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We have investigated the two-photon nonlinearity attained by a finite-sized excitonic system placed inside of
a cavity, paying attention to the dependence on the system size N. The two-photon nonlinearity is evaluated by
utilizing semiclassical optical responses. In the quantum-dot limit, the excitonic system behaves as a single
two-level system with an enhanced coupling to the cavity mode. In the bulk limit, the nonlinear phase shift
decreases as N is increased, proportionally to N−1/2.
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I. INTRODUCTION

Strong nonlinear optical effects are expected by strong
input fields. It is therefore natural that strong laser beams are
usually used in conventional nonlinear optical spectroscopy
�1�. However, by exploiting the idea that the electric field can
be amplified inside of a cavity and therefore that the optical
nonlinearity of a material can be effectively enhanced when
it is placed inside of a cavity, it was experimentally demon-
strated that significant nonlinear optical effects can be in-
duced even by extremely weak input fields �2,3�. Encouraged
by this experimental demonstration and also by the remark-
able progress in photon manipulation techniques �4–6�, in-
terest in the nonlinear optical effect between two photons is
rapidly growing. The possibility of applying the two-photon
nonlinearity to quantum logic gates has also activated this
research field �7,8�.

Theoretically, the nonlinear dynamics of two photons has
been investigated when the nonlinear system is a two-level
system placed inside of a cavity �9,10�, whose optical non-
linearity originates solely in the saturation effect of the two-
level system. It was shown there that a significant nonlinear
phase shift may be induced in the two-photon wave function,
provided that the frequency and coherent length of input
photons are optimally chosen. In order to design compact
devices, it is desirable to use a solid-state nonlinear material,
which, however, cannot generally be described by a two-
level system due to large mechanical degrees of freedom. In
the present study, we wish to evaluate the two-photon non-
linearity attained by a finite-sized nonlinear system, such as
molecular aggregates and solid-state media. There are two
naive expectations concerning this problem: On the one
hand, the oscillator strength between ground and excited
states may concentrate on a specific mode of excited states,
which results in an enhancement of ��3� �11� and, therefore,
of the two-photon nonlinearity. On the other hand, the satu-
ration effect becomes weaker as the system size is enhanced,
which would be disadvantageous for nonlinear effects. The

interplay between these opposite effects will be clarified in
the following sections.

This study is presented as follows. Section. II serves as a
statement of the problem, where the quantum-mechanical
Hamiltonian for the nonlinear system and photons is given,
and the measure � of the two-photon nonlinearity is defined.
In Sec. III, we present the evaluation method for the two-
photon nonlinearity, which is based on the semiclassical op-
tical response �12�. In Sec. IV, we actually evaluate the two-
photon nonlinearity numerically, using three concrete forms
of Vji �the exciton hopping interaction�. It is demonstrated
there that qualitatively the same results are obtained regard-
less of the form of Vji. In Sec. V based on the mean-field
form of Vji, the dependence on the system size is investi-
gated, both analytically and numerically. We discuss two
limiting cases—namely, the quantum-dot limit and the bulk
limit—and observe the crossover between two limits. The
main results are summarized in Sec. VI.

II. THEORETICAL MODEL

A. System and Hamiltonian

Our main concern in this study is to evaluate the two-
photon nonlinearity attained by a finite-sized nonlinear ma-
terial. As the model of such a nonlinear material, we employ
a Frenkel excitonic system composed of N sites. In this
model, each site works as a two-level quantum system. The
model is therefore applicable not only to molecular aggre-
gates but also to other systems, such as an assembly of quan-
tum dots. Furthermore, it is known that the picture of a Fren-
kel exciton is also valid in semiconducting materials with a
strong excitonic effect. This system is placed inside of a
one-sided cavity, as illustrated in Fig. 1. Here, we consider a
lossless limit where the nonlinear material is not coupled to
noncavity modes. �In the conventional notations of cavity
QED �13�, �=0.� The right-side mirror is weakly transmis-
sive, through which the cavity mode is connected to an ex-
ternal photon field. The external photon field is labeled one
dimensionally by r. Although the external field actually ex-
tends only in the r�0 region and the incoming and outgoing
photons are traveling in the opposite direction, one may treat*Electronic address: ikuzak@sys.wakayama-u.ac.jp
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the incoming photons as if they were propagating in the r
�0 region in the positive direction �14�.

Hereafter, taking �=c=1, the Hamiltonian of the whole
system is given by

H = �a�
j

sj
†sj + �cc

†c + g�
j

�sj
†c + c†sj� + �

j�i

Vjisj
†si

+� dkkbk
†bk +� dk��	/2
�1/2c†bk + H.c.� , �1�

where sj, c, and bk are the annihilation operators for the
excitation in the jth site, the cavity mode, and the external
photon mode with wave number k, respectively. c and bk are
bosonic operators satisfying �c ,c†�=1 and �bk ,bq

†�=��k−q�,
whereas sj is the Pauli matrix satisfying �sj ,si

†�=� ji�1
−2sj

†sj�. The physical meanings of the parameters are as fol-
lows: N is the number of sites �hereafter referred to as system
size�, �a is the transition energy at each site, �c is the fre-
quency of the cavity mode, g is the coupling energy between
the cavity mode and each site, Vji is the hopping interaction
between jth and ith sites �the concrete forms of Vji are given
in Sec. IV�, and 	 is the inverse of the lifetime of the cavity
mode. It is assumed that the spatial extension of the nonlin-
ear system is much smaller than the cavity length, and g is
taken to be independent of the site index j.

B. Input and output photon states

We here introduce the real-space representation of exter-
nal photon field. It is given, as the Fourier transform of bk, by

br = �2
�−1/2� dkeikrbk. �2�

As has been noted, the negative- �positive-� r region corre-
sponds to the input �output� port.

The input photons are localized in the negative-r region.
Restricting ourselves to a case where two input photons have
identical wave functions, the input photon state is given by

��in� =� dr1dr2
in�r1�
in�r2�br1

† br2

† �0� , �3�

where 
in�r� is normalized as 	dr�
in�r��2=2−1/2 and 
in�r�
=0 in r�0. Throughout this study, we employ the Gaussian
wave packet for input photons:


in�r� = 
 1


d2�1/4

exp�− 
 r − a

d
�2

+ i�q + �c��r − a�
 ,

�4�

which is characterized by the coherent length d and the cen-
tral frequency q �measured from �c�. a ��0� is an irrelevant
parameter denoting the initial position of the photons.

Well after the interaction with the nonlinear material in-
side of the cavity, both of the two input photons will appear
in the output port �r�0�. Its state vector can be written as

��out� =� dr1dr2
out�r1,r2�br1

† br2

† �0� , �5�

where 
out�r1 ,r2�=
out�r2 ,r1� and 
out�r1 ,r2� is normalized
as 	dr1dr2�
out�r1 ,r2��2=2−1. Contrarily to the input wave
function, Eq. �3�, the two-photon wave function is no more
separable; namely, correlation is generated between two pho-
tons in the output state.

C. Measure of two-photon nonlinearity

Here, we introduce a measure for evaluating the two-
photon nonlinearity appearing in the output state. As is well
known, the classical field amplitude vanishes for the photon
number states �15�, so conventional quantifications of non-
linear optical response cannot be employed here. To the end
of evaluating the nonlinearity for the two-photon states, we
compare the output wave function ��out� with the linear out-
put wave function ��out

L �, which is defined by

��out
L � =� dr1dr2
out

L �r1�
out
L �r2�br1

† br2

† �0� , �6�

where 
out
L �r� is the one-photon output wave function, which

would be obtained as a resultant of a one-photon input,
	dr
in�r�ar

†�0�. Such a linear response would be obtained
when the nonlinearity of the system is completely removed.
�In the present case, each site is replaced with a harmonic
oscillator with frequency �c.�

As the measure of nonlinearity, we employ the overlap of
��out

L � and ��out�:

� = ��out
L ��out� = 2� dr1dr2
out

L* �r1�
out
L* �r2�
out�r1,r2� .

�7�

����1 by definition, and �→1 in the limit of completely
linear response. In the following part of this study, ��−1� is
often used as a real quantity representing the magnitude of
nonlinearity. The complex quantity ��=���ei�� has two physi-
cal meanings. The phase � represents the nonlinear phase
shift in the output wave function. On the other hand, the
absolute value ��� represents the difference in the shape of
the linear and nonlinear output wave functions: Deviation of
��� from unity represents the degree of deformation of the
output wave function from the linear output.

FIG. 1. Illustration of the exciton-cavity system. The cavity
mode is connected through the right mirror to the external photon
field. g, 	, and V represent the coupling between the cavity mode
and a single site, the escape rate of a cavity-mode photon, and the
hopping interaction between sites, respectively.
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III. EVALUATION METHOD OF TWO-PHOTON
NONLINEARITY

A. Use of the semiclassical method

In the following part of this study, we evaluate the two-
photon nonlinearity � based on the model presented in Sec.
II A as a function of several parameters, such as the system
size N. In order to evaluate �, in principle, the output wave
functions �
out

L �r� and 
out�r1 ,r2�� should be determined by
solving the Schrödinger equation using the Hamiltonian, Eq.
�1�. It is usually a heavy theoretical task to follow the quan-
tum dynamics of the whole system, treating both the nonlin-
ear material and the photon field quantum mechanically.
However, as for evaluation of �, it has been revealed that
one can evaluate � in terms of the semiclassical theory �12�,
in which the external photon field is treated as a c-number
classical field. The calculation of optical response in the
semiclassical framework is much simpler task than a fully
quantum-mechanical one, which allows us to evaluate �
even for complicated nonlinear systems, as is discussed here.
The prescription to connect the semiclassical results with the
two-photon nonlinearity � is given as follows: �i� Calculate
the linear and the third-order nonlinear components of the
output field �denoted by fout

�1��r� and fout
�3��r�, respectively�

against a classical input pulse whose shape f in�r� is given by
f in�r�=
in�r�. Therefore, f in�r� is normalized as 	dr�f in�r��2
=2−1/2, which means that 2−1/2 photons are contained in this
classical pulse in average. �ii� Then, the two-photon nonlin-
earity is evaluated by

� = 1 + 2� dr�fout
�1��r��*fout

�3��r� . �8�

The condition under which this prescription becomes valid is
that two photons appear in the output port without leaving
any excitations in the system. This condition is satisfied in
the present model, where the lossless limit ��=0� is consid-
ered.

B. Equations of motion

Now we proceed to investigate the optical response
against a weak classical input pulse, using the semiclassical
approximation. With the help of the input-output theory �15�,
the Heisenberg equations of motion for c and sm are given by

d

dt
c = �− i�c − 	/2�c − ig�

j

sj − i�	bt0−t�t0� , �9�

d

dt
sm = − i�asm − i �

j��m�
Vmjsj − igc + 2igsm

† smc

+ 2i �
j��m�

sm
† smsj , �10�

where the initial moment is denoted by t0. bt0−t�t0� in Eq. �9�
is the initial-moment operator br�t0� of the external photon
field in the space representation �defined in Eq. �2�� with the
space coordinate r= t0− t. The output field is given, in terms
of the input field and the cavity mode, by

br�t� = − br−t+t0
�t0� + i�	c�t − r� . �11�

The semiclassical approximation is executed by replacing the
field operator br�t0� at the initial moment with a c-number
field amplitude f in�r�. Hereafter choosing the origin of fre-
quency at �c and denoting �a−�c=�, the above equations
are rewritten in the following form:

d

dt
c = −

	

2
c − ig�

j

sj − i�	f in�t0 − t� , �12�

d

dt
sm = − i�sm − i �

j��m�
Vmjsj − igc + 2igsm

† smc

+ 2i �
j��m�

sm
† smsj , �13�

from which equations of motion for mean values of operators
are derived. We solve them perturbatively. We denote the
linear and third-order components of �sm� ��c�� by �s1,m� and
�s3,m� ��c1� and �c3��. The first-order quantities evolve as

d

dt
�c1� = −

	

2
�c1� − ig�

j

�s1,j� − i�	f in�t0 − t� , �14�

d

dt
�s1,m� = − i��s1,m� − i �

j��m�
Vmj�s1,j� − ig�c1� . �15�

The equations of motion for the second-order quantities are
given by

d

dt
�sm

† sn� = i �
j��m�

Vjm�sj
†sn� − i �

j��n�
Vnj�sm

† sj� − ig��sm
† c�

− �sn
†c�*� , �16�

d

dt
�sm

† c� = 
i� −
	

2
��sm

† c� + i �
j��m�

Vjm�sj
†c� − ig�

j

�sm
† sj�

+ ig�c†c� − i�	f in�t0 − t��s1,m�*, �17�

d

dt
�c†c� = − 	�c†c� + ig�

j

��sj
†c� − c.c.� + �i�	f*�t0 − t��c1�

+ c.c.� , �18�

d

dt
�smsn� = − 2i��smsn� − i �

j��m�
Vmj�sjsn� − i �

j��n�
Vnj�smsj�

− ig��snc� + �smc�� , �19�

d

dt
�smc� = 
− i� −

	

2
��smc� − i �

j��m�
Vmj�sjc� − ig�cc�

− ig�
j

�smsj� − i�	f in�t0 − t��s1,m� , �20�
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d

dt
�cc� = − 	�cc� − 2ig�

j

�sjc� − 2i�	f in�t0 − t��c1� .

�21�

The equations of motion for the third-order quantities are
given by

d

dt
�sm

† snsl� = − i��sm
† snsl� + i �

j��m�
Vjm�sj

†snsl�

− i �
j��n�

Vnj�sm
† sjsl� − i �

j��l�
Vlj�sm

† snsj�

+ ig��c†snsl� − �sm
† slc� − �sm

† snc�� , �22�

d

dt
�sm

† snc� = −
	

2
�sm

† snc� + i �
j��m�

Vjm�sj
†snc� − i �

j��n�
Vnj�sm

† sjc�

+ ig��c†snc� − �sm
† cc�� − ig�

j

�sm
† snsj�

− i�	f in�t0 − t��sm
† sn� , �23�

d

dt
�sm

† cc� = �i� − 	��sm
† cc� + i �

j��m�
Vjm�sj

†cc� − 2ig�
j

�sm
† sjc�

+ ig�c†cc� − 2i�	f in�t0 − t��sm
† c� , �24�

d

dt
�c†smsn� = 
− 2i� −

	

2
��c†smsn� − i �

j��m�
Vmj�c†sjsn�

− i �
j��n�

Vnj�c†smsj� − ig��c†snc� + �c†smc��

+ ig�
j

�sj
†smsn� + i�	f*�t0 − t��smsn� , �25�

d

dt
�c†smc� = �− i� − 	��c†smc� − i �

j��m�
Vmj�c†sjc�

+ ig�
j

�sj
†smc� − ig�

j

�c†smsj� − ig�c†cc�

+ i�	f*�t0 − t��smc� − i�	f in�t0 − t��c†sm� ,

�26�

d

dt
�c†cc� = −

3	

2
�c†cc� + ig�

j

�sj
†cc� − 2ig�

j

�c†sjc�

+ i�	f*�t0 − t��cc� − 2i�	f in�t0 − t��c†c� ,

�27�

d

dt
�c3� = −

	

2
�c3� − ig�

j

�s3,j� , �28�

d

dt
�s3,m� = − i��s3,m� − i �

j��m�
Vmj�s3,j� − ig�c3� + 2ig�sm

† smc�

+ 2i �
j��m�

Vmj�sm
† smsj� . �29�

Finally, using �c1� and �c3�, the first- and third-order compo-
nents of the output field are given, respectively, by

fout
�1��r,t� = − f in�r − t + t0� + i�	�c1�t − r�� , �30�

fout
�3��r,t� = i�	�c3�t − r�� . �31�

It should be recalled that �smsn�, �sm
† snsl�, and �c†smsn� vanish

in the case of N=1, because sjsj =0.

IV. THREE FORMS OF Vji

The above equations are applicable to any form of the
exciton hopping interaction Vji. Here, we consider the fol-
lowing three concrete forms of Vji and actually evaluate the
two-photon nonlinearity �, following the formalism pre-
sented in Secs. III A and III B.

�i� Periodic chain. In this model, the sites are aligned one
dimensionally, forming a periodic chain. Assuming that the
hopping interaction exists only between nearest-neighboring
sites, Vji is given by

Vji = �− V/2 ��j − i� = 1 or N − 1� ,

0 �otherwise� .
� �32�

The one-exciton eigenstate is given by �xn�
=� j=1

N N−1/2 exp�iknj�sj
†�0� where kn=2
�n−1� /N �n

=1, . . . ,N�, and its energy is given by En=�−V cos kn. The
energy diagram is shown in Fig. 2�a�. It should be noted that
the coupling strength between the cavity mode �c†�0�� and
the one-exciton eigenstate ��xn�� is concentrated onto the
lowest eigenstate �x1�, whereas other eigenstates completely

FIG. 2. The energy diagram for one-exciton
eigenstates for the models �i�, �ii�, and �iii�. The
eigenenergy of the lowest one-exciton state is de-
noted by �. The higher-energy level of the one-
exciton states in the model �iii� has �N−1�-fold
degeneracy. The dashed lines connecting the cav-
ity mode and the one-exciton states represent
nonvanishing coupling.
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lose the coupling to the cavity mode. The coupling strength
between the cavity mode and the lowest state is given by g̃
=�Ng, suffering the size-enhancement effect.

�ii� Nonperiodic chain. In this model, we consider a case
where the sites are aligned one dimensionally, not forming a
periodic chain. Assuming again that the hopping interaction
exists only between nearest-neighboring sites, Vji is given by

Vji = �− V/2 ��j − i� = 1� ,

0 �otherwise� .
� �33�

The one-exciton eigenstate is given by �xn�=� j=1
N �2/N

+1�1/2 sin�knj�sj
†�0� where kn=
n / �N+1� �n=1, . . . ,N�, and

its energy is given by En=�−V cos kn. The energy diagram
is shown in Fig. 2�b�. In this model, the coupling strength
between the cavity mode �c†�0�� and the one-exciton eigen-
state ��xn�� is mainly concentrated on the lowest eigenstate
�x1�, but contrarily to model �a�, the coupling does not vanish
for states with odd n. The coupling strength between the
cavity mode and the lowest state is given by

g̃ = g
 2

N + 1
�1/2

cot
 


2�N + 1�� � g
23/2



�N + 1.

�iii� Mean-field form. In this model, the hopping interac-
tion between sites is assumed to be independent of the dis-
tance between sites and is given by the following form:

Vji = �−
V

N − 1
�j � i� ,

0 �j = i� .
� �34�

Although this form of Vji seems to be rather unphysical, the
equations of motion presented in Sec. III B are greatly sim-
plified in this model, which gives a useful perspective con-
cerning the size effects on the two-photon nonlinearity �see
Sec. V�. The lowest one-exciton eigenstate is given by �x1�
=� j=1

N N−1/2sj
†�0�, whose eigenenergy is given by E1=�−V.

The other eigenstates have �N−1�-fold degeneracy: the
eigenenergy is given by En=�+V / �N−1� for n=2, . . . ,N,
and the eigenstates are spanned by N−1 states which are
orthogonal to �x1�. The coupling strength between the cavity
mode and the lowest state is given by g̃=�Ng, whereas other
one-exciton eigenstates lose coupling to the cavity mode.

Using these three forms of Vji, we now evaluate the two-
photon nonlinearity �. The system parameters are chosen as
follows: N=5, 	 /g=0.5, V /g=5, and � is chosen so that �
�the energy of the lowest one-exciton state� becomes identi-
cal to the cavity frequency—i.e., �=V for models �i� and
�iii� and �=V cos�
 /N+1� for model �ii�. Under this choice
of parameters, this cavity-exciton system is in the strong
coupling regime. Then, significant nonlinearity is expected
by photon pulse with q� ± g̃ and d�4/	 �10�, so we fixed
the photon length at d=4/	.

In Fig. 3, ��−1� is plotted as a function of the central
frequency q of input photons. The results for q�−g̃ �lower
Rabi-split frequency� and for q� g̃ �higher Rabi-split fre-
quency� are plotted in Figs. 3�a� and 3�b�, respectively. It is
observed in Fig. 3�a� that the results for three models are
almost coincident when the input photons are tuned to the
lower Rabi frequency, whereas in Fig. 3�b� the results show
quantitative difference among three models when the input
photons are tuned to the higher one. This difference should
be attributed to how these Rabi-split levels couple to two-
exciton states, which also take part in the third-order re-
sponse. Let us recall here that the central energy of excitonic
states ��� is chosen to be positive here, so two-exciton states
lie mainly in the positive-frequency region. Therefore, the
lower Rabi-split state, whose energy �−g̃� is negative, is al-
most decoupled from two-exciton states, and the optical re-
sponse around the lower Rabi-split level takes place almost
irrespective of two-exciton states. Contrarily, the higher
Rabi-split state has a positive energy and is energetically
closer to two-exciton states. The optical response around this
frequency region is more sensitive to the level structure of
two-exciton states and, therefore, to Vji.

V. N DEPENDENCE OF TWO-PHOTON NONLINEARITY

In the preceding section, it is observed that the two-
photon nonlinearity is not sensitive to the form of Vji, par-
ticularly when the input photons are tuned to the lower Rabi-
split frequency. Here, we investigate the main problem of the
present study: namely, the system-size dependence of the
two-photon nonlinearity. To this end, we are based on model
�iii�, where Vji is given by the mean-field form. In this case,
the equations of motion are greatly simplified; the expecta-
tion values appearing in these equations become independent
of the site index. Thus, we use the following notations, such

FIG. 3. Plot of ��−1� as a
function of photonic energy q.
The photon energy is tuned to the
lower Rabi-split frequency
�q�−g̃� in �a� and to the higher
one �q� g̃� in �b�. Solid, dotted,
and dashed lines are used to rep-
resent the results for the model
�iii�, �ii�, and �i�, respectively. The
employed parameters are as fol-
lows: N=5, 	 /g=0.5, V /g=5; �
is chosen so that the lowest exci-
tonic energy becomes zero.
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as N1/2�sm���S�, N�sm
† sn���S†S�, and N3/2�sm

† snsl���S†SS�.
Furthermore, using g̃ �=�Ng� and � �=�−V, the energy of
the lowest excitonic state� the equations of motion for the
first-order quantities are rewritten as

d

dt
�c1� = −

	

2
�c1� − ig̃�S1� − i�	f�t0 − t� , �35�

d

dt
�S1� = − i��S1� − ig̃�c1� , �36�

and the equations of motion for the second-order quantities
are given by

d

dt
�S†S� = − ig̃��S†c� − c.c.� , �37�

d

dt
�S†c� = 
i� −

	

2
��S†c� − ig̃�S†S� + ig̃�c†c� − i�	f�t0 − t�

��S1�*, �38�

d

dt
�c†c� = − 	�c†c� + ig̃��S†c� − c.c.� + �i�	f*�t0 − t��c1�

+ c.c.� , �39�

d

dt
�SS� = − 2i
� +

V

N − 1
��SS� − 2ig̃�Sc� , �40�

d

dt
�Sc� = 
− i� −

	

2
��Sc� − ig̃�cc� − i

N − 1

N
g̃�SS�

− i�	f�t0 − t��S1� , �41�

d

dt
�cc� = − 	�cc� − 2ig̃�Sc� − 2i�	f�t0 − t��c1� , �42�

and the equations of motion for the third-order quantities are
given by

d

dt
�S†SS� = − i
� +

2V

N − 1
��S†SS� + ig̃��c†SS� − 2�S†Sc�� ,

�43�

d

dt
�S†Sc� = −

	

2
�S†Sc� + ig̃��c†Sc� − �S†cc�� − ig̃

N − 1

N
�S†SS�

− i�	f�t0 − t��S†S� , �44�

d

dt
�S†cc� = �i� − 	��S†cc� + ig̃�c†cc� − 2ig̃�S†Sc�

− 2i�	f�t0 − t��S†c� , �45�

d

dt
�c†SS� = �− 2i
� +

V

N − 1
� −

	

2
��c†SS� − 2ig̃�c†Sc�

+ ig̃�S†SS� + i�	f*�t0 − t��SS� , �46�

d

dt
�c†Sc� = �− i� − 	��c†Sc� + ig̃�S†Sc� − ig̃�c†cc�

− ig̃
N − 1

N
�c†SS� + i�	f*�t0 − t��Sc� − i�	f�t0 − t�

��c†S� , �47�

d

dt
�c†cc� = −

3	

2
�c†cc� + ig̃�S†cc� − 2ig̃�c†Sc� + i�	f*�t0 − t�

��cc� − 2i�	f�t0 − t��c†c� , �48�

d

dt
�c3� = −

	

2
�c3� − ig̃�S3� , �49�

d

dt
�S3� = − i��S3� − ig̃�c3� +

2ig̃

N
�S†Sc� −

2iV

N
�S†SS� .

�50�

It should be recalled again that, for N=1, �SS�= �S†SS�
= �c†SS�=0 due to the Pauli exclusion principle. These equa-
tions are further simplified in the following two limiting
cases.

A. Quantum-dot limit

Because 2V represents the bandwidth of one-exciton
states �see Fig. 2� and there are N levels in this band,
2V / �N−1� represents the mean energy separation between
one-exciton levels. First, we consider a situation where the
mean energy separation is much larger than other relevant
energies; i.e., 2V / �N−1���, g̃, 	 is satisfied. Such a situa-
tion is widely observed in quantum-dot systems. In this situ-
ation, the excitonic states other than the lowest one are
highly off resonant to the cavity mode. It is therefore ex-
pected that these excitonic states play almost no role in the
optical response and that an effective two-level system �com-
posed by the ground and the lowest exciton state� is realized
in this limit.

By taking the limit of 2V / �N−1�→�, we can analytically
confirm the validity of this expectation. Namely, the equa-
tions of motion, Eqs. �35�–�50�, are reduced to those for a
single two-level �N=1� case, with the transition energy �
and the size-enhanced cavity-exciton coupling g̃ �=�Ng�. In
the limit of 2V / �N−1�→�, applying the adiabatic approxi-
mation to Eqs. �40�, �43�, and �46�, �SS�, �S†SS�, and �c†SS�
are given by

�SS� � − g̃
N − 1

V
�Sc� , �51�

�S†SS� � g̃
N − 1

2V
��c†SS� − 2�S†Sc�� , �52�
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�c†SS� �
N − 1

2V
�− 2ig̃�c†Sc� + ig̃�S†SS� + i�	f*�t0 − t��SS�� ,

�53�

all of which vanishes as 2V / �N−1�→�:

�SS�,�S†SS�,�c†SS� → 0. �54�

Using Eq. �52�, the driving terms for �c3� and �S3�—i.e., the
third and fourth terms in the on the right-hand side of Eq.
�50�—are reduced to the following form:

2ig̃

N
�S†Sc� −

2iV

N
�S†SS� � 2ig̃�S†Sc� − i

N − 1

N
g̃�c†SS�

→ 2ig̃�S†Sc� . �55�

Substituting the limiting values �54� and �55� into Eqs.
�35�–�50�, we can confirm that the resultant equations of mo-
tion coincides with those for the case of a single two-level
system �N=1�, with the transition frequency � and the size-
enhanced coupling g̃. Therefore, the excitonic system can be
regarded as a quantum dot, when V is large and N is small
enough to satisfy 2V / �N−1���, g̃, 	. However, as N gets
larger, the picture of quantum dot becomes less valid and the
two-photon nonlinearity gets weaker, as will be discussed in
the next subsection.

B. Bulk limit

Next, we consider the bulk limit N→�. In this limit,
where V / �N−1�→0 and �N−1� /N→1, it is easily confirmed
that V and N dependences are lost in Eqs. �35�–�48�, except
for the renormalization of the coupling constant g̃ �=�Ng�.
This fact indicates that the expectation values appearing in
Eqs. �35�–�48� become essentially independent of the hop-
ping V and the system size N if input photons are adequately
tuned to the Rabi-split frequency ±g̃. Turning our attention to
Eqs. �49� and �50�, the driving terms for �c3� and �S3� scale
as �2ig̃ /N��S†Sc��N−1/2 and �2iV /N��S†SS��N−1. There-
fore, the third-order output field fout

�3�, which is proportional to
�c3� �see Eq. �31��, would scale as fout

�3� �N−1/2. Remembering
that �−1 is proportional to fout

�3� �see Eq. �8��, it is therefore
expected that the magnitude of the two-photon nonlinearity
��−1� would scale as ��−1��N−1/2.

C. Crossover between two limits

In this subsection, we visualize the size effect on the two-
photon nonlinearity with numerical examples and observe
the crossover between the dot limit and the bulk limit. In Fig.
4, ��−1� is plotted as a function of the photon frequency q.
Under the choice of parameters in Fig. 4�a�, the condition of
the dotlike behavior ��2V / �N−1��� , g̃ ,	� is satisfied when
N�5. Numerical results in Fig. 4�a� show that the result for
a genuine two-level system �N=1� is almost reproduced for
N�10, in agreement with our expectation. Contrarily, under
the choice of parameters in Fig. 4�b�, the dotlike behavior is
not expected for any N��1�. We can confirm this expectation
in Fig. 4�b�, where ��−1� decreases monotonously as N is
increased.

In Fig. 5, � is plotted on the complex plane varying the
system size N, where the almost optimum pulse shape for
inducing nonlinear effects �d=4/	 ,q=−g̃� is employed for
each N. In Fig. 5�a�, where V�0, � is kept almost un-
changed for N�10, indicating that the system is in the
quantum-dot region. Contrarily, in Fig. 5�b�, where V=0 and
there is no quantum-dot region, the two-photon nonlinearity
gets weaker monotonously as N is increased. It is commonly
observed in both figures that the two-photon nonlinearity
gets weaker as the system size N becomes larger ��→1 as
N→��, as expected. For large N, the nonlinear effect mainly
appears in the phase of �, keeping ����1. In other words,
for large N, the nonlinear effect appears as the nonlinear
phase shift in the output wave function, whereas the shape of
the output pulse is almost unchanged from the linear case.

FIG. 4. Plot of ��−1� as a
function of q, around the lower
Rabi-split frequency. The coherent
length of photons is chosen at d
=4/	. The site number N is 1
�solid line�, 5 �dotted line�, 10
�dashed line�, and 20 �dot-dashed
line�. The system parameters are
chosen as follows: 	 /g=0.5, �
=V �which results in �=0�, and
V /g=5 in �a� and V /g=0 in �b�.

FIG. 5. Plot of � on the complex plane. The dotted line shows
the unit circle. The integers near each point represent the system
size N. For each N, the almost optimum pulse shape �d=4/	 ,
q=−g̃� is employed. The system parameters are the same as Fig. 4.
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In Fig. 6, the nonlinear phase shift is plotted as a function
of the system size N, where a solid �dotted� line is used to
represent the numerical results for the V�0 �V=0� case.
When the system size N is small, the V�0 system gives a
larger phase shift than the V=0 system. However, as N gets
larger, the discrepancy between the two gradually disappears.
It can be confirmed that, as N→�, the numerical results
follow the N−1/2 rule ��=160°�N−1/2, thin dashed line�, as
predicted.

Combining the quantum-dot and bulk limits, the N depen-
dence of the two-photon nonlinearity is summarized as fol-
lows: When V is large and N is small enough to satisfy
2V / �N−1���, g̃, 	, the excitonic system can be considered
as a single quantum dot, which behaves as a single two-level
entity with an size-enhanced coupling g̃. As N gets larger, the
magnitude ��−1� of the two-photon nonlinearity is decreased
�Fig. 4� and the nonlinearity tends to appear as the phase of
�: namely, the nonlinear phase shift �Fig. 5�. Finally, in the
bulk limit �N→��, the system becomes independent of V
and the nonlinear phase shift follows the N−1/2 rule.

VI. SUMMARY

In summary, we have investigated the two-photon nonlin-
earity obtained by a Frenkel excitonic system placed inside
of a cavity, aiming at clarifying how the nonlinear effects
depends on the system size N. The model is applicable to
many kinds of actual nonlinear optical agents, such as mo-
lecular aggregates and semiconducting particles. In Sec. II,
the theoretical model and the measure � of nonlinearity is
presented, and in Sec. III the method for evaluation of � is
described. In Sec. IV, we have numerically evaluated � using
three concrete forms of Vji �exciton hopping interaction�; it
was revealed there that three models give qualitatively simi-
lar results, particularly when the input photons are tuned to
the lower Rabi-split frequency. In Sec. V based on the mean-
field form of Vji, we have investigated the size dependence
of � both analytically and numerically. If N is small and the
mean energy separation �V / �N−1�� is larger than other rel-
evant energies, the excitonic system can be regarded as a
single two-level system with the size-enhanced coupling
constant g̃ to the cavity mode and a large nonlinear effect
results. As the system size N gets larger, the nonlinear effect
gets smaller. In the bulk limit �N→��, the nonlinear phase
shift scales as N−1/2.

The above conclusions are drawn within the model of
noninteracting Frenkel excitons, where the origin of nonlin-
earity is solely attributed to saturation effect in each site.
However, it should be remarked that, in semiconducting ma-
terials, for example, the excitonic interaction serves as an-
other important source of optical nonlinearity, which is ex-
pected to increase nonlinear effects in general. A more
rigorous investigation taking account of this point is left as a
future problem.
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