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Quantum Zeno Effect for Exponentially Decaying Systems
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The quantum Zeno effect —suppression of decay by frequent measurements—was believed to occur
only when the response of the detector is so quick that the initial tiny deviation from the exponential
decay law is detectable. However, we show that it can occur even for exactly exponentially decaying
systems, for which this condition is never satisfied, by considering a realistic case where the detector
has a finite energy band of detection. The conventional theories correspond to the limit of an infinite
bandwidth. This implies that the Zeno effect occurs more widely than expected thus far.
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QZE in a realistic situation where the unstable system is
monitored continuously using a measuring apparatus

ground state jgi and the excited state jxi with the tran-
sition energy � (we hereafter take �h � c � 1); (ii) the
The survival probability s�t� of an unstable quantum
system generally decreases quadratically with time t at
the beginning of the decay, and later follows the well-
known exponentially decay law. The crossover takes place
at t� �j, which is called the jump time. Noticing this fact
and simply applying the projection postulate on measure-
ments, it was predicted that frequent measurements with
time intervals � result in the suppression of the decay if �
is small enough to satisfy � & �j [1]. Similarly, the sup-
pression was supposed to occur by continuous measure-
ment using an apparatus with short response time �
satisfying � & �j [2]. This prediction, called the quantum
Zeno effect (QZE), is one of the most curious results of
the quantum measurement, and has been attracting much
attention [1–13]. However, in most unstable systems, �j is
extremely small so that the condition � & �j cannot be
satisfied by existing detectors. It has been therefore be-
lieved that the QZE would not occur in most unstable
systems. However, these conventional arguments on the
QZE need to be reconsidered, because, in general, real
measurement processes are not ‘‘projective measure-
ments’’ that are described by the projection postulate
[13,14]. A more general and accurate way of analyzing
measurement processes is to apply the laws of quantum
theory to a larger system which include both the original
quantum system to be measured and a part of the mea-
suring apparatus [13,14]. Such an approach has been
successfully applied, e.g., to quantum optics [14–17]
and the QZE [2,7]. This enables one to study not only
the temporal evolution of the unstable system but also the
response of the measuring apparatus. Moreover, one can
discuss general measurement processes such as measure-
ment with a finite probability of error [7,17].

In this paper, we apply this modern approach to the
0031-9007=04=92(3)=030401(4)$22.50 
(detector) with a finite energy band of detection. Fur-
thermore, we consider the case of ‘‘indirect measure-
ment’’ [7], in which the detector acts only on the decay
products, because some of the previous works assuming
direct interactions have often been criticized as not being
a genuine QZE.We show that the QZE can take place even
in systems that exactly follow the exponential decay law,
for which �j is infinitesimal, hence, the conventional
condition for the QZE, � & �j, is never satisfied. We
clarify its physical origin, derive the conditions for in-
ducing the QZE in such systems, and show that the
conventional projection-based theory can be reproduced
in the ideal, but unrealistic limit of an infinite detection
bandwidth. Our results imply that the response time
required for the QZE is not so short, the required jump
time is not so long, and, hence, the QZE may take place
much more widely than expected thus far.

As the unstable quantum system, we consider the
excited state of a two-level atom, which decays to the
ground state with a finite lifetime accompanying emission
of a photon. By detecting the emitted photon, the observer
can know the decay of the atom. As the photon detection
process, we consider a standard one [14–16]: In the photo-
detector, the emitted photon is absorbed by a semicon-
ductor and an electron-hole pair is generated. It finally
yields a macroscopic signal after magnification processes,
by which the observer knows the decay of the excited
atom. Following the quantum theory of photon counting
[14–16], we treat the relevant part of the detector, i.e.,
electron-hole pairs, as a part of the total quantum system.
The electron-hole pairs can be described as bosonic ele-
mentary excitations, because their density is low in the
detection process. The total quantum system is therefore
composed of three parts: (i) a two-level atom with the
2004 The American Physical Society 030401-1
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FIG. 1. Temporal evolution of 1� s�t� (solid line), ��t� (dot-
ted line), and r�t� (dashed line). The parameters are chosen as
2��=� � 100 and �=� � 1:5. It is seen that r�t� follows 1�
s�t� with a delay time about � � ��1.
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photon field, whose eigenmodes are labeled by the wave
vector k; and (iii) the field of the electron-hole bosonic
excitation in the detector. By taking the energy of jgi as
the origin of the energy, the Hamiltonian of the total
system is given as follows:

H � H 0 �H 1 �H 2; (1)

H 0 � �jxihxj; (2)

H 1 �
Z
dk	��kjxihgjbk � H:c:� � kbykbk�; (3)

H 2 �
ZZ

dk d!	�
������
�k

p
bykck! � H:c:� �!cyk!ck!�:

(4)

Here, H 1 represents the atom-photon interaction, where
bk is the annihilation operator for the photon with wave
vector k, whose energy is k � jkj. The atom-photon part
H 0 �H 1 constitutes the original unstable quantum
system to be measured. H 2 represents the interaction
between the emitted photon and the detector. Every
photon mode is coupled to a continuum of the bosonic
elementary excitations in the detector, whose annihila-
tion operator is denoted by ck!. The commutation rela-
tions are orthonormalized as 	bk; b

y
k0 � � ��k� k0� and

	ck!; c
y
k0!0 � � ��k� k0���!�!0�.

In order to demonstrate that the QZE does occur even
when � * �j, for which the QZE cannot be expected
according to the conventional theories, we study the
limiting case of infinitesimal �j [18]. Namely, we inves-
tigate the case where the survival probability s�t� of the
initial excited state exactly follows the exponential decay
law, s�t� � exp���t�, when the original system is not
measured, i.e., when H 2 � 0. In the present model, we
obtain such an exact exponential decay for the original
quantum system (described by H 0 �H 1) by putting the
atom-photon coupling after angular integration to be
independent of the photon energy k:

Z
dqj�qj2��jqj � k� �

�
2�

; (5)

and by extending the lower limit of the photon energy to
�1. In this case, �j becomes infinitesimal, and � > �j
for any finite �. We show in the following that the QZE
can occur even in this case [18]. The point is that any real
detector has a finite bandwidth of detection. In contrast,
the use of the projection hypothesis corresponds to the use
of an ideal but unrealistic detector that has an infinite
bandwidth.

To demonstrate this, we here take the following simple
form for �k:

�k � �k �
�=2�

1� 	�k���=��n
; (6)
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where n is a large even integer (we take n � 6 in the
numerical examples). In this case, photons within the
energy range jk��j & � are counted by the detector
with a time scale of ��1 � �, while photons outside of
this energy range are not counted. Thus, the detector has a
detection band centered around the atomic transition en-
ergy � with (half) the bandwidth ’ �. The atomic decay
is continuously monitored with this detector.

To see the temporal evolution of the whole system, we
put j �t�i � e�iH tjx; 0; 0i � f�t�jx; 0; 0i �

R
dkfk�t� �

jg; k; 0i �
RR
dk d!fk!�t�jg; 0; k!i, and define three prob-

abilities of physical interest: s�t� � jf�t�j2 (survival
probability of the atom), "�t� �

R
dkjfk�t�j2 (probability

that the atom has decayed but the emitted photon is not
absorbed by the detector), and r�t� �

RR
dk d!jfk!�t�j2

(probability that the emitted photon is absorbed). r�t� can
be interpreted as the probability of getting a detector
response, whereas "�t� is the probability that the detector
reports an erroneous result. One of the advantages of the
present theory is that all of these interesting quantities
can be calculated. A numerical example is shown in Fig. 1.
Since � � � in this example, the atomic natural line-
width (��) is completely covered by the detection band
(��), and the emitted photon is counted almost perfectly
[r�t� ’ 1 for t! 1]. It is observed that r�t� follows the
decay probability 1� s�t� with a delay time ’� (���1).
Hence, � is the response time of the detector. To be more
precise, � is the lower limit of the response time because
additional delays in the response, such as delays in signal
magnification processes, may occur in practical experi-
ments. In discussing fundamental physics, the limiting
value is more significant than practical values, which
depend strongly on detailed experimental conditions. A
typical value of � for GaAs is 10�15 s, which is much
shorter than the practical response times of commercial
photodetectors, which range from 10�6 to 10�13 s.
030401-2
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In order to see the QZE, we investigate how the sur-
vival probability s�t� is affected by the detector parame-
ters such as the response time � and the detection
bandwidth � of the detector. For this purpose, we trans-
form H into the following renormalized form [7]:

H � H 0 �
�HH 1 �

�HH 2; (7)

�HH 1 �
Z
d�	�g�jxihgjB� � H:c:� ��By

�B��; (8)

where �HH 2 is composed of terms which are decoupled
from the atom. Here, B� is a coupled-mode operator that
is a linear combination of bk and ck! [7], which is
orthonormalized in terms of a one-dimensional label �
as 	B�; B

y
�0 � � �����0�, and jg�j2 is given by

jg�j2 �
�
2�

Z
dkjg�;kj2; (9)

where jg�;kj2 � �k=j�� k� i��kj2: Thus, the atom is
coupled to a single continuum of B� with the form factor
jg�j

2, which we hereafter call the renormalized form
factor. jg�;kj2 represents the contribution to jg�j

2 from
photons with energy k. It is broadened to have a finite
width �k by the measurement, satisfying a sum rule,R
d�jg�;kj2 � 1.
When the atom-photon system is free from the mea-

surement, i.e., when � � 0, the form factor reduces to the
‘‘free’’ value, jg�j2 � �=2�, and the atomic decay ex-
actly follows the exponential law, s�t� � exp���t�.When
the detector is present, on the other hand, jg�j2 is modi-
fied (renormalized) as shown in Fig. 2, where jg�j

2 is
plotted for several values of �=�. It is seen that jg�j2 is
decreased for j���j & � (inside the detection band)
and is increased for j���j * � (outside). For larger
j���j, modification of jg�j2 becomes small, approach-
ing zero (i.e., jg�j2 ! �=2�). The figure also shows that
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FIG. 2. Plot of jg�j2. �=2�� is chosen at 0.01 (solid line), 0.1
(dotted line), and 1 (dashed line).
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the modification of jg�j
2 occurs more significantly for

larger �=�. This can be seen clearly in the limit of n!
1, where jg�j2 can be analytically evaluated and its value
at the atomic transition energy is given by jg�j2 �
��=�2� arctan�2�=��. Thus, jg�j2 becomes significantly
smaller than the free value �=2� when �=� * 1, i.e.,
when

� � � & 1: (10)

The survival probability s�t� is governed by the func-
tional form of jg�j2. In order to visualize the decay rate,
lns�t�=��t� is plotted in Fig. 3. The figure clarifies the
following two-stage behavior of the atomic decay: In the
first stage (t & ��1), the atom decays with the free decay
rate �, while, in the second stage (t * ��1), the atom
decays with a suppressed decay rate 2�jg�j2. For the
values of parameters chosen in Fig. 3, the atom is kept
almost undecayed [s�t� ’ 1] in the first stage, and signifi-
cant decay occurs in the second stage with the suppressed
decay rate. Namely, the QZE surely takes place, although
the system exhibits an exact exponential decay in the
absence of measurement.

The two-stage behavior can be understood with a help
of the perturbation theory. Applying the lowest-order
perturbation to the renormalized form Eq. (7), we obtain
the decay probability as

1� s�t� �
Z
d�jg�j2

sin2	�����t=2�

	�����=2�2
: (11)

Taking into account that the main contribution in the
integral comes from the region of� satisfying j���j &

2�t�1, we evaluate the right-hand side in two cases:
In the case of t� ��1, jg�j2 can be approximated
by jg1j2 � �=2�, which gives the free decay rate
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FIG. 3. Plot of lns�t�=��t�, i.e., the time dependence of the
decay rate. f2��=�; �=�g are chosen at f100; 100g (solid line),
f100; 10g (dotted line), and f1000; 1000g (broken line). The
decay rate changes from the free rate � to the suppressed
rate 2�jg�j

2 at t���1.
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1� s�t� � �t; whereas in the opposite case of t� ��1,
jg�j

2 can be approximated by jg�j
2, which gives the

suppressed decay rate 1� s�t� � 2�jg�j2t. Thus, the de-
cay rate changes from the free rate to the suppressed rate
at t� ��1.

The QZE occurs for exponentially decaying systems
when the following two conditions are satisfied: (i) The
transition from the first to the second stage should occur
before the atom decays. Since the survival probability at
t� ��1 is given by s���1� ’ exp���=��, this condition
is expressed as

�=� � 1; (12)

which means that the detection band should completely
cover the natural linewidth of the atom. (ii) The decay
rate in the second stage (t * ��1) should be significantly
suppressed from the free decay rate. This condition is
expressed by inequality (10).

The latter condition explains why the QZE was not
obtained for exponentially decaying systems by theories
that assumed projective measurement. By applying the
projection operator, the quantum coherences between
jx; 0i and jg;ki are destroyed regardless of the energy
of the emitted photon. Therefore, the projection-based
theory corresponds to � ! 1 [19]. In such a limit, how-
ever, inequality (10) cannot be satisfied and the QZE
never occurs. Since � of any real detector is finite, such
a limit is rather unphysical. It might sound strange that a
‘‘better’’ detector with larger � cannot induce the QZE.
However, for detecting photons whose energy k lies in the
natural linewidth of the atom, jk��j & �, such a de-
tector is not better (nor worse) than a detector with
smaller �, because the detection efficiencies of both
detectors are almost 100% if � * � is satisfied. In the
� ! 1 limit, the effect of individual broadenings of
jg�;kj2 is perfectly smeared out in jg�j2 after the k
integration in Eq. (9).

In conclusion, we make three remarks. First, we have
assumed continuous measurement. Regarding frequent
discrete measurements, we note that real detectors have
finite response times �, although the conventional theo-
ries on the QZE often assumed that each measurement
was an instantaneous projective measurement. In some
cases, continuous measurement with the response time �
corresponds to frequent instantaneous measurements
with the intervals of order � [2]. However, this does not
mean that continuous measurement always corresponds
to some frequent instantaneous projective measurements.
In fact, the result of this work is a counterexample.
Second, we remark that the QZE is closely related to
the cavity quantum electrodynamics (QED) [20]. In
fact, Eqs. (1)–(4) are similar to those describing the
cavity QED, in which bk correspond to discretized cavity
modes while ck! correspond to outer modes, or, when the
cavity is composed of photoabsorptive materials, to ex-
030401-4
citations in the material. In principle, these quanta can be
utilized for detection of the decay, if appropriate magni-
fication processes are followed. In such cases, the lower
limits of the response time � would be determined in
terms of the material parameters such as �k. The present
theory not only demonstrates the QZE for the exponen-
tially decaying systems, but also reveals that the cavity
QED is related to the QZE through such implicit relations
[21]. Finally, we have studied in this paper the case where
the decay is suppressed. The possibility of acceleration of
the decay by measurement [5–7] in exponentially decay-
ing systems will be discussed elsewhere.
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