
, Japan

PHYSICAL REVIEW A 67, 042101 ~2003!
Quantum Zeno and anti-Zeno effects by indirect measurement with finite errors
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We study the quantum Zeno effect and the anti-Zeno effect in the case of ‘‘indirect’’ measurements, where
a measuring apparatus does not act directly on an unstable system, for a realistic model with finite errors in the
measurement. A general and simple formula for the decay rate of the unstable system under measurement is
derived. In the case of a Lorentzian form factor, we calculate the full time evolutions of the decay rate, the
response of the measuring apparatus, and the probability of errors in the measurement. It is shown that not only
the response time but also the detection efficiency plays a crucial role. We present the prescription for observ-
ing the quantum Zeno and anti-Zeno effects, as well as the prescriptions for avoiding or calibrating these
effects in general experiments.
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It was predicted in a classic paper@1# that repeated mea
surements on a quantum unstable system, at time inter
tm , suppress the decay of the system for smalltm—the so-
called quantum Zeno effect~QZE!. It was assumed there tha
each measurement is completely ideal, i.e., it takes only
infinitesimal time, there is no error in the measurement,
the postmeasurement state is exactly given by the projec
postulate. However, any physical experiments do not sat
all of these assumptions; hence more careful studies h
been desired.

According to the general measurement theory, not o
the unstable system in question but also a part of the m
suring apparatus should be treated as a quantum system
ject to the Schro¨dinger equation@2–6#. It was clarified by
such theories that the response timet r of the apparatus cor
responds totm of Ref. @1#. However, effects of the errors i
the measurement are yet to be explored, because the p
ability « of getting an erroneous result is determined not o
by a finite response timet r but also by the detection effi
ciency 12«` ~i.e., the apparatus occasionally fails to dete
the decay even after an infinitely long waiting time!. More-
over, these pioneering theories, as well as pioneering exp
ments @7–9#, studied the case of ‘‘direct’’ measuremen
where the apparatus acts directly on the unstable sys
~e.g., shines laser light to excited atoms!. In such a case
however, the dynamics of the unstable system would be
fected by the apparatus even if the unstable system we
classical system, and thus the Zeno effect in direct meas
ments might not be peculiar to quantum systems. Hence
most interesting case of ‘‘indirect’’ measurements is yet to
explored, where the apparatus does not act directly on
unstable system, but detects a signal mediated by some
A promising theory of an indirect measurement was dev
oped by Schulman@10#. However, since his model was a
abstract one, application to real physical systems is
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straightforward. For example, it did not clarify the conditio
to observeaccelerationof the decay by measurements, th
anti-Zeno effect~AZE!, which has also been attracting muc
attention@9,11,12#. To apply real experiments on QZE an
AZE, more realistic models should be analyzed. Such an
sis should also be important togeneralexperiments, becaus
the QZE or the AZE might slip in results of experiments n
designed to detect it. The purpose of this paper is to pre
a theory that satisfies all these requirements, using a rea
model of an indirect measurement with finite errors.

The total system in our model is composed of three pa
~i! an unstable two-level system, which is initially in th
excited stateux& with the transition energyV0 to the ground
state ug&, ~ii ! a field whose eigenmodes are labeled by
wave vectork with any dimension, a quantum of which i
emitted by the unstable system when it decays toug&, and
~iii ! a measuring apparatus that detects the emitted quan
by absorbing it, from that an observer gets to know the de
of the unstable system. Similar models of measurement h
been frequently used in quantum optics, where the unst
system is an excited atom that emits a photon upon de
and the photon is detected by a photodetector such as a
tomultiplier. Therefore, we hereafter call~i!, ~ii !, and~iii ! as
an atom, photon, and detector, respectively, although
theory is applicable to other systems as well. In this mod
neither a projection operator nor the interaction Hamilton
of the detector acts on the atom. Moreover, the measurem
is of negative-result type, where no signal is detected u
the atom decays: The QZE or the AZE occurs just by wait
for the decay.

The role of a detector is to convert a photon into oth
kinds of elementary excitations, which finally yield macr
scopic signals after magnification processes, usually obe
classical mechanics. As a model of the relevant part of
detector, we assume elementary excitations~e.g., electron-
hole pairs! with a continuous spectrum, into which photon
are converted. By taking the energy ofug& zero, the Hamil-
tonian of the system is taken as follows~with \51);
©2003 The American Physical Society01-1
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H5V0ux&^xu1H11H2 , ~1!

H15E dk@~gkux&^gubk1H.c.!1ekbk
†bk#, ~2!

H25E E dkdv@~zkvbk
†ckv1H.c.!1vckv

† ckv#. ~3!

Here,bk is the annihilation operator for a photon with ener
ek andgk represents the atom-photon coupling. The photo
dispersion relation can be nonlinear (ek}” uku) as in, say, pho-
tonic crystals. Every photon mode is linearly coupled to
continuum of bosonic@13# elementary excitations, denote
by ckv , in the detector, with the coupling constantzkv . The
commutation relations are orthonormalized as@bk ,bk8

†
#

5d(k2k8) and@ckv ,ck8v8
†

#5d(k2k8)d(v2v8). The life-
time tk of a photon is determined byzkv . We will show later
that tk.t r , the response time of the detector. In most e
periments, the detector does not cover the whole solid a
around the atom. When a photon is emitted in the uncove
direction, it cannot be detected and has a long lifetime.
we will demonstrate later, we can encompass such real
situations by allowingk-dependence oftk . We here put
zkv5Ahk @14#, which results intk5(2phk)

21. Equations
~1!–~3! already suggest that modification of the decay rateG
may occur through the effect of ‘‘cavity quantum electrod
namics’’@15#. Our task is to studyG as a function of relevan
quantities in the measurement, such as the response time
the measurement error.

It is essential to include strong effects of the detector. W
therefore, diagonalize the photon-detector part,H11H2, us-
ing the coupled-mode operator@16#, which, in this case,
is given by

Bkm5ak~m!bk1*dvbk~m,v!ckv ,

where ak(m)5Ahk/(m2ek1 iphk) and bk(m,v)5hk /(m
2ek1 iphk)(m2v1 id)1d(m2v). The commutation re-
lations for Bkm is given by @Bkm ,Bk8m8

†
#5d(k2k8)d(v

2v8). Inversely, bk is expressed in terms ofBkm as bk

5*dm ak* (m)Bkm . The HamiltonianH can then be rewrit-
ten as

H5V0ux&^xu1E E dkdmmBkm
† Bkm

1E E dkdmF Ahkgk

m2ek2 iphk
ux&^guBkm1H.c.G .

We further rewriteH, usingḡm and B̄m that are defined by

uḡmu25E dkU Ahkgk

m2ek2 iphk
U2

, ~4!

B̄m5
1

ḡm
E dk

Ahkgk

m2ek2 iphk
Bkm , ~5!
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so that B̄m is orthonormalized as@B̄m ,B̄m8
†

#5d(m2m8).
Then, the Hamiltonian finally reduces to

H5V0ux&^xu1H̄11H̄2 , ~6!

H̄15E dm@~ ḡmux&^guB̄m1H.c.!1mB̄m
† B̄m#, ~7!

whereH̄2 consists of coupled modes which do not intera
with the atom. Now the physical meaning ofB̄m becomes
apparent; it is part of the coupled modes with energym that
interact with the atom, whereas the other part is isolated
terms of such operators, the Hamiltonian is expressed in
renormalized form, Eqs.~6! and ~7!, where the atom is
coupled to a single continuum ofB̄m with a coupling con-
stantḡm , which is called the form factor of interaction. Th
form factor under measurement is determined by Eq.~4!,
from ek , gk , andhk . It should be noted that there exists
sum rule*dmuḡmu25*dkugku2, which holds for any func-
tional forms ofhk .

We first estimateG under the measurement by a lowes
order perturbation ingk . To do this, it is essential to use th
renormalized formH̄1, rather thanH1, as the interaction
term. We then obtain a simple formula

G52puḡV0
u252pE dkU Ahkgk

V02ek2 iphk
U2

, ~8!

which should be compared with the free decay rate,

G052pE dkugku2d~V02ek!.

Note that Eq.~8! includes nonperturbative effects ofhk . The
formula clearly shows that the most important effect of t
measurement~i.e., of finite hk) is to renormalize the form
factor ḡm , and that the QZE~or the AZE! occurs through the
renormalization. Note that the formula is general, whi
holds for any forms ofek , gk , andhk , and for any dimen-
sion of k. It is applicable, not only to spontaneous decay
an atom, but also to many other unstable systems if th
Hamiltonian can be approximated by Eqs.~1!–~3! @13#.
Moreover, the formula is also applicable to the case wh
the detector does not cover the full solid angle, yielding
detection efficiency,1.In fact, suppose that only photon
which are emitted in some solid angleSd in the three-
dimensional space are coupled to the detector, i.e.,hk50 for
(u,f)P” Sd , where k5(k sinu cosf,ksinu sinf,kcosu).
Then, Eq.~8! yields the simple formula

G52pE k2dkE
SPSd

dSU Ahkgk

V02ek2 iphk
U2

12pE k2dkE
SP” Sd

dSugku2d~V02ek!, ~9!

wheredS5d cosudf.
Now we embody the above general results in an exam

in three dimensions, in which~i! hk5h[(2pt)21 for
1-2
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(u,f)PSd , whereashk50 for (u,f)P” Sd , ~ii ! ek5k ~we
take c51), and~iii ! gk takes the Lorentzian form after th
angular integration;

k2E SPSd
dSugku25~12«`!gD2/@~k2k0!21D2#,

k2E SP” Sd
dSugku25«`gD2/@~k2k0!21D2#,

wherek0@D. In a case wheregk depends only onk, «` is
simply given by«`512uSdu/4p. In general cases, howeve
«` depends on bothSd and gk . It will turn out that 12«`

corresponds to the detection efficiency, i.e., the probability
errors approaches«` as t→`. The meanings ofg and D
become transparent forV05k0, i.e., when the atomic tran
sition energy coincides with the center of the Lorentzian. F
D@g, the decay rate of the atom is given by 2pg, while the
transition from the initial quadratic decrease to the expon
tial decrease in the survival probability occurs att.t j
[2/D, which is called the ‘‘jump time’’@10,12#. Using Eq.
~9!, the renormalized lowest-order decay rate is evaluate

2pg~12«`!DD̃

~V02k0!21D̃2
1

2pg«`D2

~V02k0!21D2
[G~h,«`!, ~10!

whereD̃5D1ph. This indicates that the effect of measur
ment on the decay dynamics become significant only
large h satisfyingh*D, i.e., t j*(2ph)215t.t r , in ac-
cordance with the pervious studies@5,10#.

To see what is going on, we now calculate the tempo
evolution of the wave function from the initial stateux,0,0&.
This can be pursued analytically for the Lorentzian form fa
tor. By putting uc(t)&5e2 iHtux,0,0&5 f (t)ux,0,0&
1*dkf k(t)ug,k,0&1**dk dv f kv(t)ug,0,kv&, we calculate
three probabilities;s(t)5u f (t)u2 ~survival probability of the
atom!, «(t)5*dku f k(t)u2 ~probability that the atom has de
cayed but the emitted photon is not absorbed by the de
tor!, andr (t)5**dk dvu f kv(t)u2 ~probability that the emit-
ted photon is absorbed!. Assuming fast classica
magnification processes, we can interpretr (t) as the prob-
ability of getting a detector response, whereas«(t) is the
probability that the detector reports an erroneous res
One of the advantages of the present theory is that
of these interesting quantities can be calculated.
example, s(t) is given by s(t)54p2uc123e

2 iv1t

1c231e
2 iv2t1c312e

2 iv3tu2, where ci jk is given by
ci jk 5 g D @(D̃2e`ph) (v i2k0) 2 1 (D 1 e`ph) DD̃# @ (v i

2v i* )(v i2v j )(v i2v j* )(v i2vk)(v i2vk* )#21, and
v j ( j 51,2,3) are the solutions of the cubic equatio
(v j2V0)(v j2k01 iD)(v j2k01 i D̃) 5 pgD@v j2k01 i (D
1e`ph)#. Figure 1 plots 12s(t),«(t),r (t) for h52g.
At the initial time stage@ t!t5(2ph)21#, «(t) increases
almost in parallel with 12s(t), and the detection probability
r (t)@512s(t)2«(t)# remains almost zero. Aroundt;t,
the emitted photon is gradually absorbed andr (t) starts to
rise. Hence, the photon lifetimet can be regarded as th
04210
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response timet r of the detector. The probabilities finall
approaches the asymptotic values, 12s(t)→1, «(t)→«` ,
and r (t)→12«` .

To see the temporal behavior ofs(t) more clearly, we
have plottedt21ln s(t) as a function of time in Fig. 2, for
several different values of the parameters. At the beginn
of the decay (t&t j ), t21ln s(t) decreases linearly a
t21ln s(t)52(*dkugku2)t52pgDt, for any values ofV0
2k0 and for any values of the detector parametersh and«` .
Then, for t*t j , t21ln s(t) approaches a constant valu
which is well approximated byG(h,«`) ~dotted lines!.
These plots demonstrate that the decay dynamics is well
scribed, except for the initial deviation, by the exponent
decay with the renormalized lowest-order decay rate. In f
we can show analytically that formula~10! is a good ap-
proximation to the asymptotic decay rate ifg!uV02k0
1 iDu2/D.

FIG. 1. The decay probability 12s(t) ~solid curve!, the prob-
ability of getting an erroneous result«(t) ~broken curve!, and the
probability of getting a detector responser (t) ~dotted curve!, when
V02k050, D5100g, h52g, and«`50.2.

FIG. 2. Plots oft21ln s(t). D5100g and «`50.2 in both fig-
ures.V02k0 is taken 0 (,D) in ~a!, and 200g (.D) in ~b!. The
dotted lines show the renormalized lowest-order decay r
Eq. ~10!.
1-3
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There is a remarkable difference between Figs. 2~a! and
2~b!, where different values ofuV02k0u/D are employed. In
case ofuV02k0u/D50 @see Fig. 2~a!#, the decay rate de
creases monotonously by increasingh, i.e., the QZE occurs
at any value ofh. Contrarily, in case ofuV02k0u/D52 @Fig.
2~b!#, the decay is enhanced for smallh (530g), while it is
suppressed for largeh (5200g). Thus, the AZE takes plac
for small h. By analyzing Eq.~10! as a function ofuV0
2k0u andh, the phase diagram discriminating the QZE a
the AZE is generated, which is shown in Fig. 3. The pha
boundary~solid curve! is given by

h (b)5@~V02k0!22D2#/pD, ~11!

on which the decay rate is not altered from the free rateG0,
while the decay rate takes the maximum value,

G~h (m),«`!

G0
5«`1~12«`!S uV02k0u21D2

2DuV02k0u
21D ,

~12!

FIG. 3. The phase diagram for the QZE and the AZE for a c
of Lorentzian form factor~valid for any «`). The solid curve di-
vides the QZE region and the AZE region. The dotted line sho
the value ofh at which the decay rate is maximized for each va
of uV02k0u.
d

he

ys

04210
e

on the dotted line, which is given by

h (m)5@ uV02k0u2D#/p. ~13!

We find thath (b) andh (m) do not depend on«` .
We finally discuss the significance of our results, for e

periments on the QZE or the AZE, and forgeneralexperi-
ments. As mentioned earlier, indirect measurements are
essary, which have not been performed yet, for the comp
experimental verification of the QZE and AZE. For such e
periments, formula~8! gives the necessary condition:G of
Eq. ~8! should significantly differ from the free decay ra
G0. In the Lorentzian case, this can be decomposed into
following conditions:~i! t r should be short enough;t r&t j
~which is a well-known condition!, ~ii ! h should not be close
to the phase boundary~11!, and ~iii ! «` should be so smal
that the first term of Eq.~10! becomes dominant. Moreove
the QZE or the AZE should be chosen according to the ph
diagram, Fig. 3; e.g., the AZE is most detectable on the d
ted line. On the other hand, in general experiments, one u
ally wants toavoid the QZE and the AZE in order to ge
correct results. Considering recent rapid progress of exp
mental techniques and diversification of experimental
jects, we expect that the QZE or the AZE would slip
results of advanced experiments not designed to detect i
avoid the QZE and the AZE, one must design the experim
tal setup to break at least one of the above conditions.
example, when performing an experiment with a high tim
resolution such thatt r&t j , then Eqs.~9! and ~10! suggest
that «` should beincreased@17#. If «` cannot be increased
to keep the sensitivity of such high-speed measurement,
one should adjust parameters in such a way that Eq.~11! is
satisfied, or, one should calibrate the observed value u
our results, such as Eqs.~9! and~10!, to obtain the free decay
rate.
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