i.e., to reduce�) without reducing the amount of
informationI obtained by each measurement, one must increase�. Therefore, as� is decreased without
reducingI, the effect ofĤint on S becomes larger. If� can thus be reduced sufficiently short by increasing�
enough, the difference between〈Q(t)〉int and〈Q(t)〉free (for a givent) becomes larger, and it will become
possible to detect the difference by experiments. This is the Zeno effect whenQ represents an observable
that distinguishes the status (whether the system is decayed or not) of an unstable state.

Note that anarbitrary interaction with an external system doesnotnecessarily affect the expectation
value ofQ. The essence of the Zeno effect is thatthe form ofĤint is limited and its strength� is lower
boundedby the requirement that̂Hint should create sufficient correlation betweenQ andR in order to
extract non-vanishing information. For this reason, the lifetime isalwaysmodified in the limit of�i → 0
and� → 0, because this implies� → ∞. Such a universal conclusion can never be drawn for general
interactions with (or perturbations from) external systems.

However, as explained in Section 4.5.6, an instantaneous ideal measurement is an unrealistic limit
of real measurements. Therefore, the following questions need to be answered: (i) Is the Zeno effect
induced by real measurements? (ii) Under what conditions does it occur? (iii) How does the decay rate
of the unstable state behave as a function of the measurement parameters, such as the measurement error,
response time, range, and so on? We will answer these questions in Sections 5 and 6.

Note that for analyzing the Zeno effect it is sufficient to calculate the averages, over all possible values
of the readout, of expectation values of a few observables. In fact, one is most interested in the lifetime
of an unstable state, which is the average time at which the decay occurs. This can be expressed as the
average of the expectation value of an appropriate observable. Therefore, as explained in Section 4.6.4,
for analyzing the Zeno effect it is sufficient to calculate the unitary part of the measurement process if one
employs the unitary approximation.27 That is, unlike the conventional theories of Section 3, one does
not have to use the projection postulate. Tounderstandthis point, however, the full framework, which we
have explained so far in this section, of the quantum measurement theory is necessary.

4.8. Additional comments

We have explained all things necessary to apply the quantum measurement theory to the Zeno effect.
To be more complete, however, we will describe a few more points which will help the reader.

4.8.1. Non-triviality of the uncertainty relations
The Zeno effect is a sort of backaction of measurements. It might thus be tempting to think that the

Zeno effect could simply be described using the uncertainty relations. However, this is false. We here
explain this point, assuming the canonical commutation relation[Q̂, P̂ ] = ih̄ for simplicity.

27As explained there, this approximation should be good ifR is taken as a macroscopic variable.



234 K. Koshino, A. Shimizu / Physics Reports 412 (2005) 191–275

The uncertainty relation that is described in most textbooks is the following inequality,

	q 	p� h̄/2 . (150)

Here,(	q)2 ≡ 〈�|(�Q̂)2|�〉 and(	p)2 ≡ 〈�|(�P̂ )2|�〉, where�Q̂ ≡ Q̂ − 〈�|Q̂|�〉 and�P̂ ≡ P̂ −
〈�|P̂ |�〉. This inequality is derived directly from[Q̂, P̂ ]= ih̄. On the other hand, in his famous gedanken
experiment on the uncertainty principle, Heisenberg claimed the following inequality,

	qerr 	pba� h̄/2 , (151)

where	qerr and	pba are the measurement error in a measurement ofQ and its backaction onP, respec-
tively, which are quantified by the square roots of Eqs. (131) and (141).

As stressed by Lamb[71], inequalities (150) and (151) are totally different from each other. In the
former,	q and	p represent the standard deviation of experimental data that are obtained fromerror-less
measurements ofQ andP, respectively, which are performed independently of each other. Properties of
the measuring apparatus are not included at all. In this sense, inequality (150) can be understood as the
uncertainty relationof the pre-measurement state. On the other hand,	qerr and	pba in inequality (151)
are the measurement error and backaction, respectively,of the measuring apparatus. They are obviously
different from	q and	p; e.g.,	qerr can be large even when	q = 0. Furthermore, inequality (150) is
never violated by any quantum states whereas relation (151)canbe violated. For example, suppose that
we have an approximately error-less measuring apparatus Aerrlessof Q of a particle, and a momentum
modulator M, which limits the range of momentum in some finite range. We can let the pre-measurement
wavefunction enter in Aerrless, and then pass through M. Since the location of the Heisenberg cut and
the time at which the measurement is completed can be taken arbitrary, we can regard this composite
system Aerrless+M as a single apparatus A. For this apparatus,	qerr � 0 (by Aerrless) whereas	pba is
upper limited (by M). Therefore,	qerr 	pba � 0, and inequality (151) is violated.

As might be understood from this simple example, one can construct many different “uncertainty
products” by combining two of	q, 	qerr, 	qba, 	p, 	perr, and	pba. The lower limits, if exist, of dif-
ferent uncertainty products can have different values. Furthermore, inequality (150) assumes that the
measurements ofQ andP are performed not simultaneously but separately. WhenQ andP are measured
simultaneously, on the other hand, the uncertainty becomes larger as	q 	p� h̄ [22]. To explore these
uncertainty products, the quantum measurement theory is necessary. Recently, Ozawa[23] have found
certain universal relations among them, using the rather mathematical definition (132).

It is clear from these considerations that the Zeno effect cannot be discussed simply using uncertainty
relations.

4.8.2. Measurement of time correlations
Suppose that an observableX is measured att = 0 using an apparatusAX, and subsequently another

observableY is measured at timet (>0) using another apparatusAY . The expectation value of the product
of the two readoutsRX andRY is called thetime correlation, which we denote as〈Y (t)X(0)〉. As a
quantum-theoretical expression of this quantity, the following one is often employed:

〈�H|ŶH(t)X̂H(0)|�H〉 , (152)

where the subscript H denotes the corresponding quantities in the Heisenberg picture. However, as stressed
first by Glauber[16], this expression is wrong except for a special case. The correct expression is obtained,
in a manner similar to discussions of Section 4.6.3, as follows.
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From Eqs. (94) and (102) (with�′ = � ≡ �X, the response time of AX), the probability distribution of
the valuerX of RX is given by

PRX(rX)= ‖P̂RX(rX)e−iĤS+A�X |�〉|�A〉‖2 , (153)

where A denotes the joint system of AX and AY , and the post-measurement state is

|�rX(�X)〉 =
1√

PRX(rX)
P̂RX(rX)e

−iĤS+A�X |�〉|�A〉 . (154)

This state evolves into e−i (̂HS+HA )(t−�X)|�rX(�X)〉 at timet (��X), which becomes the pre-measurement
state of the measurement ofY. The probability distribution of the valuerY of RY is therefore given by

PRY (rY ; rX)= ‖P̂RY (rY )e−iĤS+A�Y e−i (̂HS+HA )(t−�X)|�rX(�X)〉‖2 , (155)

where�Y is the response time of AY . From these equations, the time correlation is calculated as

〈Y (t)X(0)〉 =
∑
rX,rY

rY rXPRY (rY ; rX)PRX(rX)

=
∑
rX,rY

rY rX‖P̂RY (rY )e−iĤS+A�Y e−i (̂HS+HA )(t−�X)

× P̂RX(rX)e
−iĤS+A�X |�〉|�A〉‖2 . (156)

If both measurements are ideal and instantaneous,28 and if [X̂, Ŷ ]= [X̂, ĤS]=0, then from Eq. (109)
this formula reduces to

〈Y (t)X(0)〉 =
∑
x,y

yx‖P̂Y (y)e−iĤStP̂X(x)|�〉‖2 = 〈�H|ŶH(t)X̂H(0)|�H〉 . (157)

For general measurements, however, one must use the correct formula (156), which states that the value
of the time correlation depends on properties of the measuring apparatus. In particular, the value strongly
depends on the backaction of A, because it determines the post-measurement state|�rX(�X)〉, which
evolves into the pre-measurement state of the subsequent measurement ofY. Therefore, if one has two
sets of pieces of apparatus (AX, AY ) and (A′X, A′

Y ), the value of〈Y (t)X(0)〉 depends on which set is
used as the measuring apparatus, even when their measurement errors are negligibly small. Examples
and experimental demonstrations of this fact are presented, e.g., in books on quantum optics[21,32].

An important implication of the discussions of this subsection is that the Zeno effect would also depend
on properties of measuring apparatus. This is indeed the case, as will be demonstrated in Section 5.

28As noted in Section 4.5.6, this means that the coupling constant� of Ĥint is infinite, and henceĤS+A�X�0 although
�X → 0.
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4.8.3. POVM measurement
From Eqs. (94) and (102) (with�′ = �), the probability distribution of the readout can be expressed as

PR(r)= TrS+A[P̂R(r)e−iĤS+A�|�〉|�A〉〈�A |〈�|eiĤS+A�P̂R(r)]
=Tr

[∑
m

〈r,m|e−iĤS+A�|�〉|�A〉〈�A |〈�|eiĤS+A�|r,m〉
]

, (158)

where TrS+A and Tr denotes the trace operations overHS+A andHS, respectively. If we define the operator
Ôm(r) onHS by

Ôm(r)|�〉 ≡ 〈r,m|e−iĤS+A�|�〉|�A〉 for ∀|�〉 ∈ HS , (159)

then the above equation can be written as

PR(r)= Tr

[∑
m

Ôm(r)�̂(0)Ô
†
m(r)

]
, (160)

where�̂(0)= |�〉〈�|. Furthermore, the post-measurement state can be expressed as

�̂r (�)=
1

PR(r)
TrA[P̂R(r)e−iĤS+A�|�〉|�A〉〈�A |〈�|eiĤS+A�P̂R(r)]

= 1

Tr
[∑

mÔm(r)�̂(0)Ô
†
m(r)

] ∑
m

Ôm(r)�̂(0)Ô
†
m(r) . (161)

Therefore, we can calculate bothPR(r) and �̂r (�) from the pre-measurement state�̂(0) if the set of
operators{Ôm(r)} is given. General properties of{Ôm(r)} is easily obtained from its definition (159). For
example,∑

r

∑
m

Ô
†
m(r)Ôm(r)= 1̂ (162)

because
∑
r

∑
m〈�1|Ô†

m(r)Ôm(r)|�2〉 = 〈�1|�2〉 for arbitrary vectors|�1〉 and|�2〉.
If � is a set of values ofr, then the probability of getting the readout in� is given by

∑
r∈�

PR(r)= Tr

[∑
r∈�

∑
m

Ôm(r)�̂(0)Ô
†
m(r)

]
. (163)

Helstrom[68] derived a similar expression in a different manner, by considering mathematical require-
ments for general measurements. He called the association between� and the linear map

�̂  →
∑
r∈�

∑
m

Ôm(r)�̂Ô
†
m(r) (164)

a positive operator-valued measure(POVM). Therefore, a general measurement is sometimes called a
POVM measurement.
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One can in principle calculate the correct POVM using Eq. (159) for each model of the measurement
process. However, for certain purposes, it is sufficient toassumesome reasonable form of the POVM by
hand. This simplifies discussions greatly. Such a phenomenological theory is widely used, e.g., in quantum
information theory[68,69]. The Zeno effect can also be analyzed using such a phenomenological theory,
although we shall not use it in this article.

4.8.4. Completeness of the standard laws of quantum theory
In concluding this section, we want to stress that the results of this section show the completeness of

the standard laws of quantum theory, which include Born’s rule and the projection postulate. One can
surely obtain the correct results by applying these laws if the Heisenberg cut is located at an appropriate
position, although wrong results might be obtained if one naively assumed the Heisenberg cut between S
and A. Furthermore, we havederivedformula for POVM measurements in Section 4.8.3, although some
recent textbooks employed POVM measurements as one of the fundamental laws of quantum theory.
Therefore, the standard laws of quantum theory are complete if correctly applied.

5. Analysis of Zeno effect by quantum measurement theory

In the previous Section, we have reviewed the quantum measurement theory, according to which (in
particular, Section 4.6.4) one should analyze the unitary temporal evolution of both the target system S
of measurements and (a part of) measuring apparatus A. Many of theoretical analyses of the Zeno effect
employed this formalism[48,49,73–79]. In this section, taking a photon-counting measurement on the
decay of an excited atom as an example, we study the Zeno effect with this formalism, and compare the
results with those obtained in Section 3.

This section is organized as follows: In Section 5.1, a concrete Hamiltonian for the system-apparatus
interaction, as well as the physical quantities of interest, is presented. In Section 5.2, the effect of the
system-apparatus interaction is investigated analytically; it is shown that the system-apparatus interaction
results in the renormalization of the form factor, through which the decay rate of the atom is modified. In
Section 5.3, we consider an idealized situation where the detector satisfies the flat-response condition, Eq.
(192); it is observed that the conventional projection-based theory discussed in Section 3 is essentially
reproduced under this condition. On the contrary, in Sections 5.4–5.6, we consider the effects of imperfect
measurements, where the flat-response condition is not satisfied and various phenomena beyond the
conventional theory appear.

5.1. Model for the system and apparatus

5.1.1. Hamiltonian for atom–photon–detector system
As an example of an unstable system and a measuring apparatus for checking its decay, we discuss

the case where the radiative decay of an excited atom is continuously monitored by counting the emitted
photon. This is a sort of a continuous measurement (Section 4.6.3), where the observer judges that the
atom has decayed if the detector (measuring apparatus) has counted a photon. Note that this measurement
is classified as a negative-result and indirect measurement, for which the curiousness of the Zeno effect
is most emphasized (see Sections 4.6.1 and 4.6.2).
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We present again the Hamiltonian of the measured system S, i.e., an atom and a photon field:

ĤS = ��+�− +
∫

dk [(gk�+bk + H.c.)+ εkb
†
kbk] . (165)

The unobserved decay dynamics of this system has already been discussed in Section 2. We now couple
a detector A–S. In usual photodetectors, photons are converted to elementary excitations (typically,
electron–hole pairs) in the detector. Here, we model the detector by a spatially homogeneous absorptive
medium, whose Hamiltonian is given by

ĤA =
∑
j

∫
dk εkj c

†
kj ckj . (166)

Here,εkj andckj denote the energy and an annihilation operator, respectively, of the elementary excitation
with the momentumk and a set of other quantum numbersj.29 We treatckj as a bosonic operator, which
satisfies[ckj , c†

k′j ′ ]=	(k−k′)	j,j ′ , and thus the detector is here modeled by non-interacting bosons. Such

a treatment is allowed as long as the density of excitations is low,30 which is valid in usual photodetection
processes. Usually, elementary excitations form a continuum in energy, and the conversion from a photon
to an excitation occurs irreversibly. The interaction between photons and the elementary excitations may
be described by adding the following photon–detector interaction term[79,82]:

Ĥint =
∑
j

∫
dk(�kj b

†
kckj + H.c.) . (167)

Here, the photon (of mode)k does not couple to elementary excitations with a different momentum
k′(�= k), due to the translational symmetry inherent in spatially homogeneous systems.

Throughout this section, we assume that there is no excitation in the detector initially. Then, following
Section 2.3, we can transform Eqs. (166) and (167) into the following form:

ĤA =
∫ ∫

dk d� �c†
k�ck� , (168)

Ĥint =
∫ ∫

dk d�(�k�b
†
kck� + H.c.) , (169)

whereck� is normalized as[ck�, c
†
k′�′ ]=	(k−k′)	(�−�′). �k� is the form factor for the photon–detector

interaction, for a photon with momentumk.
The photon–detector coupling�k� generally introduces two effects on the photonic modes:The coupling

makes the lifetimes of photons finite, as well as it introduces slight shifts in the photonic energies.
The latter effect appears when�k� is not a symmetric function of� about the photon energy�k (see
Section 6.3). Here, in order to neglect the energy shifts of photons, which bring about uninteresting

29For example,k is the center-of-mass momentum of an electron-hole pair, andj is a set of other quantum numbers for the
electron–hole relative motion.

30 States excited by photons are in the charge-neutral sector of electron–hole states. Such states can always be mapped to
states ofinteractingbosons[80,81]. When the density of excitations is low, then the density of bosons in the mapped state is
low, and thus the interactions among the bosons are negligible. For details, see, e.g., Refs.[80,81].
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complexity from the viewpoint of the Zeno effect, we neglect�-dependence of�k� and take the following
form:

�k� =√�k/2� , (170)

which is called theflat-band approximation. By this choice of photon–detector coupling, the photonk
will be converted into an excitation in the detector at a rate�k. The response time of the detector for the
photonk is therefore given by

�k ≡ �−1
k . (171)

In realistic experimental situations, the photon–detector coupling�k often depends onk. For example, if
the detector has a finite detection energy band,�k is non-zero only for photons whose energy falls in the
detection energy band. Therefore, we retaink-dependence of�k in order to treat such cases.

In real photodetectors, photogenerated excitations are magnified to yield macroscopic signals. Here we
neglect the magnification processes, regarding it as the apparatus A′ that performs an ideal measurement
of the number of excitation quanta (Section 4.2), although actually it would not be ideal in general. Such
an approximation has been successfully applied to many problems in quantum optics[16,21,32].

5.1.2. Quantities of interest
In studying the Zeno effect, one is interested only in the averages of a few observables (such ass(t), ε(t)

andr(t), described below) over all possible values of the readouts of the measurements. Furthermore, since
this model does not corresponds to either of the limiting cases (i)–(iii) of Section 4.6.4,31 the unitary
approximation of Section 4.6.4 is expected to be good for this model. Therefore, within the unitary
approximation, it is sufficient to investigate the unitary time evolution of the joint quantum system S+A,
as explained in Section 4.7. Therefore, the projection postulate is no more necessary; the counteraction
of measurement onto S is naturally introduced through the interactionĤint between the measured system
and the measuring apparatus.

The Hamiltonian of S+A is given by the sum of Eqs. (165), (168) and (169);

Ĥ = ĤS + Ĥint + ĤA . (172)

The pre-measurement state is�+|0〉|0A〉, where|0A〉 denotes the vacuum state forck�. Hereafter, we
denote the vacuum state for the enlarged system S+A, |0〉|0A〉, by |0〉 for simplicity. Since the number
of total quanta,N̂ = �+�− + ∫ dkb†

kbk +
∫ ∫

dk d�c†
k�ck�, is conserved (= 1) in this enlarged system,

the state vector at timet can be written in the following form:

|�(t)〉 = exp(−iHt)|i〉 = f (t)�+|0〉 +
∫

dkfk(t)b
†
k|0〉 +

∫ ∫
dk d�fk�(t)c

†
k�|0〉 . (173)

We define the following three probabilities of physical interest:

s(t)= |f (t)|2 , (174)

31For example, the time scale of the recurrent process is infinite because A of this model has a continuous spectrum.
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ε(t)=
∫

dk|fk(t)|2 , (175)

r(t)=
∫ ∫

dk d�|fk�(t)|2 . (176)

s(t) is the survival probability of the atom under the photoncounting measurement.ε(t) is the probability
that the atom has decayed and emitted a photon but the emitted photon has not been detected. We therefore
callε(t) the measurement error.32 r(t) is the probability that the atom has decayed and the emitted photon
has been detected. Neglecting the signal magnification process, we can interpretr(t) as the probability
of getting the detector response. One of the merits of the present analysis of measurement is that all of
these quantities of interest can be calculated.

In the following part of Section 5, we will investigate how the decay probability 1−s(t) is perturbed by
the interaction with measuring apparatus,Ĥint. If 1− s(t) is suppressed (enhanced) compared to the case
of free decay wherêHint = 0, we regard that the QZE (AZE) is taking place. One might feel strange why
this judgment is not done throughr(t), which is directly accessible by an observer. This is becauser(t)

does not necessarily reflect the decay probability 1− s(t) faithfully in general measurement processes:
In good measurements, 1− s(t) well coincides withr(t) as observed inFig. 17(b), but such an optimal
response is expected only when the response time of detector is much shorter than the atomic lifetime,
and when the detector is active for all relevant photons. If the detector response is slow [seeFig. 17(a)] or
if the detector is inactive for some photons [seeFigs. 23, 25and29], r(t) largely deviates from 1− s(t).
Note that the atomic state does have decayed if 1− s(t)= 1 even whenr(t) � 0.

5.1.3. Relation to direct measurements
As stated at the beginning of Section 5.1.1, the model presented in Section 5.1.1 describes a case of

an indirect measurement. However, it is shown here that a model for adirectmeasurement can also be
recast into the same form, and therefore that the results presented in Section 5 are applicable not only to
indirect measurements but also to direct measurements.

As the unstable quantum system, we again employ an excited atom undergoing radiative decay, but we
slightly change the notation: denoting the excited and ground states by|a〉 and|b〉, and taking the energy
of |b〉 as the origin of energy, we rewrite the unobserved system Hamiltonian as

Ĥ direct
S = �|a〉〈a| +

∫
dk [(gkbk|a〉〈b| + H.c.)+ εkb

†
kbk] , (177)

which is identical to Eq. (165) except for notations. As a model of a direct measurement, we assume that
the atom is coupled with an apparatus A, which has a continuum of single-electron states, in such a way
that as soon as the decayed electronic state|b〉 is occupied the electron tunnels into the continuum with
a rate� [83]. The observer knows the decay of the initial unstable state|a〉 through the population in the
continuum. Denoting an energy eigenstate of A with energy� by |�〉, we take the Hamiltonian of A and
the interaction with S as

Ĥ direct
A + Ĥ direct

int =
∫

d� �|�〉〈�| +
∫

d�
√

�/2�(|�〉〈b| + |b〉〈�|) . (178)

32 However, there are several other definitions of measurement error (Section 4.5.2).
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Obviously, this model describes a direct measurement, for the measurement apparatus directly interacts
with the atom in order to get information on the atom.

According to the above Hamiltonians, the state vector starting from the initial state|a〉 evolves in the
subspace, spanned by{|a〉, b†

k|b〉, b†
k|�〉}, of the total Hilbert space. This situation is similar to the model

of Section 5.1.1, for which the subspace is spanned by{�+|0〉, b†
k|0〉, c†

k�|0〉} as Eq. (173). Actually, by
regarding|a〉 → �+|0〉, b†

k|b〉 → b
†
k|0〉, andb†

k|� − εk〉 → c
†
k�|0〉, we can map the present model of a

direct measurement exactly onto the model of Section 5.1.1 with the photon–detector coupling constant
�k� = √

�/2�. (Such a case, where�k� has nok-dependence, is called the case of “flat response” in
this article and shall be discussed extensively in Section 5.3.) Thus, the model of a direct measurement,
Eqs. (177) and 178is included as a special case of the model of an indirect measurement, Eqs. (165),
(168) and (169).

5.2. Renormalization of form factor by measurement

As an inevitable counteraction of photon-counting measurements, the lifetimes of photons become
finite. As a result, the energies of photons are broadened, and the form factor (see Section 2.3) suffers
modification. Hereafter, we refer to the new form factor as therenormalizedform factor. In this section,
we discuss how the form factor is renormalized by the measurement, i.e., through the photon–detector
interaction. It should be reminded that, when the system is not observed (Ĥint = 0), theoriginal form
factor is given by

|g�|2 =
∫

dk|gk|2	(εk − �) . (179)

In order to obtain the renormalized form factor, we first diagonalize the photon–detector part of the
Hamiltonian,Ĥint + ĤA. For this purpose, we define the coupled-mode operatorBk� [41,82]by

Bk� = �k(�)bk +
∫

d��k(�,�)ck� , (180)

�k(�)= (�k/2�)1/2

� − εk + i�k/2
, (181)

�k(�,�)=
�k/2�

(� − εk + i�k/2)(� − � + i	)
+ 	(� − �) . (182)

It can be confirmed thatBk� is orthonormalized as[Bk�, B
†
k′�′ ]=	(k−k′)	(�−�′). Inversely, the original

operators,bk andck�, are given, in terms ofBk�, by

bk =
∫

d��∗k(�)Bk� , (183)

ck� =
∫

d��∗k(�, �)Bk� . (184)
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Using the coupled-mode operators, the enlarged HamiltonianĤ is transformed into the following form:

Ĥ = ��+�− +
∫ ∫

dk d� �B†
k�Bk� +

∫ ∫
dk d�

[
(�k/2�)1/2gk

� − εk − i�k/2
�+Bk� +H.c.

]
. (185)

Now we extract the interaction modēB� at energy�, employing the same method as used in Section 2.3.
B̄� is given by

B̄� = ḡ−1
�

∫
dk
(�k/2�)1/2gk

� − εk − i�k/2
Bk� , (186)

|ḡ�|2 =
∫

dk|gk|2 �k/2�

|� − εk − i�k/2|2
, (187)

where|ḡ�|2 was determined so that̄B� is orthonormalized as[B̄�, B̄
†
�′ ] = 	(�− �′). Using the interaction

modes,Ĥ is further rewritten as

Ĥ = �0�+�− +
∫

d�[(ḡ��+B̄� + H.c.)+ �B̄†
�B̄�] + Ĥrest , (188)

whereĤrest consists of coupled modes which do not interact with the atom.
In the final form of the Hamiltonian, Eq. (188), the atom is coupled to a one-dimensional continuum

of B̄� with the coupling function̄g�. Thus,|ḡ�|2 gives the form factor renormalized by measurement. It
is easy to confirm that, in the limit of�k → 0 for everyk, Eq. (187) reduces to the original form factor,
Eq. (179).

Eqs. (179) and (187) clarify how the form factor is renormalized as a backaction of measurement. When
the system is not observed, the form factor is an accumulation of delta functions,|gk|2	(� − εk). When
one tries to measure the decay of the system by detecting an emitted photon, the lifetime of the emitted
photon becomes finite as inevitable counteraction of measurement. Thus, the contribution of photonk is
energetically broadened as

|gk|2	(� − εk) → |gk|2 �k/2�

|� − εk − i�k/2|2
, (189)

satisfying a sum rule:∫
d�|gk|2	(� − εk)=

∫
d�|gk|2 �k/2�

|� − εk − i�k/2|2
= |gk|2 . (190)

The renormalization of form factor is illustrated inFig. 15.
As is observed in Section 2.6, the decay rate is approximately given by the FGR with high accuracy. We

may thus estimate the decay rate under measurements by the FGR. In this case, note that when applying
the FGR the final states must be defined as eigenstates of the system in the absence of the atom–photon
interaction. Under measurements, the photon states (b

†
k|0〉) do not satisfy this condition because of the

photon–detector interaction, whereas the coupled modes (B̄†
� |0〉 or B†

k�|0〉) do. Therefore, in order to
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without  measurement

with  measurement

Fig. 15. Illustration of the renormalization of the form factor. The contribution of each photon mode is given by a delta function
when photons are not counted, whereas it acquires finite width�k as a counteraction of measurement. The form factor is an
accumulation of contributions of all photon modes (broken line).

predict the decay rate correctly, the FGR should be applied not to the original form factor, Eq. (179), but
to the renormalized form factor, Eq. (187). Then, we obtain the decay rate under measurement as


({�k})= 2�|ḡ�|2 =
∫

dk|gk|2 �k

|� − εk − i�k/2|2
, (191)

This quantity is the principal result on the QZE and AZE by the quantum measurement theory: the decay
rate is modified through renormalization of form factor by measurement. If
 is smaller (larger) than the
original decay rate without measurement, which is given by
= 2�|g�|2, we regard that the QZE (AZE)
is taking place. In Section 5.3, Eq. (191) is compared with Eq. (76), which gives the decay rate under
repeated instantaneous measurements based on the projection postulate.

5.3. Continuous measurement with flat response

The conventional theories of the Zeno effect (Section 3) assumed that each of the repeated measurements
is instantaneous and ideal. On the other hand, we are treating here a continuous measurement. As pointed
out in Section 4.6.3, these measurements are quite different from each other in general. For example, the
response time�r = 0 and the measurement intervals�i >0 in the former, whereas�r >0 and�i = 0 in
the latter. Regarding the Zeno effect, however, similarity between these different measurements has often
been discussed[79]. In this subsection, we present a case where they indeed give similar results, whereas
in Sections 5.4–5.6 we will present drastic cases where they give much different results.

To see the similarity, it is customary to consider that�r (response time of the apparatus) would cor-
respond to�i (interval of repeated instantaneous measurements) with a possible multiplicative factor of
order unity. Furthermore, it should be noted that, if one applies the projection postulate directly to the
atomic states, the quantum coherences between the survived state (�+|0〉) and decayed states (b†

k|0〉)
are destroyed simultaneously, regardless of photon wavenumberk. Therefore, the projection postulate
implicitly assumes an idealized situation, in which the detector is sensitive to every photon mode with an
identical response time�r. In the present model, suchflat responseis realized by putting

�k = �−1
r for everyk . (192)



244 K. Koshino, A. Shimizu / Physics Reports 412 (2005) 191–275

Fig. 16. Illustration of the calculation by Eq. (193) of the decay rate
(�r) under continuous measurement with flat response.

(�r) is given by integrating the form factor|g�|2 with a weight functionff (�).

In this section, using the formalism of Sections 5.1 and 5.2, we study the Zeno effect under a continuous
measurement with such a detector, and compare the results with those obtained by the conventional
theories.

5.3.1. Decay rate under flat response
When the condition of flat response [Eq. (192)] is satisfied, the general expression of the measurement-

modified decay rate [Eq. (191)] is recast into the following form, using the definition of the form factor,
Eq. (14):


(�r)=
∫

d�|g�|2 × ff (�) , (193)

ff (�)= �−1
r

|� − � − i/2�r|2 , (194)

Namely, the decay rate under a continuous measurement with flat response is given by integrating the
original form factor|g�|2 with a weight functionff (�), as illustrated inFig. 16. The weight functionff (�)
has the following properties: (i)ff (�) is a Lorentzian centered at the atomic transition energy� with a
spectral width∼ �−1

r , and (ii)ff (�) is normalized as
∫

d�ff (�)= 2�.
Now a close connection between repeated instantaneous measurements (Section 3.2) and continuous

measurements with flat response has become apparent[84]: the difference between them lies merely in the
functional forms of the weight functionsfc(�) of Eq. (78) andff (�). Thus, apart from slight quantitative
discrepancy due to the difference betweenfc(�) andff (�), the conventional theories presented in Section
3 based on the projection postulate can be essentially reproduced from the formalism of Sections 5.1 and
5.2 in the special case of flat response.

Furthermore, it is of note that the effects of these two measurements would coincide even at a quantitative
level, when the measurement interval�i is a stochastic variable following a distribution functionP(�i)=
(2�r)

−1 exp(−�i/2�r). In this case, the weight function for the repeated measurements is modified as
follows:

f̃c(�)=
∫

d�iP(�i)× �i sinc2
[

�i(� − �)

2

]
= �−1

r

|� − � − i/2�r|2 , (195)

which is identical toff (�) [84].
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Of course, the condition of flat response is not satisfied in general measurement processes, so interesting
phenomena beyond the conventional theories are expected, which are the topics of Sections 5.4, 5.5 and
5.6. In the rest of Section 5.3, we confirm the qualitative agreement between these two formalisms with
concrete numerical examples, based on the Lorentzian form factor [Eq. (51)], for which the Zeno effect
by the conventional theories has already been revealed quantitatively in Section 3.

5.3.2. Numerical results
To calculate the three probabilities of physical interest,s(t), ε(t) andr(t), we use the Green function

method presented in Section 2.5. Here, an important modification is required due to the photon–detector
interaction: The bare photon Green functionP(�, k), which appears in Eqs. (49) and (50), should be
replaced by the dressed photon Green functionP̄ (�, k). Following Section 2.5, the dressed Green function
is given by

P̄ (�, k)= P(�, k)

1− �(�, k)P (�, k)
, (196)

whereP(�, k) and�(�, k) are the bare Green function and the self-energy of the photonk, respectively,
which are given by

P(�, k)= 1

� − εk + i	
, (197)

�(�, k)=
∫

d�
|�k�|2

� − � + i	
=− i�k

2
. (198)

Substituting Eqs. (197) and (198) into Eq. (196), we obtain the dressed Green function of the photonk as

P̄ (�, k)= 1

� − �k + i�k/2
. (199)

The change fromP(�, k) to P̄ (�, k) represents the renormalization effect, which is discussed in Section
5.2, in the language of the Green function method. We can calculates(t), ε(t) andr(t) numerically using
P̄ (�, k).

In Fig. 17, the temporal evolutions of the three probabilities are plotted. InFig. 17(a), the response of
the detector is assumed to be very slow (�r ∼ �−1), in order to visualize the delay of the detector response.
As a result, the decay dynamicss(t) is almost unchanged from the unobserved case. We can confirm that
r(t) follows 1− s(t) with a delay time∼ �r; thus,�r may safely be regarded as the response time of the
detector. Recall that as noticed in Section 4.5.1�r is actually thelower limit of the response time because
additional delays in the response, such as delays in signal magnification processes, may occur in practical
experiments. In discussing fundamental physics, the limiting value is more significant than practical
values, which depend strongly on detailed experimental conditions. A typical value of�r for GaAs is
10−15s, which is much shorter than the practical response times of commercial photodetectors, which
range from 10−6 to 10−13s. In the case of measurement of the decay of an excited atom by semiconductor
photodetectors, we can usually assume that�r>�−1 because�−1 ∼ 10−9s typically. The results for such
quick response are plotted inFig. 17(b). Furthermore,r(t) follows 1− s(t) almost without decay, and
that the measurement errorε(t) almost vanishes for all time. It is observed that the decay is slowed down
as compared with (a), i.e., the QZE occurs under a continuous measurement with quick and flat response.
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Fig. 17. Temporal evolutions of 1− s(t), ε(t), andr(t). The parameters are chosen as�= 20� (i.e., tj = 0.05�−1), |�− �0| = 0.

The response time of the detector is chosen as�r = 0.5�−1 in (a), and�r = 0.025�−1 in (b). r(t) follows 1− s(t) with a delay
time that is approximately given by�r. Thin dotted lines show the unobserved decay probability.
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Fig. 18. Temporal evolution of
(t), where�= 20� (i.e., tj = 0.05�−1). �− �0 = 0 in (a), and�− �0 = 2� in (b). The values of
the response time�r are indicated in the figures. The decay rate agrees well with the FGR decay rate (thin dotted lines), which
is given by Eq. (202).

In both Figs. 17(a) and (b), emitted photons are all counted by the detector. Therefore,r(t) → 1 and
ε(t)→ 0 ast → ∞.

In order to see more details,
(t)=− ln s(t)/t is plotted inFig. 18for several values of the response
time �r of the detector. As for the initial behavior of
(t), it is confirmed that
(t) increases linearly in
time as
(t) = ��t , regardless of the values of� − �0 and�r. This feature is completely the same as
that of the free evolution of the atom–photon system (Fig.7).33 On the other hand, in the later stage
of decay (t�tj ), it is confirmed that
(t) approaches a constant value, indicating that the decay proceeds
exponentially with a well-defined decay rate. It is also confirmed that the decay rate agrees well with
the FGR decay rate applied to the renormalized form factor (thin dotted lines inFig. 18), which will be

33The initial behavior of survival probability is given bys(t) = 1 − (〈Ĥ2〉 − 〈Ĥ 〉2)t2, where〈· · ·〉 = 〈i| · · · |i〉 andĤ is
the enlarged Hamiltonian for S+A, given by Eq. (172). However,〈Ĥ2〉 − 〈Ĥ 〉2 = 〈Ĥ2

S
〉 − 〈ĤS〉2, i.e., the measurement terms

(Ĥint + ĤA) play no role in determining the initial behavior ofs(t).
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Fig. 19. Renormalization of the form factor. The original form factor is plotted by the solid line, and the renormalized form
factors for�r = 0.025�−1 (slow response) and 0.005�−1 (fast response) are plotted by dotted and dashed lines, respectively. At
� = �0, |ḡ�0|2 decreases monotonically as�r becomes shorter, which corresponds toFig. 18(a). In contrast, at� = �0 + 2�,
|ḡ�0+2�|2 is increased (decreased) for slow (fast) response, in comparison to the unobserved case. This feature corresponds to
Fig. 18(b).

discussed in Section 5.3.3 in detail. Note also that inFig. 18(a), where�−�0=0, the decay rate decreases
monotonically as�r is shortened. In contrast, inFig. 18(b), where� − �0 = 2�, an increase of the decay
rate (the AZE) is observed for large�r, whereas suppression of decay (the QZE) is observed for small�r.

5.3.3. Renormalized FGR decay rate
We can explain the above numerical results in terms of the renormalization of the form factor, which

was discussed in Section 5.2. Using Eqs. (14), (51), (187) and (192), we obtain the renormalized form
factor as

|ḡ�|2 = �

2�

�(� + (2�r)
−1)

(� − �0)
2 + (� + (2�r)

−1)2
, (200)

which is, again, a Lorentzian centered at�= �0. As a result of the continuous measurement, the width of
the form factor is broadened as� → � + (2�r)

−1, satisfying the following sum rule;∫
d�|ḡ�|2 = ��

2
. (201)

The renormalized form factor is plotted inFig. 19. Applying the Fermi golden rule to Eq. (188), the
atomic decay rate is calculated as34


(�r)= 2�|ḡ�|2 = �
�(� + (2�r)

−1)

(� − �0)
2 + (� + (2�r)

−1)2
. (202)

It is confirmed fromFig. 18that the FGR decay rate agrees well with the rigorous numerical results.

34 One can also derive Eq. (202), combining Eqs. (51), (193) and (194).
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Fig. 20. Dependence of the normalized decay rate
(�r)/
(∞) on the response time�r of detector, which is given by Eq. (203).
The parameters are the same asFig. 9; � = 20� (tj = 0.05�−1) and the values of|� − �0| are indicated in this figure. For

|� − �0| = 2�, the decay rate is maximized when�r = 0.025�−1.

In order to clarify the effect of measurement, the decay rate under the continuous measurement is
normalized by the unobserved decay rate
(∞) in Fig. 20. It is given by


(�r)


(∞) =
� + (2�r)

−1

�

(� − �0)
2 + �2

(� − �0)
2 + (� + (2�r)

−1)2
. (203)

This quantity for the case of repeated instantaneous ideal measurements has been calculated inFig. 9.
By comparingFigs. 9and20, we find that the results for the two cases agree semi-quantitatively with
each other if we identify the measurement intervals�i of Fig. 9 with the response time�r of Fig. 20as
�i � 2.64�r. (However, complete quantitative agreement is not attained: For example, the peak values
of the decay rate for|�0 − �| = 2� (broken line) are different betweenFigs. 9and20.) Furthermore,
Eq. (203) indicates that the Zeno effect becomes significant when(2�r)

−1��, i.e.,

�r��−1 = tj , (204)

which is certainly confirmed inFig. 18. A similar condition, Eq. (80), has been obtained also for repeated
instantaneous ideal measurements by the conventional theory.

The above observations demonstrate that, in an idealized case where every photon is detected with
the same response time (flat response), repeated instantaneous ideal measurements and a continuous
measurement give similar results for the Zeno effect.

5.3.4. QZE–AZE phase diagram
By analyzing Eq. (203) as a function of|�− �0| and�r, a ‘phase diagram’ discriminating the QZE and

AZE is generated, which is shown inFig. 21. The ‘phase boundary’ (solid curve) is given by

�(b)r = �

2[(� − �0)
2 − �2] , (205)
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Fig. 21. The phase diagram for the QZE and the AZE, for a case of Lorentzian form factor and a continuous measurement with
flat response. The solid curve divides the QZE region and the AZE region. The dotted line shows the value of�r at which the
decay rate is maximized for each value of|� − �0|.

on which the decay rate is not altered from the free rate, i.e.,
(�(b)r ) = 
(∞). The decay rate takes the
maximum value,


(�(m)r )


(∞) = |� − �0|2 + �2

2�|� − �0|
− 1 , (206)

on the dotted line, which is given by

�(m)r = 1

2(|� − �0| − �)
. (207)

When the atomic transition energy is close to the center of the form factor (|� − �0|��), only the QZE
is observed. However, in the opposite case (|� − �0|��), the AZE is observed dominantly except for an
extremely small response time. In this respect, one may say that the AZE is more widely expected than
the QZE[51]. It should be remarked thatFig. 21agrees semi-quantitatively withFig. 10, which is the
phase diagram for repeated instantaneous ideal measurements.

5.4. Geometrically imperfect measurement

In the previous section, we have discussed the Zeno effect under an continuous measurement with flat
response, in which all photons are detected with the same response time. In the following subsections,
we discuss more realistic measurement processes, in which the response time may be different among
different photon modes.

As an example of such realistic measurements, we consider in this subsection ageometricallyimperfect
measurement[85], in which the detector is inactive to photons in some modes because of a geometric
condition. For example, suppose that the photoabsorptive medium composing the detector is sensitive
only to thex-component of the electric field. Then, the photon–detector interaction becomes proportional
to ek� · ex , whereek� is the polarization vector, which is perpendicular tok, andex = (1,0,0). Therefore,
such a detector is inactive to photons whose wavevectork is oriented in thex direction, for example.
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atom

x
D D

Fig. 22. Illustration of geometrically imperfect measurement. The detector covers only a part of the whole solid angle around
the atom, and some of emitted photons are lost without being detected.

To discuss essential points of the geometrically imperfect measurements, we here consider a simplified
example, in which the detector has an active solid angleD and an inactive solid anglēD around the atom,
as illustrated inFig. 22. We assume that the detector can catch an emitted photon with a unique response
time �r when the wavevector of the photon is oriented inside ofD; otherwise, the detector misses the
photon. Thus, we put

�k =
{

�−1
r (k ∈ D) ,

0 (k ∈ D̄) .
(208)

As for the atom–photon coupling, we assume the Lorentzian form factor again and take the following
form: ∫

k∈D
dk|gk|2	(εk − �)= (1− ε∞)�

2�

�2

�2 + (� − �0)
2 , (209)

∫
k∈D̄

dk|gk|2	(εk − �)= ε∞�

2�

�2

�2 + (� − �0)
2 . (210)

The newly introduced parameterε∞ represents the probability that the emitted photon is lost without being
detected. For example, if spontaneous emission occurs spherically symmetrically (i.e.,gk is independent
of the direction ofk), and if the detector is sensitive only to thex-component of the electric field, then
ε∞ = 1/3. In general cases such as the case of the dipole radiation,ε∞ also depends on the direction of
the transition dipole of the atom.

The temporal behaviors ofs(t), ε(t) and r(t) are plotted inFig. 23. Contrarily to the case of flat
response, which is plotted inFig. 17, ε(t) → ε∞ (�= 0) andr(t) → 1− ε∞ (�= 1) even in the limit of
t → ∞. Using Eqs. (191), (187), (209), (210) and (208), we can calculate the decay rate as


(�r, ε∞)= (1− ε∞)� �(� + (2�r)
−1)

(� − �0)
2 + (� + (2�r)

−1)2
+ ε∞�

�2

(� − �0)
2 + �2

(211)

= ε∞
(∞)+ (1− ε∞)
(�r) . (212)

Here,
(∞) is the free decay rate and
(�r) is the decay rate under continuous measurement with flat
response, Eq. (202). Thus, the decay rate is simply given by these mixture under geometrically imperfect
measurement. It is therefore clear that ifε∞ ∼ 1 then the decay rate in this case differs much from that
under repeated instantaneous ideal measurements. Although this result may sound rather trivial, more
surprising examples will be presented in the following subsections.
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Fig. 23. Temporal evolutions of 1− s(t), ε(t), andr(t). The values of the parameters are the same as inFig. 17(i.e.,tj =0.05�−1,

|� − �0| = 0, �r = 0.5�−1) except thatε∞ = 0.2 in this figure.

photon
energyinactive band

emitted photon

inactive bandactive band

Fig. 24. Illustration of an energetically imperfect measurement. The gray spike represents the energy spectrum of an emitted
photon, which is defined byI (�)= lim t→∞

∫
dk	(εk−�)|〈0|bke−iHSt�+|0〉|2. The detector is sensitive only to photons within

the active detection band, which spans(� − �d,� + �d). In the model of Sections 5.5 and 5.6, where Eq. (215) is assumed,
I (�) becomes proportional to the dressed atomic Green functionĀ(�), which is given by Eq. (48).

5.5. Quantum Zeno effect by energetically imperfect measurement

Actual materials composing photodetectors are sensitive only to photons within a restricted energy
range, which is the source of another kind of imperfectness of measurement. Thus, we are led to consider
energeticallyimperfect measurement[24], where, as illustrated inFig. 24, the range of the measurement
of photons by the photodetector does not cover all the energy range of a photon. In other words, the
photodetector has a finite detection band. To simplify the discussion, we consider the case where the
detector responds with an identical response time�r to a photon if its energyεk falls in the detection band
as|εk −�|<�d, whereas it does not respond to photons outside of this detection band. Thus, we take the
following form for the photon–detector coupling:

�k = �εk
=
{

�−1
r (|εk − �|<�d) ,

0 (otherwise) .
(213)
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Fig. 25. Temporal evolutions of 1− s(t), ε(t), andr(t). The parameters are chosen as follows:�d = 2� and��r = 0.5.

It is of note that when�k depends only on the photonic energy, namely,�k = �εk
, the formula Eq. (187)

for the renormalized form factor is recast into the following simplified form:

|ḡ�|2 =
∫

d�|g�|2 ��/2�

|� − � − i��/2|2
. (214)

5.5.1. A model for an exact exponential decay
As for the atom–photon coupling, we treat a special case where the unobserved form factor is given by

a constant function:

|g�|2 =
∫

dk|gk|2	(� − εk)= �

2�
, (215)

which is the� → ∞ limit of a Lorentzian form factor. One reason why we have employed this form factor
is that we expect that the qualitative results will not be much different for other cases if the unobserved
form factor has a finite�. Another reason, which is more important, is that the above model extracts most
clearly a drastic feature of the Zeno effect under energetically imperfect measurement. To see this, we
note the following points peculiar to the above form factor: (i) The survival probability exactly follows
the exponential decay law ass(t) = exp(−�t), i.e., the jump timetj (=�−1) is zero (see Section 2.6).
(ii) The conventional theory therefore predicts that the system undergoes neither the QZE nor the AZE
(see Section 3.3). (iii) Neither effect can be induced in this system by a continuous measurement with
flat response, which is proven to yield equivalent results to the conventional theory (see Section 5.3.1).
However, we will show in the following part of this subsection that the QZEcanbe induced when the
measurement is energetically imperfect.

5.5.2. Numerical results
First we present the numerical results based on the Green function method. Using the fact that the

lineshape of emitted photons is an exact Lorentzian with width�/2, the probability of obtaining the detector
response is naively expected to ber(∞)= (2/�)arctan(2�d/�). Therefore, significant measurement error
will result when the detection bandwidth�d is small as�d��. In Fig. 25, temporal behaviors of 1− s(t),
ε(t) andr(t) are plotted, for a case of narrow detection band (�d=2�). The probability of photodetection
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Fig. 26. Temporal evolution of
(t). {�d, �r} are chosen at{10�,0.05�−1} (solid line),{2�,0.25�−1} (broken line) and{10�, �−1}
(dotted line).

is in good agreement with naive estimation,r(∞)= (2/�)arctan(2�d/�)=0.84. By looking at the decay
probability 1− s(t), it is observed that the decay is slightly suppressed fort��−1.

The change of the decay rate is more emphasized inFig. 26, where temporal evolution of
(t) =
− ln s(t)/t is plotted for three different values of�d and�r. It should be recalled that
(t) reduces to
a constant function (=�) when the atom is not measured. This feature is contrary to the models with a
finite jump time, where
 always approaches zero ast → 0 as a result of quadratic decrease ofs(t)

(see, e.g.,Fig. 7). We find the following two-stage behavior of
(t) in Fig. 26: Initially, the decay rate is
identical to the unobserved rate�, whereas the decay proceeds with a suppressed rate in the later stage.
For example, when�d = 10� and�r = 0.05�−1 (solid line inFig. 26), the decay rate changes from� to
0.5� at t ∼ 0.1�−1. Since the atom is kept almost undecayed at the crossover time[s(t ∼ 0.1�−1) � 0.9],
significant decay occurs in the second stage with a suppressed rate. Thus, the QZE is surely taking place
for the exponentially decaying system.

5.5.3. Conditions for QZE
Here, we explore the underlying mechanisms of the two-stage behavior of decay rate, and clarify the

condition for inducing the QZE. Using Eqs. (213)–(215), the renormalized form factor is calculated as

|ḡ�|2 = �

4�2

∫
d�

��

|� − � − i��/2|2
(216)

= �

2�2 [��(|� − �| − �d)+ arctan(2�r(� − � + �d))− arctan(2�r(� − � − �d))] , (217)

where�(x) is a step function. The renormalized form factor is plotted inFig. 27 for three different
values of�r�d. The form factor is modified locally around the band edge in case of large�r�d, whereas
global modification occurs for small�r�d. |ḡ�|2 approaches the unobserved value�/2� in the limit of
|� − �| → ∞, regardless of�r�d. Considering that the value of the form factor at� = � is given
by |ḡ�|2 = (�/�2)arctan(2�r�d), we obtain the condition for significant decrease of the form factor at
� = � as

�r�d�1 . (218)
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Fig. 27. Renormalization of form factor. The original form factor without measurement, which corresponds to�r → ∞ limit,
is a constant function (thin broken line). The renormalized form factors are plotted for�r�d = 0.5 (solid line) and�r�d = 10
(broken line).

The two-stage behavior can be understood with a help of the perturbation theory ing. Applying the
lowest-order perturbation to the renormalized Hamiltonian Eq. (188), we obtain the decay probability as

1− s(t)=
∫

d� |ḡ�|2sin2[(� − �)t/2]
[(� − �)/2]2 . (219)

Taking into account that the main contribution in the integral comes from the region of� satisfying
|� − �|�2�t−1, we evaluate the right-hand side in two limiting cases: In the case oft>�−1

d , |ḡ�|2 can
be approximated by|ḡ∞|2 = �/2�, which coincides with the free decay rate 1− s(t) = �t ; whereas in
the opposite case oft?�−1

d , |ḡ�|2 can be approximated by|ḡ�|2, which gives the suppressed decay rate
1− s(t) = 2�|ḡ�|2t . Thus, the decay rate changes from the free rate to the suppressed rate att ∼ �−1

d .
We can confirm that this statement agrees with the results inFig. 26.

Now the conditions for inducing the QZE in exponentially decaying systems are clarified: (i) The decay
rate in the second stage should be significantly suppressed from the free decay rate. This condition is
expressed by inequality (218). (ii) The transition from the first to the second stage should occur before
the atom decays. Since the survival probability at the crossover time (t ∼ �−1

d ) is roughly given by
s(�−1

d ) � exp(−�/�d), this condition is expressed as exp(−�/�d) � 1, i.e.,

�>�d , (220)

which means that the detection band should completely cover the radiative linewidth of the atom. Note
that if the detection bandwidth is not so large (�d ∼ �) thepartial quantum Zeno effecttakes place, where
suppression of decay starts during the decay (att ∼ �−1). The behavior ofs(t) in Fig. 25serves as an
example of the partial QZE.

To summarize this subsection, when the detector has a finite detection bandwidth the QZE can be
induced even in a system which exactly follows the exponential decay law. The conditions for inducing
the QZE on the response time and the bandwidth are given by inequalities (218) and (220), respectively.
One might immediately notice that these results seemingly contradict with the well-known wisdom on
the QZE, which states that neither the QZE nor the AZE takes place in exactly exponentially decaying
systems, as has been shown in Section 3.3. This point will be discussed in Section 5.7.1.
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Fig. 28. Illustration of the false measurement. The detector is insensitive to photons within the inactive detection band, which
spans(� − �̄d,� + �̄d).

5.6. Quantum anti-Zeno effect by false measurement

In Section 5.5, we have observed that the QZE can be induced even in systems which exactly follows
the exponential decay law, when the measurement is energetically imperfect. There, the detector was
assumed to be active only for photons close to the atomic transition energy, as shown inFig. 24. In this
section, we consider the opposite situation, where the active band of the detector does not match the
energy of a photon emitted from the atom, as illustrated inFig. 28 [25]. To study this case, we assume
the following form for�k:

�k = �εk
=
{

�−1
r (|εk − �|> �̄d) ,

0 (otherwise) .
(221)

A photon which has the atomic transition energy� cannot be detected by such an detector. We here refer
to such measurements asfalse measurements. In most of previous discussions on the Zeno effects, it was
assumed that measuring apparatus can detect the decay with a high efficiency, because the Zeno effect
is supposed to appear only weakly if measurements on the target system are ineffective, as has been
confirmed in Section 5.4 for the case of continuous measurement with flat response. However, we will
show that the Zeno effect can take place even under false measurements.

5.6.1. Natural linewidth
As for the atom–photon coupling, we again employ Eq. (215), by which the atomic decay follows an

exact exponential decay law. The spectrum of the emitted photon therefore becomes a Lorentzian centered
around the atomic transition energy� with width �, as illustrated inFig. 28.

If � were larger than̄�d, then the probability that an emitting photon is detected would become large.
However, we consider the opposite case where�>�̄d, for which the detection efficiency would be expected
to be very small. When̄�d = 10�, for example, we can estimate, noting that the lineshape is an exact
Lorentzian, the fraction of photons emitted in the active band as 1− (2/�)arctan(2�̄d/�) � 3.2%.
Therefore, it is naively expected that almost no photons would be counted by the detector and that such a
false measurement would not affect the decay dynamics of the atom significantly. We will show that this
naive expectation is wrong, by numerically solving the Schödinger equation in the next subsection. The
conditions for inducing the Zeno effect will be described in Section 5.6.3.
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Fig. 29. Temporal evolutions of 1−s(t) andr(t). The dotted and solid lines show the results for�r=�−1 (slow detector response)
and�r = (30�)−1 (fast detector response). The inactive bandwidth�̄d is 10�. The thin broken line shows the decay probability
for unobserved case, where 1− s(t)= 1− e−�t .
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Fig. 30. Temporal evolution of
(t), where�̄d = 10�, and�r = �−1 (dotted line) and(30�)−1 (solid line). The system decays

with the unobserved decay rate� for t��̄
−1
d , and with the enhanced decay rate 2�|ḡ�|2 for t��̄

−1
d .

5.6.2. Numerical results
The temporal behaviors of 1− s(t) and r(t) are drawn inFig. 29, where the inactive bandwidth

�̄d (=10�) is much larger than�, and thefalsemeasurement is realized. When the detector response
is slow (�r = �−1, dotted lines inFig. 29), the decay probability is almost unchanged from that of the
unobserved case, i.e., 1−s(t) � 1−e−�t . In this case, although a photon is emitted upon decay, detection
of the emitted photon is almost unsuccessful, i.e.,r(t) � 0. Such behaviors of 1− s(t) andr(t) agree
with the above naive expectation on false measurements.

However, when the detector response is fast (�r = (30�)−1, solid lines inFig. 29), we find that the
detection probability of the emitted photon becomes surprisingly large (∼ 40%). Furthermore, the decay
is significantly promoted, which is nothing but the AZE. InFig. 30, 
(t) = − ln s(t)/t is plotted to
visualize the decay rate. The figure clarifies that the decay rate changes from the unobserved rate� to
the enhanced ratē� (� 1.6�) at t ∼ 0.1�−1. Because the atom is kept almost excited at that moment, it
decays with the enhanced rate. This result would be quite unexpected, considering that the energy of the
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Fig. 31. Plot of the renormalized form factor|ḡ�|2 under the measurement, for�r�̄d = ∞ (thin broken line), 10 (dotted line),
and 1/3 (solid line).

emitted photon lies almost completely in the inactive band of the detector and therefore that the detector
seemingly cannot touch the target system.

5.6.3. Conditions for AZE
The unexpected results shown in Section 5.6.2 can be understood in terms of the renormalized form

factor. It is given by

|ḡ�|2 = �

2�2 [� + ��(�̄d − |� − �|)+ arctan(2�r(� − � − �̄d))− arctan(2�r(� − � + �̄d))] ,

(222)

which is plotted inFig. 31. Contrary toFig. 27, the form factor is increased at the atomic transition energy,
�=�. In case of false measurements, the form factor is always increased inside the inactive band, which
implies that false measurements always result in the enhancement of decay (the AZE).35

Following Section 5.5.3, the conditions for inducing the AZE is summarized as follows: (i) The decay
rate in the second stage�̄ should be significantly enhanced from the free decay rate. This condition is
expressed by the following inequality:

�r�̄d�1 , (224)

becausē� is given by

�̄ = 2�|ḡ�|2 = �[2− 2�−1 arctan(2�r�̄d)] . (225)

35When�k depends only on the photonic energy as�k = �εk
and the detector has an inactive bandI, the decay rate Eq. (191)

is recast into the following form:


 = 2�|ḡ�|2 =
∫

�/∈I
d�|g�|2 ��

|� − � − i��/2|2
+ 2�

∫
�∈I

d�|g�|2	(� − �) , (223)

where|g�|2 is the original form factor [not restricted to the flat ones, Eq. (215)]. In case of false measurements where� ∈ I ,
the second term gives the unobserved decay rate, 2�|g�|2. Because the first term is positive,
�2�|g�|2 in general.
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(ii) The transition from the first to the second stage should occur before the atom decays. This condition
is expressed as

�>�̄d , (226)

which means that the probability of detecting a photon is naively expected to be verysmall.
The former condition can be understood intuitively as follows: The lifetime of a virtually emitted photon

in the active band is estimated by	t ∼ (	E)−1 ∼ �̄
−1
d , using the uncertainty principle. The anti-Zeno

effect takes place if the detector response�r is quick enough to fix a virtual photon, which is accomplished
by �r��̄

−1
d .

5.7. Discussions

5.7.1. Relation to conventional theories
We have observed that the QZE orAZE can be induced even in exactly exponentially decaying systems,

for which tj → 0, if the measurement is energetically imperfect. This fact seemingly contradicts with
the conventional theories, which state that neither the QZE nor the AZE can be induced in such sys-
tems. However, it should be stressed that this conventional wisdom was proved only for repeated
instantaneous ideal measurements. Therefore, the relation of the present theory to the conventional
theories can be seen by taking the limits of flat response,36 as we have done in Section 5.3,
as follows.

Regarding the case of Section 5.5, the limit of flat response is obtained by taking�d → ∞. Then,
inequality (218) can never be satisfied by a finite�r for exponentially decaying systems, and the QZE
does not take place. Similarly, regarding the case of Section 5.6, the flat response is obtained by putting
�̄d → 0. Then, inequality (226) can never be satisfied for exponentially decaying systems, and the AZE
does not take place. We have thus obtained the conventional wisdom from the present formalism by
taking the limit of flat response. It is therefore seen that the present theory serves as an extension
of the conventional theories to realistic situations, where the detection range of the detector is
always finite.

5.7.2. Physical interpretation
In Sections 5.5 and 5.6, the following two opposite effects of measurement has been revealed: (a)

Measurement on photons whose energies are close to the atomic transition energy� tends to sup-
press the decay of the atom. (b) Measurement on photons whose energies are far from� tends to
accelerate the decay of the atom. When the detector is active for all photons, these two opposite ef-
fects appear simultaneously and weaken each other. This is the reason why a ‘worse’ detector which
possesses a finite inactive band is more advantageous in inducing the QZE or AZE than a ‘better’ de-
tector which is sensitive to all photons. Particularly, when the unobserved form factor is a constant
function (in other words, the system decays with an exact exponential decay law), the two opposite
effects cancels out completely; the form factor suffers no modification at all, no matter how short�r
would be. This cancellation mechanism can be understood with a help ofFig. 15; although every pho-
tonic mode is energetically broadened as a counteraction of measurement, such individual broadenings

36The flat response is one of necessary conditions for reducing to repeated instantaneous ideal measurements. Therefore, it
is sufficient for the present purpose to show that the Zeno effect disappears for the flat response.
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are perfectly smeared out by thek-integration in Eq. (187), and are not reflected in the renormalized
form factor.

In general systems with a nonzero jump time, however, effects (a) and (b) are not completely canceled
out even in the case of the flat response. For example, in case of a Lorentzian form factor with finite
�, the system suffers the QZE or AZE by a continuous measurement with flat response, as discussed in
Section 5.3. There, it was observed that the QZE (AZE) dominantly takes place when the atomic transition
energy� is close to (far from) the central energy�0 of the form factor. This fact can also be understood
in terms of the competition between effects (a) and (b): When� and�0 is close, effect (a) dominates
effect (b), resulting in the QZE; when� and�0 is far apart, effect (b) dominates effect (a), resulting
in the AZE.

5.7.3. Discussions and remarks on the model
In this section, we have analyzed the Zeno effect using a specific model, Eqs. (165)–(167). We expect

that the results based on this model would cover most of essential elements of the Zeno effect. For example,
although the model assumes an indirect measurement we have shown in Section 5.1.3 that direct measure-
ments are included as a special case of this model. However, the following points are worth mentioning
about the model.

Firstly, the model is linear, i.e., Eqs. (165)–(167) are bilinear in the creation and annihilation operators.
Although this seems to be a good approximation to an effective Hamiltonian for photon-counting measure-
ments by standard photodetectors, the model cannot describe other experimental setups, of course. For
other experimental setups, the quantitative results of this section would become much different, although
we think that the qualitative results would be similar.

Secondly, we have computed the response time and the measurement error as relevant parameters
characterizing measurements. As discussed in Section 4.5.1, they are actually the lower limits of the
response time and measurement error, respectively, within the model of Eqs. (165)–(167), because,because
additional delay and/or measurement error can take place in subsequent processes such as the signal
magnification process in a photodetector. Although the performance of actual measuring devices would
be worse, the limiting values are most important in discussing fundamental physics, as emphasized in
Section 4.5.1.

Thirdly, we have assumed that the detector signal is obtained from the average population, which
is given by Eq. (176), of the elementary excitations. This may be detected by subsequent magnifying
processes through, say, avalanche processes. Note however that Eqs. (165)–(167) do not exclude the
possibility of other methods of getting the detector signal. For example, the signal may be obtained
from the off-diagonal elementsf ∗

k�(t)fk′�′(t), wherefk�(t) is defined in Eq. (173). What method
is used is not uniquely determined by Eqs. (165)–(167), which describe the dynamics of the sys-
tems inside the Heisenberg cut (Section 4.3.2). To determine the full experimental setup, we must
also specify the systems outside the Heisenberg cut. Among many methods of getting the signal us-
ing Eqs. (165)–(167), we,we have assumed that the detection of the average population would be the
most efficient method, thus giving the fastest response. Since we are interested in the lower limit of
the response time as discussed in Section 4.5.1, the calculation of the average population suffices for
our purpose.

Finally, our model assumes a homogeneous photoabsorptive media for the photodetector. The case
where the photodetector is separated spatially from the atom will be discussed in Section 6.4.
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6. Relation to cavity quantum electrodynamics

6.1. Relation between the Zeno effect and other phenomena

If one is interested in the Zeno effect in the broad sense (Section 4.5.4), only the decay rate will
be relevant, whereas quantities characterizing measurements, such as the measurement error and the
amount of information obtained by measurement, would be irrelevant. In such a case, any change of
the decay rate of the target system, which is induced by interaction with external systems, could be
called a Zeno effect even when no information can be obtained by the interaction process. Therefore,
the Zeno effect in the broad sense is not necessarily connected with measurements (as discussed in
Section 4.5.4), and, consequently, is closely related to various phenomena in many different fields of
physics[28–30].

Such phenomena include, for example, (i) the motional narrowing[67,86,87], in which the width of
an excitation in a solid is reduced by perturbations from external noises or environments, (ii) Raman
scattering processes[88,89], in which the transition rate between atomic levels is modulated by external
fields of photons or phonons, and (iii) the cavity quantum electrodynamics (abbreviated as thecavityQED)
[45,90,91], in which electrodynamics is modified by the presence of optical cavities. These phenomena
can be considered as examples of the Zeno effect in the broad sense, and vice versa.

Regarding the models of continuous measurements which are employed in Section 5, in particular, the
physical configurations are quite similar to those of the cavity QED. In fact, in Section 5 we have studied
effects of photon-counting measurements on the decay dynamics of an excited atom, assuming that the
photon-counting measurement is accomplished by the interaction between photons and photoabsorptive
media. Therefore, if we focus only on the decay dynamics of the atom it can be simply said that we have
studied effects of the photoabsorptive media surrounding the atom on the decay rate. This is a subject
of the cavity QED. Because of this similarity, we discuss in this section the relation between the cavity
QED and the results of Section 5.

6.2. Modification of form factor in cavity QED

In discussions of the cavity QED, the optical media surrounding an atom are usually treated as passive
media. That is, the dynamics of (elementary excitations in) the optical media is usually disregarded. This
should be contrasted with the discussions in Section 5, where microscopic dynamics of the photoabsorptive
media plays an important role as the readout of the measuring apparatus. If we focus only on the dynamics
of the atom, however, both the cavity QED and the Zeno effect can be understood from a unified viewpoint,
using the form factor of the atom–photon interaction. To see this, note that the form factor is sensitive
to the optical environment. For example, the form factor has a continuous spectrum when the atom is in
the free space (see Section 2.3.2). However, when the atom is surrounded by mirrors, the eigenmodes
are discretized and the form factor becomes a line spectrum (see Section 2.3.3). The decay dynamics is
affected by the optical environment through the modification of the form factor. This explains the cavity
QED, as well as the Zeno effect in the broad sense.

In the discussions of the cavity QED, the optical environment is treated as a passive media, which is
characterized by the dielectric constantε(r). It may depend on the space coordinater because the optical
environment is spatially inhomogeneous in general. Sinceε(r) takes complex values, its effects on the
form factor may be classified into two: One is the effect of the real part, which results in reconstruction of
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(a) (b)

Fig. 32. Two mechanisms for modification of a form factor in the cavity-QED: (a) reconstruction of eigenmodes; and (b)
broadenings of eigenmodes.

optical eigenmodes, and the other is the effect of the imaginary part, which induces energetic broadening
of optical eigenmodes. We will explain them in the following subsections.

6.2.1. Reconstruction of eigenmodes
Suppose a situation where non-absorptive optical media is distributed in space[92]. Non-absorptive

optical media are characterized by real dielectric constants. The Maxwell equation for the electric field
is given by

∇ × ∇ × E(r, t)=−ε(r) �2

�t2
E(r, t) , (227)

whereε(r) is a real function, representing the spatial distribution of dielectric constant. Then, a set of
eigenmode functionsfj (r) and eigenfrequenciesεj , wherej is an index of eigenmodes, are obtained as the
stationary solutions of the Maxwell equations. When the atom is placed atr, the atom–photon coupling
constant is given by Eq. (19). Thus, the eigenenergiesεj of the photon modes are dependent on the spatial
distributionε(r) of the dielectric constant; the atom–photon coupling constantgj is dependent also on
the atomic positionr, in addition toε(r). It should be remarked that, when the optical media is spatially
homogeneous, the eigenmode functions are given by plane waves. Then,r-dependence ofgj appears
only in the phase ofgj and the magnitude|gj |2 is independent ofr, so the atomic decay takes place
independently of its position. However, in general,|gj |2 depends on the atomic position when optical
media are distributed inhomogeneously in space; as a result, the dynamics of the atom becomes strongly
sensitive to the atomic positionr.

The form factor, which is given by

|g�|2 =
∑
j

|gj |2	(εj − �) , (228)

is modified throughεj and gj . Modification of the form factor by reconstruction of eigenmodes is
illustrated inFig. 32(a). The contribution of each photonic mode remains a delta function in this case, but
the strength (|gj |2) and position (εj ) of a delta function is modified.



262 K. Koshino, A. Shimizu / Physics Reports 412 (2005) 191–275

Two representative examples of this type of modification of the form factor are as follows: (i) Only
the atomic positionr is changed, keeping the spatial distributionε(r) unchanged. Then, the positions of
the delta functions (εj ) are unchanged, but the strength (|gj |2) is changed, depending on the eigenmode
function fj (r). (ii) When the size of a perfect cavity is increased, the eigenenergies are red-shifted.|gj |2
shows a complicated behavior, depending on the relative position of the atom to the cavity as explained
in (i). Generally,|gj |2 is decreased proportionally to the inverse of the cavity volume.

6.2.2. Broadening of eigenenergies
We now consider the case where absorption of photons by optical media is significant. In photo-

absorptive media, photons are converted within finite lifetimes to elementary excitations in the media,
such as electron-hole pairs, excitons, etc.Therefore, in the presence of photoabsorptive media, eigenmodes
of photons do not exist in a strict sense; they should be regarded as quasi-eigenmodes with finite lifetimes.
The situation is phenomenologically described by a complex eigenenergy of the mode, the imaginary
part of which is inversely proportional to the lifetime of the mode.

We have already observed an example of broadening of eigenenergies in Section 5 in the context of the
Zeno effect. The schematic view is given again inFig. 32(b). When there is no absorption of photons, the
form factor is composed of delta functions, each of which represents the contribution of each eigenmode.
In the presence of a detector, which absorbs photons with finite lifetimes, a delta function is broadened
to be a Lorentzian as in Eq. (189), satisfying a sum rule, Eq. (190).

It should be remarked that the broadening of a cavity mode was observed in Section 2.3.4, through
the coupling between the cavity mode and external photon modes. The difference between the systems
considered in Sections 2.3.4 and 5 lies in the point that both the cavity mode (a) and external modes (b�)
are of photonic origin in Section 2.3.4, whereas a photon mode (bk) is coupled to non-photon modes
(elementary excitations in the detector,ck�) in Section 5. In the system of Section 2.3.4, a diagonalized
mode (B�) still represents a photonic eigenmode, which extends over the whole space, both inside and
outside of the cavity. Actually, by solving the Maxwell equation treating the mirrors as an optical medium
with real dielectric constants, one can obtain eigenmode functions forB�. Thus, the broadening of a
cavity mode observed in Section 2.3.4 should be classified as an example of reconstruction of eigenmodes,
discussed in Section 6.2.1.

6.3. Atom in a homogeneous absorptive medium

In the previous subsection, two mechanisms for modification of the form factor in general cavity-QED
systems are described. In most photoabsorptive materials, these two mechanisms usually appear simul-
taneously. In order to see this point, we revisit the Hamiltonian for an atom embedded in a homogeneous
photoabsorptive media, which was used in Section 5 for discussion of the Zeno effect. Here, we consider
a case without the flat-band assumption, Eq. (170). Following the same mathematics as Section 5.2, one
can confirm that the contribution of the photonk to the form factor is modified as follows:

|gk|2	(� − εk)→ |gk|2
2�


 i

� − εk +
∫

d�
|�k�|2

� − � − i	

+ c.c.


 . (229)
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x
X

Fig. 33. Arrangement of the target atom and absorptive media composing detectors. The atom is located atx =X, whereas the
absorptive media are placed in the regionsx� − l/2 and� l/2.

The integral in the denominator of the RHS of Eq. (229) becomes significant when|� − εk| is small.
We may therefore approximate this quantity roughly by∫

d�
|�k�|2

� − � − i	
�
∫

d�
|�k�|2

� − εk − i	
(230)

=P
∫

d�
|�k�|2
� − εk

+ i�|�k,εk |2 (231)

≡ − �εk + i�k/2 . (232)

Using the above quantity, Eq. (229) is transformed into a more transparent form:

|gk|2	(� − εk)→ |gk|2 �k/2�

|� − (εk + �εk)+ i�k/2|2
. (233)

Eqs. (231) and (232) reveal that asymmetry in the photon–medium coupling|�k�|2 about the photon energy
εk results in a shift of the eigenfrequency,�εk. Generally, the photon–medium coupling simultaneously
induces both broadening and energy shift.

In the discussion of the Zeno effect in Section 5, shifts of the eigenenergy are neglected by the flat-
band assumption, Eq. (170), and only the broadening effect is picked up. Under this approximation,
fairly good agreement with the conventional theories of the Zeno effect has been achieved, as has been
shown in Section 5.3. It would be important to point out that only the broadening effect is assumed in the
conventional theory of the Zeno effect: by using the projection postulate to the atomic state, coherences
between the undecayed (|x〉) and decayed (|g, k〉) states are lost without shifting the energy of photons.
In actual photon counting processes, eigenenergies of photons would be slightly shifted through the
interaction with a detector, which also affect the atomic decay rate.

6.4. Atom in an inhomogeneous absorptive medium

In discussion of the Zeno effect in Section 5, we have considered a situation in which an atom is
embedded in a homogeneous absorptive material. However, in actual situations of photon counting,
photodetectors composed of photoabsorptive material are spatially separated from the target atom, as
illustrated inFig. 33. In the following two subsections, we discuss what would be expected for the decay
rate when the detectors are spatially separated from the atom. We shall describe results of the cavity QED
in Section 6.4.1, and apply them to the Zeno effect in Section 6.4.2.

6.4.1. Cavity QED
For simplicity, we consider the following situation here: The space is assumed to be one-dimensional,

extended in thex-direction, and the photon field is treated as a scalar field. The optical materials are
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modeled by bulk absorptive dielectric materials occupying|x|> l/2, which has a complex dielectric
constantε(�)= [�(�)+ i(�)]2.

First, we preliminarily consider a case where the medium is not absorptive and its dielectric constant
is given byε(�) = �2 in the relevant frequency region under consideration. In this case, as has been
discussed in Section 6.2.1, photonic eigenmodes are reconstructed according to the following equation:

− �2

�x2E =−ε(x) �2

�t2
E (234)

which is a scalar field version of Eq. (227). Reviving the light velocitychere, the eigenmodes at frequency
� are given by
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(235)

f�,−(x)=
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(236)

wherek=�/c, and the index± represents the parity of the eigenmode. The coefficients,C1,C2,D1 and
D2, are given by(

C1
C2

)
=
(

cos(�kl/2) − sin(�kl/2)
sin(�kl/2) cos(�kl/2)

)(
cos(kl/2)

−�−1 sin(kl/2)

)
, (237)

(
D1
D2

)
=
(

cos(�kl/2) − sin(�kl/2)
sin(�kl/2) cos(�kl/2)

)(
sin(kl/2)

�−1 cos(kl/2)

)
, (238)

As has been clarified in Sections 2 and 5, the atomic decay rate can be well evaluated by the Fermi golden
rule. The decay rate (normalized by the decay rate
0 in a free space) is given by


(X)/
0 = �−1
∑

�=+,−
|f�,�(X)|2 , (239)

which is plotted inFig. 34by a thin dotted line as a function of the atomic positionX. It is observed that
the atomic decay rate becomes strongly sensitive to the atomic positionX, reflecting the spatial form of
the eigenmodes at the atomic transition energy�. In other words, the cavity effect appears strongly both
in the vacuum region (|X|� l/2) and the medium region (|X|� l/2).

Next, we proceed to discuss a case where the medium is absorptive ( �= 0) and plays the role
of a photodetector. In order to handle this case, the absorptive material is modeled by an assembly
of harmonic oscillators, and the canonical quantization is performed for both the photon field and the
material[93]. As the absorptivity is increased, the effect of broadening of eigenmodes (Section 6.2.2)
becomes more significant. The position dependence of the decay rate is plotted inFig. 34, for weakly
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Fig. 34. Position dependence of the decay rate (normalized by the decay rate in free space). Only theX>0 region is plotted
because
(X) is an even function. The length of the vacuum region is chosen atl= (9/8)�a , where�a=2�c/� is the wavelength
of the emitted photon.� = 1.5 and = 0 (thin dotted line), 0.2 (broken line), and 0.4 (solid line).

absorptive ( = 0.2, broken line) and strongly absorptive ( = 0.4, solid line) cases. It is observed
that, when the atom is placed deeply inside of the material (|x| − l/2?�a/, where�a = 2�c/� is the
wavelength of emitted photon), the cavity effect is completely smeared out and the decay rate becomes
identical to that of an atom embedded in an homogeneous medium. In this case, the decay is solely
determined by the nature of the material, as in Section 6.3. Contrarily, when the atom is placed in the
vacuum region, the position dependence remains even when the material is strongly absorptive.Fig. 34
indicated that the decay rate in this case is basically determined by the eigenmodes for the non-absorptive
case ( = 0).

To summarize the results derived from the cavity QED, the decay rate would surely be affected by
the presence of the optical materials even when they are placed separately from the atom (Fig.33). In
this case, the physical origin of modification of the decay rate should mainly be attributed to recon-
struction of eigenmodes, not to broadening of eigenmodes. In other words, the boundary effect would
dominate. Although a one-dimensional case is considered here, the same qualitatively prediction would
follow in the three-dimensional case also, if the optical materials well surround the atom to form an
optical cavity.

6.4.2. Zeno effect by detectors spatially separated from the target atom
It is sometimes argued that the term ‘Zeno effect’ should be restricted to experiments where pieces

of measuring apparatus exert a non-local negative-result effect on a microscopic system[10]. We can
discuss the Zeno effect in this restricted sense as follows, using the results of the cavity QED presented
above and consideration about the causality.

First of all, we must distinguish the following three cases. Let the distance between the atom and the
detectors bel/2, as shown inFig. 33. Suppose that the detectors are placed att = td,37 and the atom is

37Or, one can change the absorption spectrum of the detector materials, which was previously placed att < td, through,
e.g., the electro-optical effect[88] by applying an electric field att = td.
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excited to an unstable state att = 0. The three cases to be distinguished are:

(a) The detectors are placed long before the atom is excited, i.e.,td<0 andc|td|?l, wherec is the light
velocity.

(b) The detectors are suddenly placed after the atom is excited, i.e.,td>0.
(c) The detectors are placed long before the atom is excited, but are suddenly removed att = t ′d after the

atom is excited, i.e.,td<0< t ′d andc|td|?l.
In case (a), the calculations in Section 6.4.1 hold, except for a very short time scale (<1/�) for which

the rotating-wave approximation employed in Eq. (165) may be wrong. Therefore, the results of Section
6.4.1 are valid at least whentj >1/�. We thus conclude that the Zeno effect can take place in case (a).
Physically, this may be understood as follows. The materials composing the detectors modify the vacuum
state of photons[90,94]. Although the modification requires a finite time to complete, it is completed
before the atom is excited. Therefore, the dynamics of the atom is affected by the modified photon vacuum
[90,94]. i.e., by the presence of the detectors.

In case (b), on the other hand, the modification of the photon vacuum is not completed when the atom
is excited. It is obvious from the causality that the dynamics of the atom is not affected duringt < l/2c.
Therefore, if the free decay rate?c/l, then the decay rate is not modified, i.e., the Zeno effect does not
occur. If, on the other hand, the free decay rate�c/l, then the Zeno effect can take place. To analyze case
(b) in detail, one must take account of the dynamics of the photon field, as in Refs.[95,96]. Note that,
as shown there, photons will be emitted from the ‘false vacuum’ during the modification process of the
photon vacuum.

Case (c) is in some sense a combination of cases (a) and (b). The dynamics of the atom is affected by
the detector materials duringt < t ′d+ l/2c. Therefore, the Zeno effect can take place if the modified decay
rate�1/(t ′d + l/2c). If, on the other hand, the modified decay rate>1/(t ′d + l/2c), then the observed
decay rate will become the free decay rate.

Although we believe these conclusions at the time of writing, more elaborate works may be necessary
to draw more definite conclusions. A related discussion is given in Ref.[97].

7. Experimental studies on the Zeno effect

In the preceding sections, we have discussed the Zeno effect, assuming the photodetection measurement
on a radiatively decaying excited atom as a typical of quantum unstable states and measurements on them.
However, it is difficult to confirm experimentally the Zeno effect in such a system for the following reasons:
(i) The response time�r of the detector cannot be controlled easily, because it is determined by the material
parameters, i.e., the interaction between photons and constituting materials of the detector. (ii) The jump
time tj is small and therefore the decay dynamics is not easily perturbed by measurement. If we simply
estimate, taking the positiveness of photon energies into account, the bandwidth of the form factor by
� ∼ � (transition frequency),tj is estimated attj ∼ �−1 ∼ 10−15s.

It is generally believed that the jump time is very short in most of truly decaying states, whose form
factors are energetically broad. Therefore, in most attempts at experimental confirmation of the Zeno
effect, oscillating systems are selected as the target system[76,98–102]. In such systems, the initial
quadratic behavior lasts for a much longer time as compared with truly decaying states, and the Zeno
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effect is expected to be induced more easily. For this reason, experiments on the Zeno effect have been
performed mainly for oscillating systems such as Rabi-oscillating atoms[26,27,103–105]. However,
significance of the Zeno effect is obscured in oscillating systems, particularly when one considers long-
time behaviors of the survival probability.

Recently, there are several attempts to observe the Zeno effect in truly decaying states. Here we
introduce two of them, both of which have long duration of deviation from the exponential law (i.e., large
jump time,tj ) and well devised measuring methods with high controllability of measurement intervals.
One is the first observation of both effects in atomic tunneling phenomena[34,106]. The other one is
theoretical indication in the parametric down conversion processes[107–110]. In addition to presenting
them, we will also discuss in this section how toavoid the Zeno effect in general measurements, which
are designed not to detect the Zeno effect but to measure the free decay rate accurately.

7.1. Atomic tunneling phenomenon

The experimental observation of the Zeno effect in truly unstable states is a difficult problem. Although
the initial deviation from the exponential decay law is predicted in theory, the duration of this period
is supposed to be extremely short and the deviation is undetectable in most unstable states. Recently,
however, this deviation was successfully observed in tunneling phenomena of trapped atoms in an optical
potential[34,106].

In their experiment, ultracold sodium atoms are trapped in standing wave of light, which serves as an
optical potential. The optical potential is controllable in time and may be accelerated as follows:

V (x, t)= V0 cos(2kLx − kLat
2) . (240)

wherekL is the wavenumber of light anda is the acceleration. The trapped atoms are driven by this
potential. In the moving frame fixed to the potential (x′ = x − at2/2), the atoms suffer inertial force and
the effective potential for the atoms becomes

V (x′)= V0 cos(2kLx
′)+max′ , (241)

wherem is the atomic mass. Thus, a tilted washboard potential can be obtained, which contains a con-
trollable parametera.

The forms of the potentialV (x′) is drawn inFig. 35. When the acceleration is small (a = atrans), high
potential barriers are formed, as shown inFig. 35(a). By adequate choice ofV0 andatrans, Fischer et al.
have realized a situation where only the lowest state is bounded in each potential minimum. This bound
state is almost isolated from other modes by high potential barriers around the minimum. Contrarily,
under a large acceleration (a= atunnel), the left (right) potential is lowered (heightened), as shown inFig.
35(b). In this case, the bound state can couple through the left barrier to external modes, which extend
semi-infinitely in the negativex′ region and therefore constitute a continuum in energy. The bound state
is no more stable and decays to unbound states with a finite lifetime. Thus, one may freely switch these
two sorts of situations (isolated bound state and unstable bound state) by controlling the parametera.

The measurement of the survival probability is devised as follows. (i) As the initial state, the system
is prepared in the potential ofFig. 35(a) by takinga = atrans for t <0. (ii) For 0< t < ttunnel, the atoms
are accelerated strongly witha = atunnel and the effective potential is changed to that ofFig. 35(b). In
this period, tunneling to unbound states may take place. (iii) Forttunnel< t < ttunnel+ tinterr, a is set to
atrans again and bounded atoms are isolated. In this period, the bounded atoms are accelerated by the
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Fig. 35. The shape of the washboard potential Eq. (241), under (a) small acceleration and (b) large acceleration. The bound state
is almost isolated in (a), whereas, in (b), it may decay to unbounded modes extending in the negativex′ region.

potential whereas the escaped atoms are not, resulting in separating the survived (bounded) atoms and
decayed (unbounded) atoms in the velocity space. (iv) Finally, the optical potential is removed and the
velocity distribution is measured, from which one can infer the survival probabilitys(ttunnel). If tinterr
is long enough to guarantee complete separation in the velocity space, this process serves as an ideal
measurement of survival of the atoms.

In this manner, the survival probability under free temporal evolution was successfully measured, and
deviations from the exponential decay law was confirmed experimentally for the first time. The measured
jump time is very long (tj ∼ 10�s) in this system. Furthermore, by inserting several periods of small
acceleration (in which the survival and decayed atoms are separated) into the tunneling period, they
measured the survival probability under repeated measurements, and succeeded in confirming both the
QZE and the AZE.

However, it is worth mentioning that the measurement process through (iii) to (iv) is a sort of direct
measurements, the Zeno effect by which is often criticized as not being the genuine Zeno effect, as dis-
cussed in Section 4.6.1. In fact, the potential for the atoms is altered when the measurement is performed.
Furthermore, the horizontal axes ofFigs. 3–5of the excellent experiment of Ref.[106]are not the real time
t but t−(measuring times). More elaborate experiments, which are free from these points, are therefore
desired to observe the Zeno effect more clearly.

7.2. Parametric down conversion process

In this subsection, we introduce a theoretical indication of the possibility of observing the Zeno effect in
parametric down conversion process[107–110]. Although actual experimental observation of the effects
has not been reported in this system yet, this system is an interesting candidate for actual experiments,
because the procedures for both continuous and discrete measurements are proposed in this system.

In this process, a pump photon (frequency�p) spontaneously decays in a second-order nonlinear
material into a pair of signal and idler photons (frequencies�s and �i ) satisfying the energy con-
servation law,�p = �s + �i . Using the semiclassical approximation for the pump field and switch-
ing to the interaction representation, the effective Hamiltonian for the signal and idler photons are
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(a†
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i ai)+ g(a†

sa
†
i + asai) , (242)

whereas andai are the annihilation operators for the signal and idler photons.� is determined by the
phase mismatch, andg depends on the intensity of the pump beam and the second-order susceptibility of
the material. Here, the space coordinate in the propagating direction is regarded as the time coordinate.
Initially, there are no photons in the signal and idler modes, the quantum state of which is denoted by|0〉.

The instability of the vacuum state is understood by regarding Eq. (242) as a tight-binding Hamiltonian
in the photon number space.Fig. 36shows the energy diagram of the Hamiltonian.|n〉=(n!)−1(a

†
sa

†
i )
n|0〉

denotes a state withn photon pairs. The hopping energy between|n〉 and|n + 1〉 is given by(n + 1)g,
whereas there is an energy mismatch of� between neighboring sites. The energy diagram becomes similar
to Fig. 1after diagonalizingn�1 states. Wheng?�, the eigenstates of the Hamiltonian are delocalized
in the number space, and the initial state can decay to larger number states. Contrarily, wheng>�, the
eigenstates are almost localized in each site. In such a case, the initial state cannot decay completely.
Indeed, the survival probability is analytically given by

s(t)=
[
cosh2

(√
g2 − �2/4 t

)
+ �2

4g2 − �2sinh2
(√
g2 − �2/4 t

)]−1

. (243)

Therefore, the system becomes a truly decaying one when|�| is small enough to satisfy|�|<2g. The
jump time in this system is given, for� = 0, by

tj ∼ g−1 . (244)

This means that the jump time may be controllable in terms of the pump intensity, which is a suitable
nature for experimental observation of the Zeno effect.

The decay products in this experiment are the down-converted photons. As for the measurement of
them, two schemes, discrete and continuous, are proposed. First, we introduce the discrete type. To this
end, one divides the nonlinear crystal into several pieces, and insert mirrors after each piece in order
to remove the idler photon. By detecting the removed photon by a photodetector, one can perform a
discrete photon number measurement for each piece of nonlinear crystals. The measurement intervals
are determined by the length of each piece, so the control of the measurement intervals is flexibly done
in this scheme. Or, if one is only interested in the Zeno effect in the broad sense (Section 4.5.4), the
photodetector for the removed photon is not necessary because the removed photon will soon become
entangled with environmental mechanical degrees of freedom, which results in the decoherence between
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the states with no photon pair (survived state) and one photon pair (decayed state). This suffices for the
modulation of the decay rate, as discussed generally in Sections 4.5.4 and 6.1.

Next, we introduce a continuous type of measurement. In order to measure the photon number contin-
uously, one let the idler mode interact with the meter modeb, which propagates in parallel with the idler
mode, through the third-order non-linearity. The Hamiltonian reads

H=H+ a†
i aib

†b . (245)

The inference of the decayed moment is carried out as follows: If the meter mode travels with an idler
photon for timet, the amplitude of the meter mode acquires a phase shift by� = t . By measuring this
phase shift, one may infer the decayed moment. As for the response time of this detecting device, the
uncertainty in the inferred time of decay should be interpreted as the response time. Noticing that the
uncertainty�� in the phase measurement is evaluated by〈b†b〉−1, the response time�r is approximately
given by

�r = �t ∼ 1

〈b†b〉 . (246)

Thus, the response time is revealed to be determined by the intensity of the meter mode, which is easily
controllable.

7.3. Evasion of the Zeno effect in general experiments

So far, we have discussed how to observe the Zeno effect. On the other hand, in general experiments,
one usually wants toavoid the Zeno effect in order to get correct results[85,111]. Considering recent
rapid progress of experimental techniques and diversification of experimental objects, we expect that the
QZE or AZE would slip in results of advanced experiments not designed to detect it. To avoid the Zeno
effect, one must design the experimental setup to break at least one of the conditions for observing these
effects[85].

For example, when performing an experiment with a high time resolution such that�r�tj , then the results
of Section 5.4 suggest thatε∞ should beincreased. If ε∞ cannot be increased to keep the sensitivity
of such a high-speed measurement, then one should adjust parameters in such a way that�r lies on the
boundary between the QZE andAZE, i.e., on the solid line inFig. 21. Or, alternatively, one should calibrate
the observed value using our results, such as Eq. (203), to obtain the free decay rate. Such consideration
would become important to future experiments.

8. Summary

The quantum Zeno effect (QZE) and the quantum anti-Zeno effect (AZE), which are simply called the
Zeno effect, have been clearly understood for the case of repeated instantaneous ideal measurements, for
which one can take account of influence of the measurements simply by application of the projection
postulate to the target system. However, real physical measurements are not instantaneous and ideal.
Theories of the Zeno effect induced by such general measurements have been developed only recently.
In this article, after reviewing the results of conventional theories, we have presented the results of such
general theories of the Zeno effect. We have also reviewed briefly the quantum measurement theory, on
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which these general theories are based, as well as experimental studies on the Zeno effect on monotonically
decaying states.

In Section 2, we have reviewed the quantum dynamics of an unstable state of an isolated system. The
dynamics is completely determined by the form factorg�, defined by Eq. (14). It is shown that the survival
probabilitys(t) of the unstable state decreases quadratically with time at the beginning of decay, and later
follows the exponential decay law, the rate of which is given by Eq. (16). Such an initial deviation from
the exponential decay law plays a vital role in the Zeno effect.

In Section 3, combining the projection postulate with the result fors(t) obtained in Section 2, we
have reproduced the results of the conventional theories for the Zeno effect by repeated instantaneous
ideal measurements. The decay rate under the measurement is plotted as a function of the measurement
intervals�i in Fig. 9. This figure demonstrates that repeated measurements does not necessarily result in
suppression of decay: Depending on�i and the form factorg�, the opposite effect, i.e., acceleration of
decay, may take place, which is called the AZE.

These conclusions have been drawn under the assumptions that measurements are instantaneous and
ideal. However, as discussed in Section 4.5.6, real measurements are not strictly instantaneous and ideal.
To explore the Zeno effect by realistic measurement processes, we should apply the quantum measure-
ment theory, which is briefly summarized in Section 4. Its key observation is that not only the system S
to be observed but also the measuring apparatus A should obey the laws of quantum theory. Therefore,
one must analyze the time evolution of the joint quantum system S+A using the laws of quantum theory,
as schematically shown inFigs. 11and12. The information about the observableQ to be measured is
transferred to the readout observableR of A, through an interactionĤint between S and A. The mea-
surement ofQ is thus reduced to a measurement ofR by another apparatus (or observer) A′. Actually,
A′ may be measured by a third apparatus A′′, and A′′ by A′′′, and so on. Such a sequence, as shown in
Fig. 13, is called the von Neumann chain, the basic notions of which are summarized in Section 4.3. We
have summarized the prescription for analyzing general measurements in Section 4.4. As explained in
Section 4.5, properties of general measurements are characterized by the response time, measurement
error, range of measurement, the amountI of information obtained by measurement, backaction of mea-
surement, and so on. An interaction process between S and A can be called a measurement process only
whenI is large enough, at leastI�1. Although this point is crucial when discussing many problems about
measurement, it is disregarded in discussions of the Zeno effect in the broad sense (Section 4.5.4). To
discuss the Zeno effect, we have summarized in Section 4.6 more characterizations of measurements,
including direct, indirect, positive-result, and negative-result. It is sometimes argued that the terms QZE
and AZE should be restricted to effects induced by indirect and negative-result measurements. We have
also explained repeated measurements, including repeated instantaneous measurements and continuous
measurement. A simple explanation of the Zeno effect using the quantum measurement theory is given in
Section 4.7. It is also shown that within the unitary approximation, which is explained in Section 4.6.4,
one does not have to use the projection postulate in the analysis of the Zeno effect. A few more points,
which will help the reader, concerning the quantum measurement theory are described in Section 4.8.

In Section 5, we have analyzed the Zeno effect using the quantum measurement theory. We employ a
model which describes a continuous indirect negative-result measurement of an unstable state (Section
5.1). A typical example described by this model is the continuous measurement of the decay of an excited
atom using a photodetector, which detects a photon emitted by the atom upon decay. The measuring
apparatus (photodetector) is modeled by bosonic continua coupled to photons, and the quantum dynamics
is investigated for the enlarged system composed of the atom, photon and photodetector. In Section 5.2,



272 K. Koshino, A. Shimizu / Physics Reports 412 (2005) 191–275

it is shown that the form factor is renormalized as a counteraction of the measurement, as illustrated in
Fig. 15. The renormalized form factor̄g� determines whether the decay is suppressed (the QZE) or
enhanced (the AZE). In Section 5.3, we have applied this formalism to the case where the response of the
detector is flat, i.e., the photodetector responds to every mode of photons with an identical response time.
The decay rate is plotted as a function of the response time�r in Fig. 20. The results almost coincide with
those of the conventional theories of Section 3, which assume repeated instantaneous ideal measurements,
if we identify (apart from a multiplicative factor of order unity) the measurement intervals�i of Fig. 9with
the response time�r of Fig. 20. In contrast, we show in Sections 5.4–5.6 that drastic differences emerge
if the response is not flat. The non-flat response may be interpreted as imperfectness in the measurement,
such as geometrical imperfectness and energetic imperfectness. In Section 5.4, a geometrically imperfect
measurement is discussed, where the photodetector does not cover the full solid angle around the atom. In
this case, the Zeno effect takes place partially, the amount of which is proportional to 1−ε∞, the asymptotic
photodetection probability. In Section 5.5, an energetically imperfect measurement is discussed, where the
photodetector responds to photons within a limited energy range�d, called the active band. Surprisingly,
when the detector is energetically imperfect, the Zeno effect can take place even for systems which follow
the exact exponential decay law, which was believed never to undergo the Zeno effect according to the
conventional theories. This fact serves as an counterexample to an intuition that imperfect measurements
are disadvantageous for inducing the Zeno effect. In Section 5.6, a false measurement is discussed, where
the detector cannot detect a photon whose energy is close to the atomic transition energy�, because
the active band of the detector does not cover this energy. Interestingly, the AZE takes place even by
such a false measurement if the detector response�r is quick enough. Relation between these results and
the conventional theories are discussed in Section 5.7.1, and the physical interpretation in Section 5.7.2.
Discussions and remarks on our model are described in Section 5.7.3.

In Section 6, relation between the Zeno effects and other phenomena, such as the motional narrowing,
is discussed. In particular, we discuss the close relationship between the cavity quantum electrodynamics
(QED) and the Zeno effect by a continuous indirect measurement. Using the results of the cavity QED,
we also discuss in Section 6.4 the Zeno effect in the case where the detectors are spatially separated from
the target atom.

Finally, in Section 7, we discuss experimental studies on the Zeno effect. In most attempts at ex-
perimental confirmation of the QZE, oscillating states were selected as the unstable states. However,
significance of the Zeno effect is obscured in oscillating systems. We have introduced two attempts to
observe the Zeno effect in truly decaying systems (Sections 7.1 and 7.2), both of which have long duration
(i.e., longtj ) of deviation from the exponential decay law and well devised measuring methods with high
controllability of measurement intervals. We have also discussed in Section 7.3 how toavoid the Zeno
effect in general measurements, which are designed not to detect the Zeno effect but to measure the free
decay rate accurately.

In conclusion, the quantum measurement theory has revealed many interesting and surprising facts
about the Zeno effect by general measurements. We hope that future works, both experimental and
theoretical, will confirm and/or extend these results, and thereby explore more deeply into the Zeno effect.
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