モデル規範形適応制御によるボルテラ級数を用いた呼吸制御系の設計

岩松秀俊

Design of Respiratory Control System Using Volterra Series by Model Reference Adaptive Control

Hitotosehaki WAKAMATSU

1. まえがき

生体の制御系では、構造は多様でもパラメータに個体差や時間変化があって、正確にその値を知ることができないことが多い。そのために、既成の制御理論の適用ができない。非線形性の影響を考えて、適応機能が一部满足に備えられるような増加エネルギーの制御方法を試みる。それらを制御するシステム設計が事実上不可能な場合が少なくない。そこでこのような生体の制御系の特徴を考慮して、非線形性を考慮したモデルとしてボルテラ級数を用いたモデル規範形適応制御方式を呼吸器系の制御に試みる。そして、呼吸器系の特性に関してはわずかな知識しか得られない場合であっても、予知できない変動の影響を受けて、肺胞気酸素ガス濃度を望ましい特性に追従させることが必要なときに、この方法が有効であることを示す。

2. 離散時間ボルテラ級数による

呼吸器系の記述

対象とする呼吸器系では未知の代謝量 m および肺胞換気量 a が肺胞気酸素ガス濃度 x に多少関係をもたない非線形関係で影響を与えるものとする。線形化を含めて、このような非線形関係を一般的に表すためには、適当な関数として、ボルテラ級数が知られており、実システムの表現や制御にも応用されている。

$$X_{i+1} = \sum_{i=0}^{i} x_{i+1} + \sum_{i=0}^{i} h_{i} x_{i}$$
$$+ \sum_{i=0}^{i} \sum_{j=0}^{j} h_{i} x_{i} u_{i} + \sum_{i=0}^{i} \sum_{j=0}^{j} h_{i} x_{i} u_{i} m_{i-1}$$
$$+ \sum_{i=0}^{i} \sum_{j=0}^{j} h_{i} x_{i} u_{i} m_{i-1}$$
$$+ \sum_{i=0}^{i} \sum_{j=0}^{j} h_{i} x_{i} u_{i} m_{i-1}$$

さらに、呼吸器系の構造に関しては、(1)式を仮定した。しかしながら、代謝量の変動分は測定困難であることから、これを未知とすれば、その肺胞気酸素ガス濃度の変化への寄与も未知である。ここでは、未知の外乱（代謝量の変化分 M）の肺胞気酸素ガス濃度 X_{i} への寄与分を肺胞換気量 U_{i} のパラメータ変動による肺胞気酸素ガス濃度 X_{i} への寄与分とみなすこととする。また(1)式は、肺胞換気量に関して無限チェーンの非線形寄与分をも表わしているので、工学的取り扱い上、有限項で議論する必要がある。それゆえ、呼吸器系
系のモデルとして、

$$X_{t+1} = \sum_{i=0}^{n} h_i U_{t-i} + \sum_{i=0}^{n} \sum_{j=1}^{m} h_{ij} U_{t-j}$$

（2）

のような有限個からなるポルテラ級数を考える。ここに、$$p, q, r$$ はパラメタ変数であり、$$U_t$$ がその変数である。$$U_t$$ は次式で与えられる。

$$U_t = e_t + \theta_1 X_t + \theta_2 X_{t-1} + \cdots$$

（3）

3. 構造に関する部分的知識を基にした適応制御系の設計

以下では、（2）式と（3）式と（4）式と（5）式と（6）式を用いて、モデル構築系の構築を計画する。

3.1 呼吸器系モデルのパラメタ表現

（2）式で与えられた呼吸器系のモデルは、

$$f(U_t) = h_{00} + \sum_{i=1}^{n} h_i U_{t-i}$$

（4）

3.2 出力誤差と適応入力

出力誤差を $$e_t$$ とすれば、

$$e_t = U_t - X_t$$

（5）

4. シミュレーション実験

本論文では呼吸器系のモデル構築の概念は未知のものを考えているが、シミュレーション実験を行うために、

$$\begin{align*}
\frac{d x}{d t} &= \alpha x + u V_t - y V_t + \gamma V_t y \\
\frac{d y}{d t} &= (Q \alpha) x - (Q \alpha) u + (Q \gamma) y + \gamma (Q \gamma) y
\end{align*}$$

（10）

に従って調整されるものとする（注2）。
ロジム: モデル推進形適応制御によるポルテラ数の用いた呼吸制御系の設計

793

5. あとがき

本論文では、これまでの方法と比較して呼吸器系に関する知識をより必要としないような制御系の構築を行うことを念頭において、ポルテラ数を用いた非線形系のモデル推進形適応制御系の設計法を提案した。そして、呼吸器系の構築に関するわずかしか知識だけを仮定しえば、代謝量の変動があらゆる、与えられた望ましい特性が適応的に実現できることをシミュレーションの一例を通じて示した。しかし、適応制御

で問題となり、しかも生体の安全性に関する適応入力および内因信号の有無に関する議論が肝要であり、今後の研究課題とところである。

参考文献

2) 林弘, 池重: 部分的モデルマッチングによるポルテラ数を用いた呼吸制御系の設計, 計測自動制御学会論文集, 21-11, 1281/1283 (1985)
3) 北村: 制御対象の部分的知識に基づく制御系の設計法, 計測自動制御学会論文集, 15-4, 549/533 (1979)
4) ランダウ, 須崎: 適応制御システムの理論と実際, オーマ社 (1981)