Identifying genes that regulate bone remodeling as potential therapeutic targets

Stephen M. Krane

Bone remodeling, a coupled process involving bone resorption and formation, is initiated by mechanical signals and is controlled by local and systemic factors that regulate osteoblast and osteoclast differentiation and function. An excess of resorption over formation leads to the bone loss and increased propensity to fracture that is characteristic of osteoporosis. A newly described inhibitor of osteoblast differentiation, Ciz, interferes with bone morphogenic protein signaling. As a consequence, Ciz-deficient mice develop increased bone mass.

The term osteoporosis refers to a group of disorders characterized by low bone mass, poor bone quality, and an increased propensity to fracture (1). Throughout life, bone is continuously being remodeled with resorption of old bone (catabolic process) performed by osteoclasts and deposition of new bone (anabolic process) performed by osteoblasts. Bone remodeling is not a random process and takes place in focal remodeling units comprising osteoblasts, osteoclasts, and their precursors, in which resorption and formation are coupled. Bone resorption is likely the initial event that occurs in response to local mechanical stress signals. The reduction in bone mass in osteoporosis results from an imbalance between resorption and formation in which the rate of resorption exceeds that of formation. It has been suggested that osteoporosis results from a failure of resident bone cells to respond appropriately to mechanical load–bearing signals and to control bone mass and architecture (2). In the majority of conditions that lead to osteoporosis, such as age-associated gonadal hormone deficiency, remodeling rates are high, and although bone formation and resorption are both increased, the rate of bone formation is insufficient to keep up with resorption. Indeed, pharmacologic suppression of bone resorption with estrogens or bisphosphonates, the most widely used approach to treat osteoporosis, converts a high bone remodeling state to a lower remodeling state. This results in a net increase in bone mineral density and a reduction in fracture rate despite the coupled decrease in bone formation. There is evidence, however, that the apparent increase in bone mass takes place not by increased deposition of bone (inorganic mineral phase plus organic matrix) but by a slow increase in deposition of more mineral phase within a previously mineralized matrix (3). Alternatively, an increase in bone mass and reduction in fracture rate can also be achieved by intermittent administration of parathyroid hormone, which increases both bone formation and resorption with formation outpacing resorption (4). It is not yet certain, however, whether the anabolic actions of parathyroid hormone are critically linked to its catabolic actions. Thus, the search is still on for anabolic agents that increase bone formation without affecting resorption or, better still, agents that increase formation yet suppress resorption.

The identification of Cas-interacting zinc finger protein (CIZ), in this issue, as a protein that inhibits bone formation without affecting resorption suggests that agents designed to inhibit CIZ might fit the bill (5).

Controls of osteoblast differentiation and function

Studies of the pathophysiology and genetics of skeletal cell differentiation have provided insight into the mechanism by which osteoblasts arise from mesenchymal precursors and osteoclasts. In human LR5 suppression leads to an imbalance between resorption and formation. The identification of Cas-interacting zinc finger protein (CIZ), in this issue, as a protein that inhibits bone formation without affecting resorption suggests that agents designed to inhibit CIZ might fit the bill (5).
Dickkopf1 inhibition appear to cause a high bone mass phenotype (16). There are also suggestions that some of the anabolic effects of parathyroid hormone (PTH) are exerted through suppression of Dickkopf1 expression (17). Leptin, a circulating factor, which binds receptors in the hypothalamus, is another important inhibitor of bone formation. In a startling series of studies, it has been demonstrated that leptin has a powerful antiosteogenic function that is exerted via pathways distinct from those used to regulate body weight (6, 7, 18).

Controls of osteoclast differentiation and function

Osteoclast differentiation requires the binding of macrophage colony-stimulating factor to its receptor as well as the binding of the soluble differentiation factor receptor activator of NF-κB ligand (RANKL) to its receptor (RANK) on osteoclast precursor cells (19). One of the first factors to be cloned that regulates osteoclast differentiation was osteoprotegerin. Osteoprotegerin, originally identified as a novel secreted member of the TNFR super family, was later found to inhibit spontaneous or induced bone resorption and cause osteoporosis, the converse of osteopetrosis. Osteoprotegerin acts as a decoy receptor that binds to RANKL and prevents it from interacting with its receptor (Fig. 1).

RANKL and osteoprotegerin, which are both produced by osteoblasts at different stages of maturity (20), account for some of the signals in osteoblast–osteoclast communication. In conjunction with macrophage colony-stimulating factor, the RANK–RANKL–osteoprotegerin system regulates osteoclast differentiation. Thus, mice and humans deficient in osteoprotegerin have a high rate of bone loss (increased bone resorption that exceeds formation; reference 21). As in other high turnover states, anti-resorptive agents can still reduce both bone formation and resorption and compensate for osteoprotegerin deficiency. The signal(s) that couples resorption and formation remains elusive, although several of the anabolic ligands, such as BMPs and TGF-β, are stored in bone matrix as bone is formed and are released at sites of bone resorption and can thus act on osteoblasts and precursors in the vicinity. Signals from osteoblasts to osteoclasts can be provided by RANKL and osteoprotegerin. In this case, preosteoblasts express a high level of RANKL relative to osteoprotegerin, which stimulates osteoclast differentiation and function. More mature osteoblasts, by contrast, express high levels of osteoprotegerin relative to RANKL, which inhibits osteoclast differentiation and function (20).

The role of CIZ in bone formation

The protein p130Cas (Cas) is a docking protein that localizes to focal adhesion plaques (22). Signal transduction in response to mechanical stress in both osteoblasts and osteoclasts is mediated by interaction of integrins in the focal adhesion complex with components of the extracellular matrix. Because the SH3 domain of Cas binds to focal adhesion-associated tyrosine kinase (FAK), it was assumed that localization of Cas to focal adhesions involves FAK. Cas also localizes to focal adhesions in FAK-null cells, and therefore a search was launched for other binding partners. A novel ligand of Cas was identified and named CIZ (Cas-interacting zinc finger protein; reference 22). CIZ is expressed in different mesenchymal cells, including osteoblasts. When overexpressed, CIZ activates the transcription of several genes encoding matrix metalloproteinases. Localization of CIZ to focal adhesions makes it an attractive candidate for integrating mechanical signals, such as those induced by fluid shear stress, and osteoblast function, but its pathophysiological role had not been investigated in vivo.

In this issue, Morinobu et al. (5) report that Ciz−/− mice have increased trabecular bone mass and conclude that Ciz normally suppresses osteoblast activity through its interactions with BMPs. In Ciz−/− mice, the increased trabecular bone mass was associated with increased rates of bone formation based on the established method of dy-
namic histomorphometry, which measures the distance between timed sys-
tematic pulses of calcine, a fluorescent marker that binds to newly mineralized
bone. Bone resorption was not affected in Ciz−/− mice, indicating no suppres-
sion of remodeling. Furthermore, in bone marrow cultures from Ciz−/−
mice, levels of alkaline phosphatase ac-
tivity (a marker for functioning osteo-
blasts) were increased and, in long-term
cultures, more mineralized nodules were formed. Nodule formation serves as a
cell culture model for deposition of mineralized bone matrix. Consistent
with the results of the histomorphome-
try, Morinobu et al. (5) found that there
was no difference in the generation of
osteoclasts in mice, indicating no suppres-
sion of osteoclastogenesis in wild-type mar-
row cultures. Based in part on earlier
work (23), the authors postulated that the
effects of Ciz deficiency could be exerted through the BMP pathway and, in
deed, they demonstrated that effects of BMP-2 on alkaline phosphatase ac-
tivity were greater in bone marrow cul-
tures from Ciz−/− mice compared with wild-type mice. Finally, they showed that more orthotopic bone is produced in vivo after intracranial injection of re-
combinant BMP-2 in Ciz−/− mice than is produced in wild-type mice.

With respect to mechanisms of BMP antagonism, Morinobu et al. (5) hy-
pothesized that Ciz acts by interfering with BMP receptor signaling by acting
as an inhibitory Smad protein (Smads
belong to a family of proteins that relay
signals from the BMP receptor to target
genes in the nucleus) rather than in-
terfering with BMP binding to its recep-
tor. Another factor (Tob) also inhibits
osteoblast function by acting as a Smad
suppressor (24). Whether Ciz can in-
hbit osteoblast function by affecting the Wnt–β-
catenin signaling pathway in synergy with BMP signaling remains
to be shown.

The study of the Ciz−/− deficient mice is a further illustration of the progress
over the past two decades in understand-
ing skeletal biology. It is possible that molecular and genetic observations,
including those described here, will lead to identification of useful new thera-
peutic targets for treatment of common
bone diseases such as osteoporosis. Even
though anti-resorptive agents have great
efficacy, there is potential usefulness for
the development of anabolic agents that
could increase bone formation without
affecting resorption, as mentioned ear-
lier. It is conceivable that drugs de-
signed to antagonize Ciz could help to
achieve this goal.

REFERENCES

1. Rodan, G.A., L.G. Raisz, and J.P. Bilez-
In Principles of Bone Biology. J.P. Bile-
zikian, L.G. Raisz, and G.A. Rodan, editors.

2. Lanyon, L., and T. Skerry. 2001. Postmeno-
pausal osteoporosis as a failure of bone’s ad-
taption to functional loading: a hypothesis.

3. Delmas, P.D. 2000. How does antiresorp-
tive therapy decrease the risk of fracture in
women with osteoporosis? Bone. 27:1–3.

4. Neer, R.M., C.D. Arnaud, J.R. Zanchetta,
R. Prince, G.A. Gaich, J.Y. Reginster,
A.B. Hodsmann, E.F. Eriksen, S. Shalom,
2001. Effect of parathyroid hormone (1–34)
of fractures and bone mineral density in
postmenopausal women with osteoporosis.

5. Morinobu, M., T. Nakamoto, K. Hiso,
K. Truj, Z.-J. Shen, K. Nakashima, A. Nifuj,
2005. The nucleocytoplasmic shutting pro-
cess of CIZ reduces adult bone mass by inhib-
iting bone morphogenetic protein-induced

ting bone morphogenetic protein/Smad signaling by
inhibiting Smad protein CIZ. Cell. 111:961–970.

a genetic and molecular understanding of

8. Karsenty, G. 2003. The complexities of

Zhang, J.M. Deng, R.R. Behringer, and B.
De Crombrugghe. 2002. The novel zinc fin-
ditioner LRP5 (LRP5) affects bone accrual and eye development.

10. He, X., M. Sengenov, K. Tanai, and X.
Zeng. 2004. LDL receptor-related proteins
5 and 6 in Wnt/β-catenin signaling: arrows point the way.
Development. 131:1663–1677.

11. Kato, M., M.S. Patel, R. Lavasce, I. Lobov,
B.H. Chang, D.A. Glass II, C. Hartmann,
Li, T.H. Hwang, C.F. Brayton, R.A. Lang,
G. Karnesey, and L. Chan. 2002. Cblδ-de-
pendent decrease in osteoblast proliferation,
osteopenia, and persistent embryonic eye vas-
cularization in mice deficient in Lrp5, a Wnt

12. Yang, X., K. Matsuda, P. Bialek, S. Jacquot,
H.C. Masuoka, T. Schinke, L. Li, S. Bran-
cornini, P. Sasone-Corsi, T.M. Townes, et
al. 2004. ATF4 is a substrate of RSK2 and
an essential regulator of osteoblast biology;
implication for Coiflin-Loisy Syndrome.

14. Mundy, G.R. 2002. Directions of drug dis-

15. Mbalaviele, G., S. Shrikhand, J.P. Stains, V.S.
Salazar, S.L. Cheng, D. Chen, and R. Civi-
telli. 2005. β-catenin and BMP-2 synergize
to promote osteoblast differentiation and new

Mitzner, A. Farhi, M.A. Mitnick, D. Wu,
bone density due to a mutation in LDL-
346:1513–1521.

17. Guo, J., F.R. Brughurst, and H.M. Kro-
nenberg. 2004. α1 collagen promoter-
directed overexpression of Dkk1 in mice
causes dwarfism and very short limbs. J. Bone

18. Elefteriou, F., S. Takeda, K. Ebihara,
J. Magre, N. Patano, C.A. Kim, Y. Ogawa,
Serum leptin level is a regulator of bone mass.

20. Gori, F., L.C. Hofbauer, C.R. Dunstan,
T.C. Spelberg, S. Khosla, and B.L. Rugg.
2000. The expression of osteoprotegerin and RANK ligand and the support of osteoclast formation by stromal-osteoblast lineage cells is developmentally regulated. Endocrinology.
141:4784–4796.

21. Whyte, M.P., S.E. Obrecht, P.M. Finnegan,
J.L. Jones, M.N. Podgornak, W.H. McAlis-
ter, and S. Mumm. 2002. Homozygous de-
letion of osteoprotegerin and juvenile Paget

22. Nakamoto, T., T. Yamagata, R. Sakai,
S. Ogawa, H. Honda, H. Ueno, N. Hiraoy,
Y. Yaziaki, and H. Hirai. 2000. CIZ, a zinc
finger protein that interacts with p130(cas) and
activates the expression of matrix metallo-

23. Sheng, Z.J., T. Nakamoto, K. Truj, A. Ni-
fuji, K. Miyazono, T. Kosmor, H. Hirai,
M. Noda. 2002. Negative regulation of bone
morphogenetic protein/Smad signaling by
Ca2+-interacting zinc finger protein in osteo-

24. Yoshida, Y., A. von Bubnoff, N. Ike-
matsu, I.L. Bitri, J.K. Tsuzuku, E.H. Yoshida,
H. Umemori, K. Miyazono, T. Yamamoto,
and K.W. Cho. 2003. Tob proteins enhance in-
hibitory Smad-receptor interactions to repress