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Analytic approach to the optical response of one-dimensional photonic crystal slabs
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We investigate the optical response of one-dimensional photonic crystal slabs for an incident wave from free
space. The Maxwell equation is solved in an analytic manner using the eigenmodes for the empty lattice case
~without periodic gratings!, and compact formulas for transmittivity of the incident wave and excitation effi-
ciency of waveguide modes are obtained. These formal results are visualized at certain parameters. The effect
of width in the wave vector of incident wave is also discussed.
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I. INTRODUCTION

By comparison of Maxwell and Schro¨dinger equations, it
is known that regions with large dielectric constant for ele
tromagnetic wave correspond to regions with low poten
for particles.1 Thus, a plain slab of dielectric supports tw
kinds of eigenmodes;~i! waveguide modes, which are sp
tially bound in the normal direction to the slab~which we
hereafter call thez direction! almost within the thickness o
the slab, and~ii ! radiation modes, which extend infinitely i
the z direction. In the case of a plain slab structure, there
no coupling between waveguide modes and radiation mo
so the existence of waveguide modes does not affect
incident wave from thez direction.

Due to recent progress of fabricating nanostructures,
are able to prepare such artificial slabs whose dielectric c
stant is periodically modulated in one or two directio
within the plane of the slab, which are called photonic crys
slabs~PCS!.2–6 In this system, contrary to a plain dielectr
slab, the in-plane wave vector is not conserved, becaus
finitesimal translation symmetry in the in-plane directions
lost by the variance of the dielectric constant. Instead,
periodic modulation introduces the coupling between
modes satisfying the Bragg’s condition. This mechanism
ables the externally incident wave from thez direction to
interact with those waveguide modes that are folded b
into the light cone,7 which brings unique optical features t
the PCS’s.

One of the typical consequences of the coupling to
waveguide modes is the appearance of sharp dips in
transmission spectrum of the incident wave from thez direc-
tion. This has been observed experimentally8,9 and also has
been reproduced by solving the Maxwell equation in a
merical manner.9–11 By using such numerical methods, on
can obtain numerical values of many quantities~transmissiv-
ity, spatial distribution of EM field, and so on! with high
accuracy. However, the underlying physical mechanisms
buried in the huge processes in numerical calculations.
impossible to see transparently the dependence of t
physical quantities on the structural and dielectric parame
of the PCS, and, therefore, to give compact guidelines
designing the PCS’s. Thus, analytic approaches are de
where physical quantities are given as functions of the
rameters of the PCS.

A well-known approach to handling the waveguide mod
0163-1829/2003/67~16!/165213~8!/$20.00 67 1652
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analytically is the coupled-mode theories.12–14 In these theo-
ries, the main concern is laid in the energy exchange am
several waveguide modes, and the interaction between
waveguide mode and the radiation modes is not treated
orously. Apparently, such theories are not suitable to disc
the optical response of PCS’s to the EM wave incident fr
the z direction, because the incident wave belongs to
radiation modes. Recently, Ochiaiet al.have treated the cou
pling n between the waveguide and radiation modes
perturbation,6 and derived nonphenomenological expressio
for the energy and radiative width of the waveguide mod
However, as a result of perturbative treatment, the the
cannot describe the nonperturbative quantities inn, such as
the transmissivity of the incident wave and the amplitudes
the waveguide modes excited by the incident wave.

In this study, we discuss the optical response of PCS
showing the analytic solution of the Maxwell equatio
which has a nonperturbative form in the coupling constann.
In order to obtain the solution, we utilize the fact that t
photonic modes in the PCS can be regarded as a typ
example of a Fano-type problem, which is characterized
the linear coupling between discrete levels~the waveguide
modes that are folded back into the light cone by perio
gratings! and continua~radiation modes!, and employ an ap-
proximation by taking into account only those modes that
almost resonant to the incident wave. In particular, we de
onstrate the solution in the simplest situation, where the
quency of the incident wave is low enough so that it is n
diffracted into other radiation modes, and therefore only
single continuum of radiation modes should be taken i
account. The solution clearly reveals the underlying mec
nism for how the structural and dielectric parameters of
PCS are reflected in the optical response. We also show
the optical response of an ideal PCS is altered in reali
cases.

The composition of this paper is as follows: in Sec. II, t
structure of the PCS considered in this study is described
Sec. III, the Maxwell equation is solved for incidence
infinite plane wave. After decomposing the electric field
eigenmodes for the empty lattice case, the equation is tre
as a Fano-type problem15 with two discrete levels and a con
tinuum, which allows analytic solution of the Maxwell equ
tion. The formal results are visualized with numerical e
amples. In Sec. IV, we discuss the effect of finite width in t
in-plane wave vector of incident wave, which is inevitable
©2003 The American Physical Society13-1
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real experimental situations. The results are summarize
Sec. V.

II. SYSTEM

The structure of the PCS that we discuss in this stud
described in this section. The system is composed of a p
slab of transparent dielectric~dielectric constant:es), incor-
porated with a one-dimensional array of stripes of differ
dielectric ~dielectric constant:ea), as sketched in Fig. 1.

We decompose the dielectric function into two parts
e(x,z)5e1(z)1e2(x,z). e1(z) is the dielectric function of
the slab without periodicity in thex direction, which is given
by

e1~z!5H es1~ea2es!a/L ~ uzu,d/2!

es ~d/2,uzu, l !

1 ~ l ,uzu!,
~1!

whered anda are the thickness and width of the stripes,L is
the periodicity of the arrays, andl is half of the thickness of
the slab. On the other hand,e2(x,z) denotes periodic modu
lation of the dielectric function, which is given by

e2~x,z!5H ~ea2es!@X~x!2a/L# ~ uzu,d/2!

0 ~d/2,uzu!,
~2!

whereX(x) is a periodic function ofx with periodL, which
is given, foruxu,a/2, by

X~x!5H 1 ~ uxu,a/2!

0 ~a/2,uxu,L/2!.
~3!

The reason for this particular decomposition is to
*2L/2

L/2 dxe2(x,z) be zero for later convenience. For simpli
ity, we substitute the step function with widthd at z50 by a
delta functiondd(z), and employ the following forms o
e1(z) ande2(x,z);16

e1~z!5H es1~ea2es!~a/L!dd~z! ~ uzu, l !

1 ~ l ,uzu!,
~4!

e2~x,z!5~ea2es!@X~x!2a/L#dd~z!. ~5!

FIG. 1. Section of the system on thex-z plane. The system is
uniform in the y direction ~perpendicular to paper!. The incident
light has its wave vector (P,0,Q) and is TE polarized.
16521
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As for the incident electromagnetic wave, we consider a s
ation where the wave vector (P,0,Q) of the incident wave
lies on thex-z plane and there is no field variation in they
direction.P andQ are related to the wave numberK and the
incident angleQ by P5K sinQ and Q5K cosQ. In this
case, the field is separated into TE and TM modes. We
cuss the TE-polarized case in the following.

III. SOLUTION FOR INFINITE PLANE WAVE INCIDENCE

A. Eigenmode expansion

In this section, we solve the Maxwell equation with th
dielectric function e1(x)1e2(x,z), for incidence of TE-
polarized infinite plane wave with wave vector (P,0,Q). In
TE-polarized cases, electromagnetic field is completely
scribed by they component of the electric field, which w
denote byE(x,z) in the following;x andz components of the
magnetic field are given byBx5 i (cK)21]zE(x,z) and Bz
52 i (cK)21]xE(x,z). The fundamental equation to solve
the Maxwell equation forE(x,z):

@]x
21]z

21K2$e1~z!1e2~x,z!%#E~x,z!50. ~6!

In order to solve Eq.~6!, we use the eigenmodes for th
empty lattice case, i.e.,e2(x,z)50, which are easily acces
sible due to one-dimensionality. The eigenmodes are divi
as follows:

L21/2eipxf pqs~z!, ~7!

where L is the quantization length, and a real functio
f pqs(z) satisfies the following equation:

@dz
21~p21q2!e1~z!2p2# f pqs~z!50, ~8!

and is normalized by

E
2L/2

L/2

dze1~z! f pqs~z! f pq8s8~z!5dqq8dss8 . ~9!

As is well known, the eigenmodes for the empty lattice ca
are classified into radiation modes and waveguide mod
The radiation modes have three independent indicesp (x
component of the wave vector!, q (z component of the wave
vector, outside of the slab!, ands ~parity for thez direction;
s5 % or *). Contrarily, as for the waveguide modes,q and
s are automatically determined as functions ofp. We shall
therefore omit the indicesq ands for the waveguide modes
in the following.

We expand the electric field by the eigenmode functio
as

E~x,z!5 (
p,q,s

b̃pqsL21/2eipxf pqs~z!, ~10!

which leads to the following equations among the coe
cients:
3-2
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~K22p22q2!b̃pqs1K2l (
q8,s8, j (Þ0)

n j f pqs~0! f (p1 jG)q8s8~0!

3b̃(p1 jG)q8s850, ~11!

whereG52p/L, j runs over nonzero integers, andn j is a
dimensionless coupling constant defined by

n j5~ea2es!~d/ l !
sin~ j pa/L!

j p
. ~12!

Because the incorporated materials are located atz50, the
interaction takes place only among the even parity mo
(s5 % ), and those with odd parity remain eigenmodes ev
in existence of the periodic modulatione2(x,z).

B. Treatment as Fano problem

Now it is apparent from Eq.~11! that the incident wave
(p5P) is coupled only to those modes withP1 jG. It
should be stressed here that the incident wave can inte
with the waveguide modes through this mechanism, wh
results in distinct dips in the transmission spectrum. In t
study, we restrict ourselves to the simplest case where
wave number of the incident wave is small and diffracti
into other radiation modes (p5P6G,P62G, . . . ) does not
occur. The condition is expressed by (P2G)2.P21Q2 or,
in terms ofK and Q, K/G,(12sinQ)/cos2Q. In this low
frequency region, the relevant modes are the continuum
radiation modesb̃Pq% with p5P ~thick line in Fig. 2!, and a
pair of waveguide modesb̃P6G belonging to the lowes
branch~two dots in Fig. 2!. It should be remarked again tha
the waveguide modes have only one indexp after fixing the
branch. Thus, we treat this problem as a Fano-type o15

with two discrete states and one continuum. The crucial
teractions are~i! those betweenb̃Pq% and b̃P6G ~character-
ized by n1), which couple the incident wave to waveguid
modes and also give radiative widths to the wavegu
modes, and~ii ! those betweenb̃P1G and b̃P2G ~character-
ized by n2), which is important because these two wav
guide modes are energetically degenerate for a normal
dence (Q50). Taking into account these two kinds o

FIG. 2. Energy of eigenmodes for a plain slab, plotted againp
(x component of the wave vector!. Continuum of radiation modes
~gray region! lie inside the light cone, while the branches of wav
guide modes~curves! are outside of it. In this study, radiatio
modes withp5P ~thick line! and a pair of waveguide modes wit
p5P6G ~dots! are taken into account.
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interaction, and using the following abbreviated notatio
b65 l 1/2b̃P6G , bq5(L/2p)1/2b̃Pq% , f 65 l 1/2f P6G(0), f q
5(L/2p)1/2f Pq% (0), andK6 ~the frequencies of waveguid
modesbP6G , see Fig. 2!, we get the following homoge-
neous equations:

~Q22q2!bq1n1f qK2~ f 1b11 f 2b2!50, ~13!

~K22K1
2 !b11n2f 1 f 2K2b21n1f 1lK 2E

0

`

dq fqbq50,

~14!

~K22K2
2 !b21n2f 1 f 2K2b11n1f 2lK 2E

0

`

dq fqbq50.

~15!
If one wants to extend the theory to larger wave num

region, other modes should be taken into account addit
ally. For example, for (12sinQ)/cos2Q,K/G,(1
1sinQ)/cos2Q, the continuum of radiation modes withp
5P2G should also be considered.

C. Forms of bÁ and bq

After the simplified treatment described in the previo
subsection, the problem has been reduced to coupled li
equations~13!, ~14!, and~15!. From Eq.~13!, we get

bq5n1K2~ f 1b11 f 2b2!
f q

q1Q FPS 1

q2QD1hd~q2Q!G ,
~16!

where P means taking the principal part on integration, anh
is a dimensionless constant to be determined in the follo
ing. Substituting Eq.~16! into Eqs. ~14! and ~15!, we get
simultaneous equations for (b1 ,b2). From the condition
that the equations have nonzero solutions for (b1 ,b2), we
obtain

E
0

`

dq
f q

2

q1Q FPS 1

q2QD1hd~q2Q!G
52

~K22K1
2 !~K22K2

2 !2n2
2f 1

2 f 2
2 K4

n1
2lK 4@~ f 1

2 1 f 2
2 22n2f 1

2 f 2
2 !K22 f 1

2 K2
2 2 f 2

2 K1
2 #

,

~17!

andb1 /b2 is given by

b1

b2
5

f 1@~12n2f 2
2 !K22K2

2 #

f 2@~12n2f 1
2 !K22K1

2 #
. ~18!

h is determined through Eq.~17!. On evaluation of left-hand
side of Eq.~17!, we substitutef q in the integrand byf Q ,
neglecting itsq dependence.17 Thenh is immediately given
by

h52
2Q@~K22K1

2 !~K22K2
2 !2n2

2f 1
2 f 2

2 K4#

n1
2lK 4f Q

2 @~ f 1
2 1 f 2

2 22n2f 1
2 f 2

2 !K22 f 1
2 K2

2 2 f 2
2 K1

2 #
.

~19!
3-3
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It should be remarked thatf 6 , K6 , and f Q are dependen
upon P. Thus h and b1 /b2 are given as functions of th
incident wave vector (P,0,Q), or, equivalently, (K,Q). If
the incorporated material is dispersive,n j may also depend
on K through the dielectric constantea(K).

D. Amplitudes of the transmitted wave, reflected wave, and
excited waveguide modes

Using Eqs.~10!, ~16!, and ~A1!, the even-parity solution
of Eq. ~6! outside of the slab is given by

EPQ%~x,z!5
n1~ f 1b11 f 2b2!K2

~pL !1/2
eiPxE

0

`

dq
f q

q1Q

3FPS 1

q2QD1hd~q2Q!Gcos~quzu1uPq% !,

~20!

whereuPq% is a phase shift associated with the eigenmo
for the empty lattice case~see Appendix A!. Substitutingf q
anduPq% in the integrand byf Q anduPQ% , Eq. ~20! leads at
uzu→`:

EPQ%~x,z!5S h21p2

pL D 1/2n1~ f 1b11 f 2b2! f QK2

2Q

3eiPxcos~Quzu1uPQ% 1f!, ~21!

wheref (0<f<p) is defined by

f5cos21~h/Ah21p2!. ~22!

Thus, an additional phase shiftf is introduced in the even
parity solution. In order to satisfy the boundary conditi
that there is no wave propagating in the (P,0,2Q) direction
in l ,z, an odd-parity solutionEPQ*}L21/2eiPxf PQ*(z)
should be superposed on the even-parity solutionEPQ% .

The result is summarized in Fig. 3. For incidence of in
nite plane wave ofei( Px1Qz), the amplitudes~including
phases! of the transmitted wave, reflected wave, and exci
waveguide modes are given, respectively, by

A5cos~uPQ% 2uPQ*1f!ei(uPQ% 1uPQ*1f), ~23!

FIG. 3. Summary of the solution for incidence of infinite pla
wave. The amplitudesA, B, andR6 are given in Eqs.~23!, ~24!, and
~25!. f P6G(z) is a function almost confined in the thickness of t
slab.
16521
s

d

B5 i sin~uPQ% 2uPQ*1f!ei(uPQ% 1uPQ*1f), ~24!

R65
2ApQb6eiuPQ%

n1l ~ f 1b11 f 2b2! f QK2~h2 ip!
, ~25!

whereb1 /b2 , h, andf are defined in Eqs.~18!, ~19!, and
~22!. Thus we have obtained analytic forms ofA, B, andR6

as functions of (P,Q) or (K,Q), using the quantitiesK6 ,
f 6 , f Q , anduPQ% ,* , which are associated with the eige
modes for the empty lattice case~see Appendix A!. It should
be noted that the solution has a nonperturbative form in
coupling constantsn1,2.

E. Numerical examples

In the preceding subsections, we have derived a for
solution of the Maxwell equation~6!, which is summarized
in Fig. 3 with Eqs.~23!, ~24!, and~25!. Now we visualize the
results at fixed parameters~see caption of Fig. 4! as functions
of (K,Q).

1. K dependence ofh

First, we show theK dependence ofh at severalQ in Fig.
4. The parametera/L is set to 0.5 in Fig. 4~a! and 0.75 in
4~b!, respectively. The qualitative difference between them
that the parametern2 ~coupling constant between two wave
guide modesbP1G and bP2G) is zero for a/L50.5 and
nonzero fora/L50.75. The following rewriting ofh from
Eq. ~19! is helpful for understanding Fig. 4:

FIG. 4. Plot ofh(K) at incident anglesQ50° ~solid curve!,
Q51° ~broken curve!, andQ52° ~dotted curve!. The parameters
are chosen as follows;es52, ea510, d/ l 50.02, L/ l 51, and
a/L50.5 in ~a! and 0.75 in~b!.
3-4
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h5
cosQ

n1
2lK 3f Q

2 f 2 F2~11n2f 2!K21
K1

2 1K2
2

2

1
~K1

2 2K2
2 !2/4

~12n2f 2!K22~K1
2 1K2

2 !/2
G , ~26!

wheref 6 are approximated by theK-independent constantf.
K6 are dependent onK for QÞ0, but they are approximate
by K6.G/Aes6G sinQ/es for small incident angleQ.
Then it is easily understood that the first and second term
the bracket of Eq.~26! is almost insensitive toQ, while the
third one is proportional to sin2Q. Thus, forQÞ0, the third
term is superposed to the curve forQ50 ~solid curves in
Fig. 4!.

2. Transmittivity TÄzAz2

Next, we proceed to discuss the transmittivityT5uAu2,
which is plotted in Fig. 5. As indicated by Eqs.~22! and~23!,
the dips in the transmission spectrum are formed wh
h(K) changes sign. Denoting the solutions ofh(K)50 by
K1 andK2 (K1,K2), the dips locate aroundK1 andK2, and
their widths are roughly evaluated byDK1(2)

.2pudh/dKuK5K1(2)

21 , which is roughly proportional ton1
2.6

For Q50, there appears a single wide dip, irrespective
a/L50.5 or 0.75. The qualitative difference between the t
cases becomes clear forQÞ0. In case ofa/L50.5 @see Fig.
5~a!#, the dip splits into two dips of the same width. On t

FIG. 5. Transmission spectrumT(K) at Q50°,1° and 2°. The
same parameters are used as in Fig. 4.
16521
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other hand, in the case ofa/L50.75 @see Fig. 5~b!#, a nar-
row dip appears atK1 besides a wide dip atK2. As expected
from Fig. 4~b! and the fact thatDK is proportional to
udh/dKu21, the width of the wider dip is almost independe
of Q, but the width of the narrower one is sensitive toQ
~proportional to sin2Q).

Comparison of rigorous numerical results10,18 is carried
out in Appendix B. We have confirmed there that the analy
cal results agree well with the numerical ones forK/G,(1
2sinQ)/cos2Q.

The regions satisfyinguhu,2p are plotted on the (P,K)
plane in Fig. 6. These regions can be interpreted as en
bands of waveguide modes, which acquired finite width
coupling to radiation modes. There is no energy gap ap
50 for a/L50.5 (n250), while a finite gap appears fo
a/L50.75 (n2Þ0); it is easily confirmed from Eq.~19! that
the gap is proportional toun2u. Dips in the transmittivity
appear at the intersections of the energy band and the
P5K sinQ.

3. Excitation efficiency RÁ of waveguide modes

Finally, we discuss the excitation efficiencyR6 of wave-
guide modes. The absolute value and the phase ofR6 are
shown in Figs. 7. ForQ50 ~solid curves in Figs. 7!, R1 is
equal toR2 , as expected from the symmetry.uR6u has a
single peak at the dip energy in the transmittivity, accom
nying gradual change of the phase byp.

R1 ~broken curves! andR2 ~dotted curves! are no more
equal for QÞ0. Interestingly,R1(2) becomes zero atK
5K2(1) /A12n2, which is reflected in the dips inuR6u ~due

FIG. 6. Plot of the regions whereuhu,2p is satisfied, which
can be interpreted as energy bands of waveguide modes. The w
corresponds to the radiative width of the waveguide modes.
3-5
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KAZUKI KOSHINO PHYSICAL REVIEW B 67, 165213 ~2003!
to logarithmic plot! and also in the discontinuous jumps byp
in the phases.R1 and R2 are out of phase betwee
K2 /A12n2 and K1 /A12n2, and are in phase outside. I
the case ofa/L50.5, uR1(2)u has a single peak atK2(1) and
is almost zero atK1(2) . This implies that the propagatin
wave withp5P1G (P2G) is excited atK2(1) . Contrarily,
in the case ofa/L50.75, uR6u have peaks at bothK5K1
andK2. As is observed in Fig. 7~b!, R1 andR2 are in phase
at K1 and out of phase atK2. This implies that the standing

FIG. 7. Absolute values and phases ofR1(5R2) at Q50°
~solid curve!, R1 at Q52° ~broken curve!, andR2 at Q52° ~dot-
ted curve!. a/L is 0.5 in ~a!, and 0.75 in~b!.
16521
wave with cosGx (sinGx) type is excited atK2(1) . The
phases ofR6 change byp around both peaks; the change
gradual atK2 and abrupt atK1. This difference is related to
the stability of the excited waves against the width inP,
which will be discussed in the next section.

4. Comment on the case of aÕLË0.5

We briefly comment on the cases ofa/L,0.5, wheren2
takes a positive value. In this case, a wide~narrow! dip ap-
pears atK1(2) in the transmission spectrum, where the stan
ing wave of cosGx (sinGx) type is excited. This implies tha
the standing wave of cosGx type has lower energy than th
sinGx type, contrary to the cases ofa/L.0.5. This is be-
cause the cosGx type covers the region of larger dielectr
constant more effectively than the sinGx type @compare
*dxX(x)cos2Gx and*dxX(x)sin2Gx].19

IV. EFFECT OF WIDTH IN P

In the previous section, we discussed the optical respo
of a PCS for plane wave incidence. However, in real sit
tions, the finite width is introduced inP (x component in the
wave vector! by several reasons such as finiteness of
periodic structure in thex direction, disorder in the periodic
structure, and so on. In this section, we discuss the effec
finite width DP, introduced by the finiteness of the diamet
of the incident wave for example.

We employ the following form for the incident wave
which has a finite diameterW in the x direction:

E(i)~x,z!5w~x!ei( P0x1Qz) ~27!

5E dpw~p2P0!ei( px1Qz), ~28!

wherew(x) is a normalized (*w2(x)dx51) Gaussian with
width Dx5W/2, and w(p2P0) is its Fourier transform.
They are given, respectively, by

w~x!5S 8

pW2D 1/4

e2(2x/W)2
~29!

and

w~p2P0!5S W2

32p3D 1/4

e2[W(p2P0)/4]2. ~30!

Thus, w(p2P0) is also a Gaussian with widthDP54/W,
and is normalized by*dpw2(p2P0)5(2p)21.

As shown in Eq.~28!, the incident wave is the superpos
tion of plane waves. The transmitted waveE(t)(x,z) and the
excited waveguide modesE(6) are therefore given by

E(t)~x,z!5E dpw~p2P0!A~p,Q!ei( px1Qz) ~31!

and

E(6)~x,z!5E dpw~p2P0!R6~p,Q!ei( p6G)xcos~pz/2l !.

~32!
3-6
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Transmittivity T̄ is given by the ratio of transmitted energ
flow to that of the incident wave. Using thez component of
the Poynting vectorSz5(iE]zE* 1c.c.)/(m0cK), T̄ is given
by T̄5(*z52`dxSz

(i) )/(*z5`dxSz
(t)), which is reduced with

Eqs.~28! and ~31! to

T̄52pE dpw2~p2P0!uA~p,Q!u2, ~33!

i.e., averaging the transmittivity of the plane wave case w
probability density 2pw2(p2P0). Numerical examples are
shown in Figs. 8~a!, where it is demonstrated that sharp di
observed in the plane wave case become shallower, w
reproduces the experimental spectrums.8,9

As for the excitation efficiency of waveguide modes, w
employ the ratioR̄6 of the amplitude of the waveguide mod
to that of the incident wave, atx5z50. It is given by

R̄65~8/pW2!21/4E dpw~p2P0!R6~p,Q!, ~34!

which reduces toR6 in the limit of W→`. uR̄1u is plotted
as an example in Figs. 8~b!. For DP50, sharp and wide
peaks appear atK5K1 and K2, respectively. AsDP is in-
creased, while the wide peak is not altered significantly,
sharp peak become smaller, indicating the fragility toDP.
This can be understood by considering the phase ofR1 . As
observed in Figs. 7~b!, the phase ofR1 is sensitive to (P,Q)
aroundK1 but not so sensitive aroundK2. Thus, the excited
waves interfere destructively atK1 in Eq. ~34! if DP is con-
siderably large.

FIG. 8. Effect ofDP in ~a! transmittivity T̄ and ~b! uR̄1u, for
a/L50.75 andQ51°. The solid ~dotted! curve corresponds to
W5100L (W5`) case.
16521
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V. SUMMARY

We have considered the optical response of a o
dimensional PCS, which has a structure sketched in Fig. 1
the low frequency region where diffraction of the incide
wave into other radiation modes does not occur, the Maxw
equation~6! has been reduced to a Fano-type problem w
one continuum~radiation modes withp5P) and two dis-
crete states~waveguide modes withp5P6G), as described
in Fig. 2. The solution for a plane wave incidence is summ
rized in Fig. 3 with Eqs.~23!, ~24!, and~25!. The transmit-
tivity T5uAu2 and the amplitude of the excited waveguid
modesR6 are plotted in Figs. 5 and 7 as functions of th
incident angleQ and the wave numberK of the incident
wave. We have also discussed the effect of finite width inP
(x component of the incident wave vector!, which is inevi-
table in real experimental situations. It is demonstrated t
the sharp dips in the transmittivity spectrum expected in
infinite plane wave case become duller asDP increases.
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APPENDIX A: FORMS OF F pqs„Z…

In this appendix, we discuss the forms off pqs(z) which
satisfy Eqs.~8! and ~9!. Equation~8! is equivalent to the
Schrodinger equation for a one-dimensional particle in qu
tum well. Bound solutions (q2,0) correspond to waveguid
modes, while unbound ones (q2.0) correspond to radiation
modes. As for the radiation modes,f pq% (z) and f pq*(z)
have the following forms:

f pq%~z!5A2

L
3H Apq%cos~ q̃uzu1upq%

8 ! ~ uzu, l !,

cos~quzu1upq% ! ~ l ,uzu!,
~A1!

f pq*~z!5A2

L
3H Apq*sin~ q̃z! ~ uzu, l !,

~z/uzu!sin~quzu1upq*! ~ l ,uzu!,
~A2!

whereq̃25(es21)p21esq
2. The delta function ine1(z) af-

fects only the even-parity modes, which results inupq%
8

5arctan@eada(p21q2)/2Lq̃#. The amplitudesApq% ,* inside
the slab and the phase shiftsupq% ,* are determined by the
continuity condition off and dzf at z56 l . For example,
Apq% is given by Apq%

2 5@cos2(q̃l1upq%)1(q̃/q)2sin2(q̃l
1upq%)#21.
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KAZUKI KOSHINO PHYSICAL REVIEW B 67, 165213 ~2003!
As for the waveguide modes belonging to the low
branch, their parity is even regardless ofp. The mode func-
tion is proportional to cos(q̃uzu1u8) inside the slab, and to
exp@2uquuzu# outside of the slab.~If p is larger than
2Aes/4(es21)1Aes/4(es21)12eslL/eada, the mode
function inside the slab is proportional to cosh(q̃8uzu1u8),

where q̃85A2q̃2.! From the boundary condition atz50

*Electronic address: ikuzak@postman.riken.go.jp
1M. Born and E. Wolf,Principles of Optics~Cambridge, 1999!.
2A. Sentenac, J-J. Greffet, and F. Pincemin, J. Opt. Soc. Am. B14,

339 ~1997!.
3S.G. Johnson, S. Fan, P.R. Villeneuve, J.D. Joannopoulos,

L.A. Kolodziejski, Phys. Rev. B60, 5751~1999!.
4E. Chow, S.Y. Lin, S.G. Johnson, P.B. Villeneuve, J.D. Joanno

ulos, J.R. Wendt, G.A. Vawter, W. Zubrzycki, H. Hou, and
Alleman, Nature~London! 407, 983 ~2000!.

5T. Ochiai and K. Sakoda, Phys. Rev. B63, 125107~2001!.
6T. Ochiai and K. Sakoda, Phys. Rev. B64, 045108~2001!.
7It should be noted that those waveguide modes that are not fo

back into the light cone do not interact with the radiation mod
and therefore do not acquire radiative width, even in the e
tence of the grating.

8T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, Phys. Rev. B57,
12 428~1998!.

9R. Shimada, A.L. Yablonskii, S.G. Tikhodeev, and T. Ishiha
IEEE J. Quantum Electron.38, 872 ~2002!.

FIG. 9. Comparison of the transmissivities: the rigorous num
cal result~solid curve! and the analytic result~broken curve!. The
vertical dotted lines showK/G5(12sinQ)/cos2 Q and (1
1sinQ)/cos2 Q. The parameters are chosen ases51, ea55, d/L
50.02, a/L50.75, and the incident angleQ52°. In K/G,(1
2sinQ)/cos2 Q, the two results are in good agreement, while
K/G.(12sinQ)/cos2 Q, deviation due to diffraction to anothe
radiation modes appears.
16521
t

and l, q2(,0) is determined as a function ofp, and f p(0) is
determined after normalization.

APPENDIX B: COMPARISON TO RIGOROUS
NUMERICAL RESULTS

In this appendix, we compare the analytic results of t
study to the rigorous numerical results obtained by
S-matrix based method.10 As an example, we plot in Fig. 9
the transmissivitiesT calculated by the numerical metho
~solid curve! and by the analytic results in this study~broken
curve!. The vertical dotted lines showK/G5(1
2sinQ)/cos2Q and (11sinQ)/cos2Q.

In the energy region ofK/G,(12sinQ)/cos2Q, in which
region the analytic results in this study are applicable~see
Sec. III B!, the rigorous numerical results are well describ
by the formula~23!, except for the slight energy shift in th
waveguide mode. This shift originates in the off-resona
coupling between the waveguide mode (p5P2G) and the
continuum (p5P6G), which is neglected in our treatmen
This shift becomes less significant ases21 becomes larger
where the energy of the waveguide modes becomes lo
On the other hand, in K/G.(12sinQ)/cos2Q @(1
1sinQ)/cos2Q#, the incident wave couples resonantly to t
radiation modes withp5P2G @P1G#. Then diffraction
into those modes occurs, which results in cusps in the tra
missivity obtained by rigorous numerical method~solid
curve!. In order to encompass this effect in the analy
method, inclusion of continua of radiation modes withp
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the present study.
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