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Quantum Anti-Zeno Effect by False Measurements
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We have investigated how the decay dynamics of an unstable quantum system is affected by a false
measurement, where the decay is monitored by detecting a decay product but the active energy band of
the detector does not match the energy of the decay product. It is shown that, although such a
measurement is ineffective and has almost no effect if the detector response is slow, the detectability
of decay is increased and the decay is accelerated considerably if the response is fast. This is due to the
new decay channel, which is generated as a counteraction of measurement.
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the decay product.We are showing that, even by such false
measurements, one can detect the decay with a consid-

action, the photon k is absorbed and counted by the
detector with the rate �k. In order to discuss a false
It was predicted in 1977 that decay of an unstable
quantum system is slowed down by frequently repeated
measurements to confirm survival of the system, which is
called the quantum Zeno effect [1]. Later, it was also
pointed out that repeated measurements may result in
acceleration of decay in some cases, which is called the
quantum anti-Zeno effect [2,3]. The key assumption in
these predictions was the projection postulate of quantum
measurements [4]. Besides the Zeno and anti-Zeno ef-
fects, interesting possibilities of repeated measurements
are revealed based on the projection postulate [5–7].
However, the postulate is applicable only to ideally per-
formed measurements. In order to discuss more compli-
cated measurement processes, one should analyze an
enlarged quantum system, which includes, besides the
target system to be measured, a part of the measurement
apparatus [8,9]. In this formulation, decoherence due to
measurements is naturally introduced and the postulate is
no more required. Such a rigorous approach is particularly
suitable for analyzing continuous measurements [10–15].
It was shown that the conventional theories of the Zeno
and anti-Zeno effects based on the projection postulate
can be reproduced from the rigorous formulation by re-
garding the response time of the apparatus as the mea-
surement interval of discrete measurements, and by using
an ideal measurement apparatus [11,14].

In the preceding discussions on the Zeno effects, it was
usually assumed that measurement apparatus can detect
the decay with high efficiency, because the Zeno effect is
supposed to appear only weakly if measurements on the
target system are ineffective [14]. Here, we investigate the
effects of false measurements, where measurement appa-
ratus seem to have no interaction with the target system
and, therefore, to be unable to watch what is going on the
target system. More concretely, we study a situation
where the decay of a system is monitored by detecting a
decay product emitted from the system, but the detection
energy band of the apparatus does not match the energy of
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erable probability if the response of the detector is quick,
and that the decay rate is significantly enhanced, i.e., the
anti-Zeno effect takes place. The mechanism and the
condition for this phenomenon are also clarified.

As an unstable quantum system, we consider an ex-
cited atom which decays to the ground state accompany-
ing an emission of a photon. The Hamiltonian of this
system reads

H s � �jxihxj �
Z
dk���kjxihgjbk � H:c:� � kbykbk
;

(1)

where jxi and jgi are the excited and ground states of the
atom, � is the atomic transition energy, and bk is the
annihilation operator for the photon with wave vector k
(whose energy is k � jkj), which is orthonormalized as
�bk; b

y
k0 
 � 
�k� k0�. We hereafter restrict ourselves to a

case where the atom-photon coupling �q satisfies
Z
dqj�qj2
�jqj � k� �

�
2�

: (2)

In this case, the decay of the atom exactly follows the
exponential law with the decay rate �, and the line shape
of the emitted photon is an exact Lorentzian with the
central frequency � and the width �=2 [16].

In the photodetection process, photons are converted to
excitations (electron-hole pairs) in the detector. This
process is modeled by the following photon-detector
interaction term [17,18]:

H sd �
ZZ

dk d!
�� �������

�k

2�

r
bykck! � H:c:

�
�!cyk!ck!

�
;

(3)

where ck! is the annihilation operator for the excita-
tion in the detector with the total momentum k and
energy !, which is orthonormalized as �ck!; c

y
k0!0 
 �


�k� k0�
�!�!0�. Through this photon-detector inter-
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FIG. 1. Relation between the line shape of emitted photon and
the active (inactive) band of the detector. When � � �, the
emitted photon falls in the inactive band of the detector (jk�
�j  �) almost completely.

FIG. 2. Temporal evolutions of 1� s�t� and r�t�. The solid
and broken lines show the results for � � � (when the response
of the detector is slow) and � � 30� (when the response of the
detector is fast). The inactive bandwidth � is 10�. The thin
dotted line shows the decay probability for the unobserved
case, where 1� s�t� � 1� e��t.

FIG. 3. Temporal evolution of lns�t�=�t, where � � 10�, and
� � � (solid line) and 30� (broken line). The system decays
with the unobserved decay rate � for t & ��1, and with the
enhanced decay rate 2�jg�j

2 for t * ��1.
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measurement, we assume that the detector has an inactive
energy band around the atomic transition energy �,
which is realized by taking

�k � �k �
�
� �jk��j > ��
0 �jk��j  ��:

(4)

Thus, while the detector does nothing on photons lying in
the inactive band (jk��j  �), the detector counts pho-
tons in the active band (jk��j > �) with a response
time �� ��1. It is known that the response time � plays
an equivalent role to the measurement interval in discrete
measurements [11]. Because the linewidth of the emitted
photon is �=2, the detector seems to be unable to catch the
photon if � � � (see Fig. 1). In fact, noting that the
line shape is an exact Lorentzian, the fraction of
photons emitted in the active band is given by 1�
�2=�� arctan�2�=��. This amounts to only 3:2% for � �
10�, for example. Therefore, it is expected that almost no
photons are counted by the detector and that such a false
measurement does not affect the decay dynamics of the
atom significantly.

In order to check the influence of such a false measure-
ment, we see the temporal evolution of the system by
the enlarged Hamiltonian H � H s �H sd. Putting
j �t�i � e�iH tjx; 0;0i � f�t�jx; 0;0i�

R
dkfk�t�jg; k; 0i�RR

dk d!fk!�t�jg; 0; k!i, we focus on the following two
probabilities; 1� s�t� � 1� jf�t�j2 �

R
dkjfk�t�j

2 �RR
dk d!jfk!�t�j

2 (probability that the atom has decayed
and has emitted a photon) and r�t� �

RR
dk d!jfk!�t�j

2

(probability that the emitted photon is absorbed). The
latter may be regarded as the probability of getting a
detector response. It should be reminded that an exact
decay law, s�t� � e��t, is obtained when the system is not
observed (� � 0). The temporal behaviors of 1� s�t� and
r�t� are drawn in Fig. 2, where the inactive bandwidth
��� 10�� is much larger than �. When the detector
response is slow (� � �, solid curves in Fig. 2), the decay
probability is almost unchanged from that of the unob-
served case; i.e., 1� s�t� ’ 1� e��t. Although a photon
is emitted upon decay, detection of the emitted photon is
almost unsuccessful; i.e., r�t� ’ 0. Such behaviors of 1�
030401-2
s�t� and r�t� agree with our expectation on false measure-
ments. However, when the detector response is fast
(� � 30�, broken curves in Fig. 2), we can observe that
the detection probability of the emitted photon becomes
surprisingly large ( � 40%). Furthermore, the decay is
significantly promoted, which is nothing but the quantum
anti-Zeno effect. In Fig. 3, lns�t�=�t is plotted to visualize
the decay rate. The figure clarifies that the decay rate
changes from the unobserved rate � to the enhanced rate
��� ( ’ 1:6�) at t� 0:1��1. Because the atom is kept al-
most excited at that moment, it decays with the enhanced
rate. These two facts are quite unexpected, considering
030401-2
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that the energy of the emitted photon lies almost com-
pletely in the inactive band of the detector and there-
fore that the detector seemingly cannot touch the target
system.

In order to understand these curious results, we trans-
form the Hamiltonian H � H s �H sd into the follow-
ing form:

H � �jxihxj �
Z
d���g�jxihgjB� � H:c:�

��By
�B�
 �H 0; (5)

where B� is composed by linear combination of bk and
ck! and is normalized by �B�; B

y
�0 
 � 
����0�, and

H 0 contains the terms which do not interact with the
atom [14]. In Eq. (5), the atom is coupled to a one-dimen-
sional continuum of B�, and the decay dynamics is com-
pletely determined by the coupling function g�, which is
called a form factor. jg�j2 is given by

jg�j
2 �

Z
dkjg�;kj2; (6)

jg�;kj
2 � j�kj

2 �k=2�

j�� k� i�k=2j
2 : (7)

Renormalization of the form factor by measurement,
according to Eqs. (6) and (7), is visualized in Fig. 4.
jg�;kj2 represents the contribution of the photon k to the
form factor jg�j2. When photons are not measured, i.e.,
�k ! 0, jg�;kj2 reduces to a delta function, jg�;kj2 �
j�kj2
��� k�. Contrarily, when photons are measured,
lifetimes of photons become finite as an inevitable result
of a measurement, and jg�;kj

2 is broadened to be a
Lorentzian with width �k, satisfying a sum rule,
FIG. 4. Renormalization of the form factor jg�j
2 by the

measurement (schematic). Without the measurement, jg�;kj2

is a delta function (sharp spikes in the upper figure). If the
photon energy k lies in the active band, jg�;kj2 is broadened by
the measurement (duller spikes in the lower figure). The form
factor jg�j2 is composed by accumulating jg�;kj

2.
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R
d�jg�;kj

2 � j�kj
2. The form factor is composed by

accumulating jg�kj
2 by Eq. (6). It should be noted that

the above renormalization is mathematically rigorous
and holds for general functional forms of �k and �k.
The usual Zeno and anti-Zeno effects (with finite jump
time) are understandable through this renormalization
mechanism [14].

In our model, the form factor reduces to a constant
function jg�j

2 � �=2� when the system is not measured.
By the false measurement, jg�;kj

2 is broadened if the
photon energy k lies in the active band, while it is kept
unchanged (remains a delta function) if k lies in the
inactive band, as shown in Fig. 4. As a result, jg�j2 is
renormalized into the following form: jg�j2 �
��=2�2�f� � ���� � j� � �j� � arctan�2�� � ��
��=�
 � arctan�2�������=�
g, where ��x� is a step
function. jg�j2 is plotted in Fig. 5 for three values of�=�.
It is observed that jg�j2 is increased in the inactive band,
which is compensated by a decrease in the active band.We
can confirm that false measurements necessarily result in
an increase of the form factor jg�j2 inside the inactive
band, which implies that false measurements always re-
sult in enhancement of decay (anti-Zeno effect). The form
of jg�j2 is determined by the ratio �=�. When �=� � 1,
modification of jg�j2 occurs only around the edge of the
inactive band, j�� �����j & �. Contrarily, when
�=� * 1, jg�j2 is increased globally in the inactive band.

The form factor jg�j2 explains the two-step behavior
observed in Fig. 3. Using the lowest-order perturbation to
Eq. (5), the decay probability is given by 1� s�t� �
t2
R
d�jg�j

2sinc2������t=2
. Remembering that the
sinc function is large only in j���j & 2�t�1, the
right-hand side is approximated by 2�jg1j

2t�� �t� for
t� ��1, and by 2�jg�j

2t for t� ��1. Thus, the decay
rate is enhanced at t� ��1 from the natural rate � to the
enhanced rate,
FIG. 5. Plot of the form factor jg�j2 under the measurement,
for �=� � 0 (thin dotted line), 0.1 (solid line), and 3 (broken
line).
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��� � 2�jg�j
2 � ��2� 2��1 arctan�2�=��
: (8)

The increase of the photodetection probability r�t�, ob-
served in Fig. 2, is also explained in terms of jg�j2. The
increase of jg�j2 inside the detection band is ascribed to a
new decay channel opened by measurement; the atom can
decay to an excitation in the detector via off-resonant
photons lying in the active band. The atomic decay can be
detected if this decay channel is used. Besides this new
channel, there remains the original decay channel, where
the atom decays to a photon within the natural linewidth.
The detector cannot catch the emitted photon in this case.
Thus, the probability to use the new channel may be
regarded as the final photodetection probability r�1�,
which is estimated by

r�1� ’
���� �
���

�
1� 2��1 arctan�2�=��

2� 2��1 arctan�2�=��
: (9)

Equations (8) and (9) agree well with the numerical
results.

Now it is clarified that enhancement of decay and
increase of the detection probability are indivisible results
of the new decay channel opened by measurement. The
condition for inducing considerable effects is that ��� is
significantly larger than the original value �, which is
accomplished when �=� * 1, as indicated by Eq. (8)
[19]. We can understand this condition intuitively as fol-
lows: The lifetime of a virtually emitted photon in the
detection band is estimated by 
t� �
E��1 � ��1, using
the uncertainty principle. The anti-Zeno effect takes
place if the detector response �����1� is quick enough
to fix a virtual photon, which is accomplished by � & 
t;
i.e., �=� * 1.

In the limit of infinitely quick response, �! 1, the
decay rate is doubled and the detection probability
reaches a half in our case. These values are, of course,
strongly dependent on the original form factor without
the measurement. For example, when �k is zero around
the atomic transition energy but is nonzero in other re-
gions, the effects of measurement appear more drasti-
cally. In this case, the atom does not decay [s�1� ’ 1]
when photons are not observed. However, the decay be-
comes possible by detecting virtually emitted photons,
and the decay can be detected almost perfectly. Thus,
false measurements may affect the dynamics of quantum
systems even qualitatively.

In summary, we have investigated the effects of a false
measurement on radiative decay, where the active energy
band of a photodetector does not match the energy of
emitted photons (Fig. 1). When the detector response is
slow, the detector can hardly catch the photon and the
decay rate is almost unchanged from the unobserved case
(solid curves in Figs. 2 and 3), as expected. However,
when the response is quick, the detectability is largely
030401-4
increased and the decay is accelerated (broken curves in
Figs. 2 and 3). These two facts are explained in terms of
renormalization of the form factor, which inevitably oc-
curs as a counteraction of photodetection. The renormal-
ization is generally expressed by Eqs. (6) and (7). In the
case of false measurements, jg�j2 (form factor at tran-
sition energy) is necessarily increased, implying that the
decay is always accelerated. jg�j2 is related to the decay
rate and the detectability by Eqs. (8) and (9), respectively.

The author is grateful to A. Shimizu, A. Tanaka,
A. Shudo, H. Kubotani, M. Toda, and H. Ishihara for
fruitful discussions.
*Electronic address: ikuzak@aria.mp.es.osaka-u.ac.jp
[1] B. Misra and E. C. G. Sudarshan, J. Math. Phys. (N.Y.) 18,

756 (1977).
[2] B. Kaulakys and V. Gontis, Phys. Rev. A 56, 1131 (1997)
[3] A. G. Kofman and G. Kurizki, Nature (London) 405, 546

(2000).
[4] J. von Neumann, Mathematical Foundations of Quantum

Mechanics (Princeton University Press, Princeton, New
Jersey, 1955).

[5] Y. Aharonov and M. Vardi, Phys. Rev. D 21, 2235 (1980).
[6] P. Facchi and S. Pascazio, Phys. Rev. Lett. 89, 080401

(2002).
[7] H. Nakazato, T. Takazawa, and K. Yuasa, Phys. Rev. Lett.

90, 060401 (2003).
[8] W. H. Zurek, Phys. Rev. D 26, 1862 (1982).
[9] D. F. Walls and G. J. Milburn, Quantum Optics (Springer-

Verlag, Berlin, 1994).
[10] E. Joos, Phys. Rev. D 29, 1626 (1984).
[11] L. S. Schulman, Phys. Rev. A 57, 1509 (1998).
[12] B. Elattari and S. A. Gurvitz, Phys. Rev. Lett. 84, 2047

(2000).
[13] J. Ruseckas, Phys. Rev. A 66, 012105 (2002)
[14] K. Koshino and A. Shimizu, Phys. Rev. A 67, 042101

(2003).
[15] K. Koshino and A. Shimizu, Phys. Rev. Lett. 92, 030401

(2004).
[16] The exact exponential decay law is obtained when the

lower limit of the photon energy is extended to �1.
When the atom-photon coupling is restricted to a finite
energy range, e.g., jk��j & C, the decay law deviates
from the exponential one (showing quadratic decrease)
for 0< t & C�1.

[17] M. D. Srinivas and E. B. Davies, Opt. Acta 28, 981 (1981).
[18] L. Mandel and E. Wolf, Optical Coherence and Quantum

Optics (Cambridge University Press, Cambridge,
England, 1995).

[19] In fact, there is another condition that the atom has
not decayed at t� ��1 (because the atom decays
with the unobserved rate for t & ��1, see Fig. 3),
but this is always satisfied for the false measurement,
where � � �.
030401-4


