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The measurement-modified decay rate is calculated in two distinct formalisms, i.e., the conventional for-
malism and the dynamical formalism. The relation between the two formalisms is clarified, by recasting the
decay rates obtained by the two formalisms into a unified form. It is shown that the dynamical formalism
reproduces the conventional results only under the condition that the apparatus detects the decayed states with
an identical response time.
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I. INTRODUCTION

It was theoretically predicted that frequent measurements
on an unstable quantum state would suppress the decay of
that state, which is known as the quantum Zeno effectsQZEd
f1g. Later, it was pointed out that the opposite effect—
acceleration of decay—may sometimes be caused by fre-
quent measurements, which is known as the anti-Zeno effect
sAZEd f2–5g. The experimental observations of the QZE
were restricted to oscillating quantum systems in the early
daysf6g, but, recently, both the QZE and AZE were success-
fully observed using an irreversibly decaying systemf7,8g.
Besides academic interest, practical applications of repeated
measurements are also proposedf9–11g, which make this
research field more attractive.

In the theoretical analysis of the QZE and AZE, there are
two distinct formalisms. In one formalism, measurements are
simply described by the projection postulate, assuming that
instantaneous and ideal measurements are repeatedly per-
formed on the target system. Thus, the dynamics of the target
system is calculated by combining the unitary dynamics of
the system and the projective operations at every instant of
measurement. Originally, the QZE was predicted based on
this formalismf1g, which is called theconventionalformal-
ism in this study. In the other formalism, in order to discuss
the effects of measurements, one explicitly considers the in-
teraction between the target quantum system and the mea-
surement apparatus, and examines the unitary dynamics of
the enlarged quantum system including the apparatus
f12–15g. The changes in dynamics induced by the system-
apparatus interaction are interpreted as the measurement ef-
fects in this formalism. This formalism is referred to as the
dynamical formalism in this study. The dynamical formal-
ism, which is particularly suitable for analysis of continuous
measurements, has also been widely used in the analysis of
the QZE and AZE.

Regarding the relations between these two formalisms, it
has been revealed that the conventional results are reproduc-
ible by the dynamical formalismf12,13g, which emphasizes
the fact that the projection postulate is not necessarily re-

quired for explanation of the Zeno effect. The aim of this
study is to bring a transparency to the relation between these
two formalisms. In Secs. III and IV, we calculate the
measurement-modified decay ratesGc and Gd based on the
conventional and dynamical formalisms, respectively. It is
shown that, under the condition that the response time of the
apparatus is identical for every decay productsflat responsed,
the dynamical formalism reproduces the conventional re-
sults. However, the conventional formalism cannot handle
more general measurements, where the response time is not
necessarily identical for every decay product; the dynamical
formalism is indispensable for analysis of such general mea-
surements.

II. THEORETICAL MODEL

As an example of an unstable quantum state, we employ
an excited atom undergoing radiative decay. It should be
remarked, however, that the model presented below is appli-
cable to other unstable systems. The Hamiltonian of the sys-
tem is given, taking"=c=1, by

Hs = Vs+s− +E dkfsgks+bk + H.c.d + ekbk
†bkg, s1d

whereV is the atomic transition energy,k denotes the wave
vector of an emitted photon,ek is the energy of a photon in
modek, andgk is the atom-photon coupling. Here, the cre-
ation operators for atomic excitation and photons are denoted
by s+ and bk

†, respectively. Denoting the vacuum statesno
atomic excitation and no photonsd by u0l, the state vector of
the initial unstable state is given byuil=s+u0l. The form
factor of the atom-photon interaction is extracted from Eq.
s1d as

ugmu2 =E dkugku2dsėk − md. s2d

Based on this model, we calculate the measurement-modified
decay rate of an excited atom in the conventional manner in
Sec. III, and in the dynamical manner in Sec. IV.*Electronic address: ikuzak@aria.mp.es.osaka-u.ac.jp
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III. MEASUREMENT-MODIFIED DECAY RATE BY
CONVENTIONAL FORMALISM

In this section, we calculate the measurement-modified
decay rate based on the conventional formalism, i.e., by
combining the free-decay dynamics determined byHs and
the projection postulate. In conventional theories on the QZE
and AZE, it is often assumed that measurements are repeated
periodically with a definite time interval. Here, we treat a
more general case, where the measurement intervalt is a
stochastic variable with a probability densityPstd. The prob-
ability density is normalized asedt Pstd=1. The mean inter-
val is hereafter denoted bytm f=edt tPstdg.

When the measurement intervals take the values of
st1,t2, . . . ,tNd, the survival probability after theNth mea-
surement is given byp j=1

N sst jd, where sstd is the survival
probability of an excited atom in free evolution, i.e.,sstd
= zki ue−iHstuilz2. Here, we have neglected the revival probabil-
ity, which is usually extremely small in irreversible processes
such as atomic decay. The averaged decay rate is given by

Gc = −K ln p j=1

N
sst jd

o j=1

N
t j
L , s3d

wherek¯l means the average over a probability distribution
Pstd. Using the law of large numbersso j=1

N t j .Ntm for large
Nd in the denominator, we can obtain a simplified form of the
averaged decay rate:

Gcstmd = − tm
−1kln sstdl, s4d

In the usual discussions of the QZE and AZE, becausetm is
taken to be very small, only the short-time behavior ofsstd is
relevant. The short-time survival probability can be evalu-
ated by the perturbation theory as

sstd = 1 − t2E dmugmu2sinc2fsm − Vdt/2g, s5d

when sincx=x−2 sin x. Substituting Eq.s5d into Eq. s4d, we
can obtain a more transparent form ofGcstmd:

Gcstmd =E dmugmu2fcsmd, s6d

fcsmd = tm
−1kt2 sinc2fsm − Vdt/2gl, s7d

where the decay rate is determined by integrating the form
factor with a weight functionfcsmd f4g. Although the above
formula is simple and compact, it is known that the formula
covers most theoretical predictions on the Zeno effect, such
as the QZE-AZE crossoverf5g.

Let us see two concrete forms offcsmd. First, when
Pstd=dst−tmd, namely, when measurements are repeated
periodically, fcsmd reduces to the well-known formf4g

fc1smd = tm sinc2fsm − Vdtm/2g. s8d

Second, we consider a case wheret is a gs1d-variate f16g
andPstd is given by

Pstd = tm
−1 exps− t/tmd. s9d

In this case,fcsmd is reduced to a Lorentzian:

fc2smd =
2tm

−1

um − V + itm
−1u2

. s10d

IV. MEASUREMENT-MODIFIED DECAY RATE BY
DYNAMICAL FORMALISM

In the previous section, the measurement-modified decay
rate is calculated in the conventional formalism. In this sec-
tion, we discuss the measurement-modified decay rate using
the dynamical formalism, taking account of the system-
apparatus interaction explicitly. Regarding a concrete type of
measurement for atomic decay, we here assume a photode-
tection measurement. The interaction between photons and
the detector is described by the following interaction Hamil-
tonian:

Hsd=E E dk dvfhs2ptkd−1/2bk
†ckv + H.c.j + vckv

† ckvg.

s11d

whereckv is the annihilation operator for the excitation in the
detector with the total momentumk and energyv. In the
k-conserved form of the photon-detector interaction, it is im-
plicitly assumed that the detector is spatially homogeneous
f17g. By this photon-detector interaction, an emitted photon
with wave vectork is detected with a response timetk. A set
of response timeshtkj characterizes the performance of the
detector.

By analyzing the unitary time evolution determined by the
enlarged Hamiltonian Hs+Hsd, one can obtain the
measurement-modified decay rate. It has been proved that,
due to the photon-detector interaction HamiltonianHsd, the
bare form factor given by Eq.s2d is renormalized to take the
following form f14,15g:

uḡmu2 =E dkugku2
s2ptkd−1

um − ek − is2tkd−1u2
. s12d

The measurement-modified decay rateGd is given, applying
the Fermi golden rule to the renormalized form factor, by

Gdshtkjd = 2puḡVu2 =E dkugku2
tk

−1

uV − ek − is2tkd−1u2
.

s13d

This is a general result, which is applicable to any forms of
ugku2, ek, andtk.

Now we apply the above formula to an idealized situation
of flat response, where every photon is detected with an iden-
tical response timetr, namely,

tk = tr, s14d

regardless ofk f12,13g. In this case, the decay rate is recast
into the following form:

Gdstrd =E dmugmu2fdsmd, s15d
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fdsmd =
tr

−1

um − V − is2trd−1u2
, s16d

where the decay rate is, again, calculated by integrating the
form factor with a weight functionfdsmd.

V. DISCUSSION

In Sec. III, the measurement-modified decay rateGcstmd is
calculated based on the conventional formalism, taking ac-
count of stochasticity in the measurement intervals. The final
form of Gcstmd is given by Eqs.s6d and s7d. On the other
hand, in Sec. IV, the measurement-modified decay rateGdstrd
is calculated based on the dynamical formalism. After impos-
ing the flat-response condition,Gdstrd is reduced to Eqs.s15d
ands16d. Now the close connection between the two formal-
isms is revealed. BothGcstmd and Gdstrd are recast into a
unified form, whereG is given by integrating the original
form factor ugmu2 with a weight functionfsmd. Furthermore,
the weight functionsfcsmd and fdsmd have the following
common properties:sid fsmd is a positive function centered at
V satomic transition frequencyd with a spectral width
roughly given bytm

−1 or tr
−1, and sii d fsmd is normalized as

edm fsmd=2p. These common properties suggest that the
conventional theories on the QZE and AZE can be repro-
duced by the dynamical formalism, at least qualitatively, pro-
vided that the condition of flat response is satisfied. The only
difference lies in the functional forms offcsmd and fdsmd,
which would result in slight quantitative discrepancy. How-
ever, the two results may agree even at a quantitative level in
some cases. For example, Eqs.s10d and s16d indicate that a

complete agreement is attained by regardingtm=2tr, when
Pstd is given by Eq.s9d.

It should be stressed that equivalence between the two
formalisms is guaranteed only under the condition of flat
response, Eq.s14d. One might wonder why this condition is
required. This question is resolved by inspecting the effect of
the projection operation on the state vector of the system. By
applying the projection postulate, the quantum coherences
between the undecayed statess+u0ld and the decayed states
sbk

†u0ld are lost simultaneously, regardless ofk. Therefore,
the flat response is implicitly assumed in the conventional
formalism. For direct measurements, where the unstable sys-
tem is directly touched by the measurement apparatus, the
condition of flat response is satisfied in most cases, so analy-
ses by the conventional formalism are validated. However,
the condition of flat response is not necessarily satisfied in
general measurement processes, particularly in indirect ones.
Therefore, it is expected that the general formula based on
the dynamical formalism, Eq.s13d, may contain phenomena
beyond the conventional wisdom on the QZE and AZE. For
example, let us consider a case where the unobserved decay
law exactly follows an exponential onesstd=e−gt, which is
accomplished when the form factor is a constant function as
ugmu2=g /2p. In this case, as is well known, the conventional
theory predicts that neither the QZE nor the AZE can be
induced. Actually, Eqs.s6d and s7d necessarily predict that
the decay rate is unchanged from the unobserved onesGc

=gd, regardless ofPstd. However, even in this case, it has
been demonstrated based on the dynamical formalism that
the QZE or AZE may take place when the condition of flat
response is not satisfiedf14,15g, which is a normal situation
in real experiments.
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