Inorganic Biomaterials

1. Staffs and Students
 Professor: Kimihiro Yamashita
 Associate Professor: Akiko Nagai
 Assistant Professors: Miho Nakamura, Nahohiro Horiuchi, Kosuke Nozaki
 Students: Seiko Oba, Yu Tsuchiya

2. Education
 Biomaterial engineering

3. Research Subjects
 (1) Development of Electrovector ceramics
 Some ceramics, such as a hydroxyapatite, are able to be ionically polarized by thermoelectrical treatments. Consequently, the polarized ceramics have large and time-durable induced electrostatic charges on their surfaces. The effects of the induced charges profoundly dominate the proximate few millimeter regions. We named the effects “Electrovector effects” and develop “Electrovector ceramics” defined as ceramics emitting the Electrovector Effects.

 (2) Control of electrical space on Electrovector ceramic
 To translate the Electrovector ceramics into practical applications for medical devises, electrical space on Electrovector ceramics should be suitably controlled under the poling process. We are evaluating the poling mechanisms of some bio-ceramics, based on the various disciplines. In particular, we are putting emphasis on the relationship between the origin of electrical space and the crystal structure on the surface of the polarized bio-ceramics. The crystal defect, crystal distortion and fine change of ion composition of Electrovector ceramics polarized under various conditions are systematically investigated.

 (3) Manipulation of biological responses by Electrovector ceramics
 The electrostatic energies of the Electrovector effects aforementioned dominate the limited proximate areas and can control reactions locally. Therefore, the Electrovector ceramics can manipulate biological responses in a target space by both of the surface character and the electrostatic energies of the Electrovector ceramics at ion and tissue levels. We have demonstrated that the Electrovector ceramics enhanced protein adsorption, proliferation, adhesion, and differentiation of cultured cells on the ceramics as well as osteoconductivities in vivo by molecular biological and immunological detections.

 (4) Development of applicatable devices by ceramic technologies
 We apply the Electrovector ceramics aforementioned to implant systems, such as artificial bones, bone joints, tooth roots, and are developing implantable devices with autograft-like osteoconductivities. We are undergoing improvements of sol-gel method for hydroxyapatite thin film coating and materials for vascular regeneration. We are extending our researches based on ceramic technologies farther, such as a control of oral environment, an improvement of oral esthetics, more effective and precise diagnosis systems for clinical laboratory medicine.

4. Publications

Original Article

Books