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On-demand generation and characterization of a microwave
time-bin qubit
J. Ilves 1✉, S. Kono 1, Y. Sunada1, S. Yamazaki1, M. Kim1, K. Koshino2 and Y. Nakamura 1,3

Superconducting circuits offer a scalable platform for the construction of large-scale quantum networks, where information can be
encoded in multiple temporal modes of propagating microwaves. Characterization of such microwave signals with a method
extendable to an arbitrary number of temporal modes with a single detector and demonstration of their phase-robust nature are of
great interest. Here, we show the on-demand generation and Wigner tomography of a microwave time-bin qubit with
superconducting circuit quantum electrodynamics architecture. We perform the tomography with a single heterodyne detector by
dynamically switching the measurement quadrature independently for two temporal modes through the pump phase of a phase-
sensitive amplifier. We demonstrate that the time-bin encoding scheme relies on the relative phase between the two modes and
does not need a shared phase reference between sender and receiver.
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INTRODUCTION
In the past few decades, quantum bits implemented as super-
conducting circuits have become promising candidates for
building blocks of large-scale quantum computers1–4. To increase
the scalability of these architectures, robust methods of generat-
ing single photons for quantum computation in the propagating
modes and for transferring information between multiple super-
conducting qubits over relatively long distances are of recent
interest. In the optical domain, different photonic qubit encodings
have been demonstrated before for such purposes5. However,
optical single-photon generation protocols are often probabilistic
rather than deterministic, limiting success probability6. Moreover,
conversion of quantum information stored in superconducting
qubits operated in the microwave regime to optical photons
suffers from low efficiency and limited bandwidth7,8. Schemes
focused on generating photons at microwave frequencies and
their characterization are therefore of great interest.
Photonic qubit encoding can be realized by constructing a set

of computational basis states with one or more orthogonal modes
of light. In the microwave regime, single-rail (single-mode)
encoding has been demonstrated by using the photon number
states of a propagating microwave qubit to transfer information
between two superconducting qubits over a transmission line
with fidelity close to 0.89–12. However, photon loss reduces the
transfer fidelity greatly, as decayed photon states cannot be
distinguished readily. In addition, the phase information in a
single-rail photonic qubit state is stored as the relative phase
between the propagating qubit mode and a separate phase
reference. Thus, the reference must be shared between any
hardware operating the nodes of a quantum network that the
photonic qubit will interact with, reducing the practicality of
single-rail encoding in large networks.
As an alternative to the single-rail encoding, dual-rail (dual-

mode) encoding has been demonstrated in the optical regime in
the form of polarization13–15 and time-bin qubits16,17. Occupation
of a single photon in one of two orthogonal temporal modes

functions as the basis of the time-bin qubit. Time-bin encoding
allows one to readily determine loss of information during transfer
with a photon number parity measurement5,18, and the qubit state
is more robust against dephasing, as the phase information is
stored in the relative phase between the two temporal modes.
Thus, time-bin qubits do not require sharing of a phase
reference19. Owing to these favorable properties, a linear optical
scheme for quantum computation with time-bin qubits has been
proposed5. However, only the loss-robustness of the microwave
time-bin qubit has been demonstrated. The demonstration was
based on discrete-variable measurements of superconducting
qubits as a part of a transfer protocol, thus being limited to a
single qubit of information20. A different approach is necessary for
full state tomography of a general two temporal mode state or
cluster states with multiple modes and qubits of information.
Ideally, for a scalable characterization method, only a single
detector should be necessary regardless of the number of modes.
In this work, we experimentally demonstrate on-demand

generation of microwave time-bin qubits with a superconducting
transmon qubit21 and show how the time-bin qubit retains phase
information and can be loss-corrected. Our scheme allows us to
generate and shape the single-photon wave packet as well as to
generate any superposition state of the time-bin qubit with
variable spacing between the temporal modes. We perform
Wigner tomography of microwave signal in two temporal modes
by measuring the quadrature distributions with a flux-driven
Josephson parametric amplifier22 and a single heterodyne
detector23. With the Josephson parametric amplifier (JPA), we
can rapidly change the measurement quadrature for each
temporal mode independently in a single shot. We reconstruct
the quantum state of the signal with a maximum-likelihood
method23,24. We compare the state preparation fidelity of the
dual-rail time-bin qubit with a single-rail number-basis qubit and a
transmon qubit. We demonstrate that correcting photon loss of
the time-bin qubit state improves the fidelity significantly. By
removing the phase-locking between the single-photon source
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and the detector, we observe that the single-rail photonic qubit
state dephases completely owing to the lack of a stable phase
reference, whereas the time-bin qubit state is unaffected. This
demonstrates that the phase information of the dual-rail qubit is
contained in the relative phase between the two modes and that
using the time-bin qubit in a quantum network does not require a
shared phase reference.

RESULTS
System
To generate a single photon, we consider a coherently driven
circuit quantum electrodynamical setup where a superconducting
transmon qubit is dispersively coupled to a 3D microwave cavity
with a resonance frequency ωc∕2π= 10.619 GHz. The dynamics of
the system are described in the rotating frame of the drive by the
Hamiltonian

H=_ ¼ ðωc � ωdÞayaþ ðωge � ωdÞbybþ α
2 b

ybybb

þ gðaybþ abyÞ þ 1
2 ΩðtÞay þ Ω�ðtÞa� �

:
(1)

The qubit is coupled to the cavity with coupling strength g∕2π=
156.1 MHz and it is driven by coherent microwaves at frequency
ωd with time-dependent complex amplitude Ω(t) through the
cavity. In Eq. (1), a and b are defined as the cavity and transmon
annihilation operators, and ωge∕2π= 7.813 GHz is the qubit gj i−
ej i transition frequency separated from the ej i− fj i transition
frequency ωef= ωge+ α by the transmon anharmonicity α∕2π=
−340 MHz. The cavity and qubit are dispersively coupled, i.e.,
ωge � ωc

�� �� � g, which allows us to readout the qubit state based
on the qubit state-dependent dispersive shift of the cavity
resonance frequency. The cavity is coupled to an external
transmission line with an external coupling rate κex∕2π=
2.91 MHz. The relaxation and coherence times between the gj i–
ej i and ej i– fj i states are Tge

1 ¼ 26 μs, Tef
1 ¼ 15 μs, and Tge

2 ¼ 15 μs,
Tef2 ¼ 16 μs, respectively.

Dynamics of time-bin qubit generation
The state of two time-bin modes can be represented in the
photon number basis in two orthogonal temporal modes

ψTLj i ¼
X1

n;m¼0

Cnm nmj i; (2)

where nmj i :¼ nj iE � mj iL represents the photon number states
of the earlier (E) and later (L) modes, respectively, withP1

n;m¼0 jCnmj2 ¼ 1.
The protocol for quantum state transfer from a superconducting

qubit to a time-bin qubit is shown in Fig. 1a. We prepare the
superconducting qubit in a superposition state αq gj i þ βq ej i and
transfer the state to αq ej i þ βq fj i with a sequence of πef and πge
pulses at frequencies ωef and ωge, respectively.
We induce the transition between the f0j i and g1j i states of the

combined qubit–cavity system with a drive pulse to generate a
shaped single photon inside a transmission line25. The f0j i– g1j i
transition frequency is defined as ωf0g1= 2ωge+ α−ωc. When the
drive frequency matches this transition, the microwave-induced
effective coupling between f0j i and g1j i can be derived from the
system Hamiltonian in Eq. (1)

geffðtÞ ¼
ffiffiffi
2

p
αg2

4ðωc � ωgeÞ3
ΩðtÞ: (3)

Here, the complex amplitude ΩðtÞ ¼ exp½iϕðtÞ�jΩðtÞj has a phase
degree of freedom ϕ(t). By applying this coupling pulse to the
sample we can generate a photon inside the cavity. The photon in
the cavity will decay to the waveguide at the external coupling
rate κex. Thus, the coefficient βq is transferred to the photon in the
E mode of the time-bin qubit. The second coefficient, αq, is
transferred to the propagating microwave mode by driving the
qubit with a πef pulse and the coupling pulse once afterwards.
If the generation protocol has ideal efficiency, the coefficients

αq and βq are transferred to the modes 01j i and 10j i as C01= αq
and C10= βq. As the original qubit state is normalized,
C01j j2 þ C10j j2 ¼ 1, and all of the other coefficients in Eq. (2)

Fig. 1 Dynamics of time-bin qubit generation and measurement setup. a Driven interaction between a superconducting qubit and 3D
cavity for the generation of a microwave time-bin qubit propagating along a transmission line. The two energy diagrams for the qubit–cavity
system describe the generation protocol. b Simplified configuration for generating and measuring a time-bin qubit at frequency ωg

c with
Josephson parametric amplifier (JPA) realized heterodyne measurement. Three different microwave sources are used in the experiment to
generate signal at the qubit control frequencies ωge and ωef, f0j i− g1j i transition frequency ωf0g1, dispersive cavity readout frequency ωRO, JPA
pump frequency ωp, and demodulation local oscillator frequency ωLO

c . c Measured marginal distribution of a single-rail single-photon qubit
state (red histogram) as a function of a given quadrature of the generated signal. The dark blue dashed line represents a theoretical fit to the
data with 95% confidence intervals (light blue zone). d Reconstructed Wigner function of the signal with quadratures q and p defined
corresponding to [q, p]= i. The data in the figures has not been corrected for detection inefficiency.
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become zero. Thus, the transfer process of the qubit state to
propagating microwave mode in the temporal mode basis
represents the mapping αq gj i þ βq ej i7!αq 01j i þ βq 10j i. We can
therefore define the temporal modes 01j i � Lj i and 10j i � Ej i as
the basis states of a dual-rail time-bin qubit. One should note that
the time-bin qubit basis states have a single photon, meaning that

a valid qubit state can be confirmed with a parity measurement of
the total photon number in the two temporal modes.

Characterization of the experimental setup
A schematic of the experimental configuration for generating and
measuring the propagating time-bin qubit state is shown in Fig.
1b. We input the qubit control pulses, qubit state readout pulse,
and coupling pulse, to the cavity cooled down to 30mK inside a
dilution refrigerator. We amplify the generated time-bin qubit
signal with a flux-driven JPA operated in the degenerate mode by
driving the JPA with two successive microwave pulses at
frequency ωp ¼ 2ωg

c where ωg
c=2π ¼ 10.628 GHz is the dressed

cavity frequency when the qubit is in the ground state. The
measured signal is demodulated with a local oscillator at
frequency ωLO

c shifted from ωg
c by the sideband frequency

−2π × 50 MHz.
We estimate the measurement efficiency for our generation and

characterization system by measuring the marginal distribution
along a given quadrature in phase space and reconstructing the
Wigner function of a single-rail single-photon state 1j i in Fig. 1c, d.
We only consider measurements where the qubit is in the ground
state both before and after the measurement. In the marginal
distribution of the measured signal, we extract from a theoretical
fit26 a single-photon probability of P 1j i ¼ 0:591± 0:038 with 95%
confidence intervals. We obtain a fidelity of 0.556 ± 0.009 for the
reconstructed Wigner function and observe a negative region in
the quasiprobability distribution near the origin of the phase
space (Fig. 1d), demonstrating negativity of the measured state
without loss correction for detection inefficiency. We define the
error interval of the fidelity as three times the standard deviation
obtained from bootstrapping27 of the tomography data. We
obtain from an analytical calculation (see Section 2 of Supple-
mentary Methods) the possible maximum generation efficiency of
ηgen= 0.83 ± 0.02 with the parameters in our system, resulting in
the minimum measurement efficiency of ηmeas= 0.67 ± 0.01,
comparable to recent experiments in similar systems28–30 and
mostly explained by the insertion loss of the circulators and
isolators.

Quadrature distribution of microwave time-bin qubit signal
The pulse sequence used in the experiment for time-bin qubit
generation is shown as a quantum circuit in Fig. 2a and as
temporal waveforms with different angular frequencies in Fig. 2b.
We perform a z-basis dispersive readout on the qubit state28,31

with an assignment fidelity of 0.99 to initialize the qubit, and at
the end of the generation sequence to measure whether the
transfer sequence results in the qubit being in the ground state or
not.
In Fig. 2c, we show the measured and simulated mean field

amplitude squared ∣〈aout(t)〉∣2 of the state ð1= ffiffiffi
2

p Þ 00j i þ
ð1=2Þ 10j i þ ð1=2Þ 01j i as a function of time. The magnitude is
calculated according to the theory in Section 2 of the
Supplementary Methods. The measured amplitude is normalized
to match the simulated amplitude by defining that the integrals
calculated over the time interval for the squared amplitudes must
be equal. We only consider here measurement events where the
transmon qubit was measured as being in the ground state both
before and after the generation sequence. We utilize the shape of
the measured temporal mode amplitudes to calculate the
quadrature distributions of the time-bin qubit. The correlation
between the measurements changes based on the selected
quadratures, as shown in Fig. 2d.

Characterization of microwave photonic qubit states
We experimentally prepare the transmon, single-rail number basis
and time-bin qubits in the six cardinal states of the Bloch sphere,

Fig. 2 Time-bin qubit generation and characterization sequence.
a Quantum circuit representation of time-bin qubit generation. (i)
Preparation of an arbitrary transmon qubit state. (ii) Transfer of the
transmon qubit state to the first temporal mode of a time-bin qubit
and measurement of the first quadrature. (iii) Transfer of the
remaining transmon qubit population to the second temporal mode
and measurement of the second quadrature. (iv) The process ends
with a measurement of the qubit state. b Corresponding time-
domain pulse sequence. The pulses are generated at five different
frequencies depicted in Fig. 1. The JPA pump pulses have phases φE
and φL. c Measured (orange line) and numerically simulated (black
dashed line) mean field amplitude squared of the generated time-
bin qubit. d Measured distribution of quadratures (qφE, qφL) for the
two temporal modes of a time-bin qubit prepared in state
ð1= ffiffiffi

2
p Þð Lj i þ Ej iÞ. Each of the three distributions correspond to

72637 post-selected samples measured for quadratures with phase
difference ΔφEL= φE− φL conditioned on the transmon qubit being
in the ground state both before and after the time-bin generation.
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as shown in Fig. 3a. We define the number-basis qubit state basis
as 0j i � 0j iS and 1j i � 1j iS, corresponding to no excitation or a
single excitation in a single mode. The number-basis qubit states
are generated with a sequence similar to the time-bin generation
sequence in Fig. 2, but with only the first two qubit control pulses
and the first coupling and JPA pump pulses. A series of qubit state
readouts along the three Bloch sphere axes are performed to
reconstruct the transmon qubit state. All of the measurements are
performed in single-shot.
We calculate the fidelity of each prepared state as

F ¼ ψth jρ ψtj i; (4)

where the pure target state is defined as ψtj i and ρ is the
measured qubit state.

Transmon qubit tomography
For the transmon qubit states, we only consider measurement
events where the qubit is initially measured to be in the ground

state. On average, 87.5% of our measurement events fulfill this
condition. The relatively high initial excited state population may
be explained by noise from the qubit control line32. The
population can be reduced with cooling techniques33,34. Given
the above condition, we measure a state preparation fidelity of
F avg

T ¼ 0:987 ± 0:001 averaged over the six cardinal states (Fig.
3b), limited mainly by the qubit control pulse fidelity and readout
assignment fidelity.

Single-rail number-basis qubit tomography
For the single-rail states, we post-select the measurement events
where both of the readouts before and after the generation
sequence result in the qubit state being assigned to the ground
state. On average, we keep 82.6% of all data in the tomography
process.
We prepare the single-rail number-basis qubit states with a

fidelity of F avg
SR ¼ 0:781 ± 0:003, noticeably lower than the

transmon qubit states. The difference in fidelity is caused by
relaxation and dephasing of the transmon qubit state during
single-photon generation and photon loss during photon transfer
from the qubit to the JPA and heterodyne detector. The effect of
photon loss can be observed in the Bloch sphere as a bias towards
the 0j i state for all of the six cardinal states.

Time-bin qubit tomography
We post-select the time-bin measurement events where both of
the readouts result in the transmon qubit being in the ground
state corresponding to 80.4% of all measurements. We discuss the
other measurement events in more detail in Section 7 of the
Supplementary Methods.
Without loss correction, we measure an average state prepara-

tion fidelity of F avg
TB ¼ 0:434± 0:001. As the generation sequence

is longer than that of the single-rail qubit, the effect of qubit
control pulse infidelity and qubit dephasing and relaxation on the
state preparation fidelity also becomes stronger. Furthermore, we
emulate an effective photon number parity measurement on the
time-bin qubit density matrices by projecting the full two-mode
density matrix to the time-bin qubit subspace spanned by Ej i and
Lj i, as detailed in Section 6 of the Supplementary Methods. After
the effective parity measurement, we obtain a loss-corrected time-
bin qubit average state fidelity of F avg

TB;LC ¼ 0:910 ± 0:002.

Phase robustness of the time-bin qubit
We measure and reconstruct the density matrices of the single-rail
qubit and time-bin qubits for the coherent superposition states
ð1= ffiffiffi

2
p Þð 0j iS þ 1j iSÞ and ð1= ffiffiffi

2
p Þð Lj i þ Ej iÞ when the photon

source does and does not share the same relative phase reference
with the detector, as shown in Fig. 4a, b, respectively. To
experimentally realize this condition, we use a separate reference
clock for the microwave source, which generates the coupling
pulse carrier signal than for the other two microwave sources used
for qubit control, JPA operation, and demodulation of single-
photon signal. We also perform photon loss correction on the
time-bin qubit density matrices.
When all of the microwave sources share the same external

rubidium clock (Fig. 4a), phase coherence is maintained between
the generated photons, and the tomography results in a single-rail
qubit state fidelity of F shared

SR;X ¼ 0:811± 0:007 and time-bin qubit

state fidelity of F shared
TB;X ¼ 0:901 ± 0:006. The time-bin qubit is

slightly more coherent than the single-rail qubit, because of a slow
phase reference drift, which occurs even with a shared external
clock and perhaps also in-part owing to the photon loss
correction. In Fig. 4b, we disconnect the microwave source for
the coupling pulse from the shared clock. Owing to the phase drift
between the two clocks, the single-photon signal generated by

Fig. 3 Reconstructed qubit states. a Reconstructed six cardinal
states and their state preparation fidelities measured for a transmon
qubit (T) (basis: gj i and ej i), a photonic number-basis qubit (S)
(basis: 0j iS and 1j iS), and a time-bin qubit (TB) (basis: Lj i and Ej i).
The states 0j i and 1j i correspond to the basis states of each qubit in
the respective order. The time-bin qubit fidelity is shown both
without and with photon loss correction (LC). The measured
transmon qubit, number-basis qubit, and loss-corrected time-bin
qubit states are shown inside the Bloch sphere. b Average fidelity
calculated over all of the six states for each qubit. The error
estimates correspond to three times the standard deviation (99.7%
confidence interval) obtained from bootstrapping of the
tomography data.
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the coupling pulse has a different phase reference each time.
Thus, as we observe in the measured off-diagonal matrix
elements, the measured single-rail qubit is dephased completely,
resulting in a single-rail preparation fidelity of
F sep

SR;X ¼ 0:500± 0:008. In contrast, for the time-bin qubit, the
phase information is not lost since the relative phase between the
two temporal modes determines the phase information of the
qubit, resulting in a time-bin qubit state fidelity of
F sep

TB;X ¼ 0:899 ± 0:006.

DISCUSSION
We successfully performed on-demand generation of microwave
time-bin qubits by driving a 3D circuit-QED system in dispersive
regime and characterized the resulting quantum states with
maximum-likelihood estimation of two-mode signal amplified by a
JPA in heterodyne measurement. Our tomography method
allowed us to perform Wigner tomography of a general two
temporal mode microwave state with a single detector by
switching the measurement quadrature in time between the
temporal modes. We measured an average time-bin qubit state
preparation fidelity of 0.910 after loss correction. We also
demonstrated that the phase information of the time-bin qubit
is stored in the relative phase of the temporal modes and that the
lack of a shared phase reference does not cause the time-bin qubit
to dephase. By performing a quantum non-demolition measure-
ment of the photon number parity in the time-bin qubit with the
method in refs 23,29,35, it is possible to perform loss-detection on
the time-bin qubits to increase the fidelity of information transfer

and distributed computation in a superconducting qubit network
by an amount corresponding to the photon loss. Our tomography
method can also be extended to microwave cluster states with an
arbitrary number of temporal modes without any additional
detector hardware by adding a new JPA pump pulse for each
additional temporal mode. The quadrature detection can be used
to realize remote state preparation schemes36,37. It is also possible
to combine our method with an entanglement witness38 or select
the measurement quadratures adaptively to characterize the
entanglement and state with minimal number of measurements.

METHODS
Pulse calibration
We define the qubit control pulses as Gaussian-shaped pulses while the
shape of the coupling pulse is defined as a cosine pulse ½1�
cosð2πt=wÞ�=2 with width w for t ∈ [0, w]. We optimize the width,
separation, amplitude, phase, and frequency of all pulses in parameter
sweep experiments by maximizing the assignment and state preparation
fidelities for each parameter separately. The experimental setup used for
pulse generation is detailed in Section 1 of the Supplementary Methods. In
addition, we apply DRAG39 to the qubit control pulses and chirp the
coupling pulses to limit the effect of the fj i-state Stark shift affecting the
phase of the generated photon wave packet9. We also add a constant
phase shift to the second coupling pulse relative to the first to reduce the
effect of ej i-state Stark shift. The optimization of the coefficients for DRAG
and chirping is detailed in Sections 3, 4, and 6 of the Supplementary
Methods.

Wigner tomography of two temporal modes
We use JPA phase-sensitive amplification together with heterodyne
measurement to reconstruct the full quantum state of the single-rail
number basis and time-bin qubits with iterative maximum-likelihood
estimation performed on measured quadrature distributions of the
temporal modes based on refs 24,40.
To change the quadrature of amplification independently for two

temporal modes, we select pairs of JPA pump pulse phases (φE, φL) ∈ [0,
2π] × [0, 2π] corresponding to amplification of each temporal mode. For a
single phase pair, we obtain measured quadrature values (qE, qL). A
measured two-mode state ρEL matches a given set of the four values above
with a probability amplitude Tr½ρELΠðφE; qE;φL; qLÞ�. Here, we have defined
the projection operator

ΠðφE; qE;φL; qLÞ ¼ φE; qE;φL; qLj i φE; qE;φL; qLh j: (5)

In order to find the optimal density matrix ρopt that matches the measured
probabilities of all outcomes φE;j; qE;j;φL;j; qL;j

� �
in our experiment, we

iteratively search for the density matrix that maximizes the logarithm of
the likelihood function

ln ½LðρÞ� ¼
X

j

ln Tr ρΠ φE;j;qE;j;φL;j;qL;j
� �� �� 	

; (6)

where we have assumed that the set φE;j; qE;j;φL;j; qL;j
� �

forms a dense
parameter space. We perform the maximization by defining an iterative
operator

RðρÞ ¼
X

j

ΠðφE;j; qE;j;φL;j; qL;jÞ
Tr½ρΠðφE;j; qE;j;φL;j; qL;jÞ�

; (7)

which has a property R(ρopt)ρoptR(ρopt)∝ ρopt. This property allows us to
iteratively calculate ρopt by ρkþ1 ¼ RðρkÞρkRðρkÞ=Tr½RðρkÞρkRðρkÞ�. We start
the iteration from an initial state ρ0 ¼ I=TrðIÞ and calculate the logarithm of
the likelihood for each density matrix in the iteration until convergence.
We perform the above iteration numerically and solve the reconstructed

density matrix in the Fock basis of two temporal modes by calculating the
two-mode matrix elements nE; nLh jRðρÞ mE;mLj i of the iterative operator
for photon numbers nE, nL, mE, and mL in the two modes.
We measured a JPA gain of 26.8 dB for the single-photon signal (See

Section 5 of the Supplementary Methods). To reduce the amount of
measurements, we perform the tomography for 12 × 12 different
quadratures in the two modes. For each quadrature pair, we measure
104 samples. We truncate the two-mode density matrix in the tomography
by limiting the maximum amount of photons in a single temporal mode
to two.

Fig. 4 Effect of the lack of a shared phase reference on photonic
qubit generation. Measured real parts of density matrix elements
for a single-rail number-basis qubit (basis: 0j iS and 1j iS) and a loss-
corrected time-bin qubit (basis: Lj i and Ej i). a All of the microwave
sources used share the same reference clock (phase reference). b
There is no shared reference clock. The Bloch spheres refer to the
stability of the phase between each measured state. In the bar plots,
the rectangles indicate the ideal values and the error bars describe
three times the standard deviation obtained from bootstrapping.
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Bootstrapping of the reconstructed density matrices
We estimate the error of the reconstructed density matrices and state
preparation fidelity of the qubit states by bootstrapping the tomography
measurement events27. We resample the data measured for each qubit
state and perform maximum-likelihood estimation on the resampled data
set to obtain a bootstrapped density matrix. By performing this procedure
for a number of bootstrapping samples, we can calculate the distribution
and standard deviation of the reconstructed density matrix elements. We
use 250 bootstrapping samples for each tomography measurement.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.
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SUPPLEMENTARY METHODS

I. EXPERIMENTAL SETUP

A detailed schematic of the experimental devices and configuration used in the measurements inside and outside
the dilution refrigerator is shown in Supplementary Figure 1. To generate arbitrary waveform pulses at microwave
frequencies, we mix low-frequency signal generated at 1-GHz sampling rate by the two output channels of field-
programmable gate arrays (FPGAs) with high-frequency signal generated by three separate microwave sources acting
as local oscillators. The microwave sources and FPGAs are phase-locked by the same 10-MHz rubidium clock. We use
four different FPGA boards to generate the qubit control pulses, cavity readout pulses, |f0〉–|g1〉 coupling pulse, and
pump pulses for a flux-driven Josephson parametric amplifier (JPA) in the experiment. Microwave signal originated
at the sample is measured at 1-GHz sampling rate after demodulation and analog-to-digital conversion with a fifth
FPGA board. In order to keep the phase of the single photon signal coherent over multiple measurements, the local
oscillator frequencies of the three microwave sources, ωLO

c , ωLO
ge,ef, and ωLO

f0g1 need to match the condition

2ωLO
ge,ef − ωLO

c − ωLO
f0g1 = Nrωrep, (S1)

where Nr is any integer and ωrep/2π is the repetition frequency of the measurements.
We use a directional coupler to input the readout pulse through a separate line with additional attenuation to

reduce noise at cavity frequency. The transmon qubit consisting of an Al/Al2O3/Al Josephson junction fabricated on
a sapphire substrate is placed inside a three-dimensional (3D) aluminum cavity. We tune the frequency of the JPA
to match the cavity frequency by appling a DC magnetic field into its SQUID loop. System parameters measured for
the sample in frequency- and time-domain measurements are shown in Supplementary Table 1.

II. THEORETICAL DESCRIPTION OF TIME-BIN QUBIT WAVE PACKET GENERATION

By examining the single-photon generating system dynamics in detail we calculate the shape of the time-bin qubit
wave packet generated in a transmission line. We consider a transmon qubit as a three-level system with transition
frequency ωge between the |g〉 and |e〉 states and anharmonicity α. The transmon qubit is coupled to a cavity, which
in turn is coupled to the transmission line. The total system Hamiltonian can be written in a frame rotating at
frequency ωf0g1 = 2ωge + α− ωc as

Htot(t) = Hqc(t) +HTL +Hrel +Hdep, (S2)

where Hqc(t) describes the qubit and cavity and their interaction, HTL describes the transmission line, and Hrel and
Hdep describe the relaxation and dephasing, respectively. Defining ~ = vm = 1, where vm is the microwave velocity in
the transmission line, the qubit-cavity dynamics due to an effective coupling geff(t) between the |f0〉 and |g1〉 states
reduces in the rotating frame to

Hqc(t) = geff(t)σf0,g1 + g∗eff(t)σg1,f0

− (∆ + α)σe0,e0 − (2∆ + α)(σf0,f0 + σg1,g1)

− (3∆ + 2α)σe1,e1 − (4∆ + 2α)σf1,f1,

(S3)

where the operators σvj,wl = |vj〉〈wl| for {v, w} = {g, e}, {j, l} = {0, 1, 2, . . . }, and ∆ = ωge − ωc is the qubit-cavity
detuning. In Supplementary Figure 2a, we show the energy level diagram of the composite system in the rotating



2

frame. The Hamiltonian of the transmission line can be written as

HTL =

∫
dk
[
kb†kbk +

√
κ/2π

(
a†bk + b†ka

)]
, (S4)

where bk is the annihilation operator of the propagating mode in the transmission line with wave number k, a is the
cavity photon annihilation operator, and κ is the total cavity coupling strength. We model the relaxation channel as

Hrel =

∫
dk
[
kc†kck +

√
1/2π

(
D†ck + c†kD

)]
(S5)

ADC
PC

Supplementary Figure 1. Schematic of the experimental setup.
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Supplementary Table 1. Measured system parameters.

3D cavity
Bare frequency ωc/2π 10.619 GHz
Dressed frequency for |g〉 ωg

c/2π 10.628 GHz
External coupling rate κex/2π 2.91 MHz
Internal coupling rate κin/2π 346 kHz

Transmon qubit
|g〉–|e〉 transition frequency ωge/2π 7.813 GHz
|e〉–|f〉 transition frequency ωef/2π 7.473 GHz
Anharmonicity α/2π −340 MHz
|g〉–|e〉 energy relaxation time T ge

1 26 µs
|g〉–|e〉 coherence time T ge

2 15 µs
|e〉–|f〉 energy relaxation time T ef

1 15 µs
|e〉–|f〉 coherence time T ef

2 16 µs

Qubit–cavity coupling rate g/2π 156.1 MHz
Maximum |f0〉–|g1〉 coupling rate gmax

eff /2π 2.2 MHz

where we define the dissipation operator D as

D =
√
γgesge +

√
γefsef, (S6)

with relaxation times T ge
1 = 1/γge and T ef

1 = 1/γef from |e〉 to |g〉, and from |f〉 to |e〉, respectively. In addition, ck is
the annihilation operator for a bosonic mode with energy ~vmk in the relaxation channel, and svw is the transition
operator of the transmon, svw = |v〉〈w|.

The dephasing of the qubit is described by two additional channels

Hdep =

∫
dk

[
kd†1,kd1,k +

√
γp,1/π see

(
d†1,k + d1,k

)]
+

∫
dk

[
kd†2,kd2,k +

√
γp,2/π sff

(
d†2,k + d2,k

)]
,

(S7)

in which we define dj,k as the annihilation operators of the relaxation channels for three different pure dephasing
coefficients γp,j .

By defining the Fourier transform of bk as br = (2π)−1/2
∫

dk exp(ikr)bk, we can write the state of the system at a
given time as

|ψ(t)〉 =
∑

uq∈{g,e,f}

∑
uc∈{0,1}

Cqc(uq, uc, t)|uquc, 0〉+

∫
dr f(r, t)b†r|g0, 0〉+ · · · , (S8)

where the dots represent the terms with excitations in the relaxation channel, Cqc are defined as complex coefficients
related to the probability |Cqc|2 for the qubit–cavity system to be in a given state, the third state |0〉 in the tensor
product is the vacuum state of the transmission line, and f(r, t) is the time-bin wave packet complex amplitude at
position r from the qubit at time t, as shown in the schematic in Supplementary Figure 2b. Given the input-output
relation

br(t) = br−t(0)− i
√
κex θ(r)θ(t− r)a(t− r) (S9)

and initial state of the system

|ψ(0)〉 = C0|g0, 0〉+ C1|e0, 0〉+ C2|f0, 0〉, (S10)

we can calculate the wave packet shape as f(r, t) = 〈ψ(t)|br|ψ(t)〉.
We introduce a unitary time-evolution operator

U(t) = T exp

[
−i
∫ t

0

dt′Htot(t
′)

]
, (S11)
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where T is the time-ordering operator. We define the notation 〈S(t)〉0 = 〈ψ(0)|S(t)|ψ(0)〉 for any operator S. By
writing f(r, t) = 〈U†(t)br(0)U(t)〉0, we have that

f(r, t) = 〈br(t)〉0

=

{
−i√κex 〈a(t− r)〉0, (0 < r < t)

0, (otherwise)

(S12)

since br(0)|ψ(0)〉 = 0. Hereafter, we evaluate the amplitude of the generated time-bin qubit at r = +0, corresponding
to the qubit’s position. From Eq. (S12), we obtain

f(0, t) = −i
√
κex 〈a(t)〉0 = −i

√
κex 〈σg0,g1(t)〉0, (S13)

where we have omitted the terms 〈σe0,e1(t)〉0 and 〈σf0,f1(t)〉0 since they are zero.
The time evolution for any system operator S can be solved from the Heisenberg equation

dS

dt
= i[Hqc(t), S] +

κ

2
(2a†Sa− Sa†a− a†aS) +

1

2
(2D†SD − SD†D −D†DS)

− γp,1[[S, see], see]− γp,2[[S, sff], sff] + H.c.
(S14)

From here on we denote Cvj,wl = 〈σvj,wl(t)〉0. After substitution of relevant system operators to (S14), we notice
that many of the expectation values are zero. The time-evolution of Cg0,g1 can be solved from the following system
of equations

d

dt
Cg0,f0 =

[
i(2∆ + α)− 1/T ef

2

]
Cg0,f0 − igeff(t)Cg0,g1 (S15)

d

dt
Cg0,g1 = [i(2∆ + α)− κ/2]Cg0,g1 − ig∗eff(t)Cg0,f0 (S16)

d

dt
Ce0,f0 =

[
i∆−

(
1/T ge

2 + 1/T ef
2

)]
Ce0,f0 − igeff(t)Ce0,g1 (S17)

d

dt
Ce0,g1 = [i∆− (κ/2 + 1/T ge

2 )]Ce0,g1 − ig∗eff(t)Ce0,f0 (S18)

d

dt
Cg0,e0 = [i(∆ + α)− 1/T ge

2 ]Cg0,e0 +

√(
T ge

1 T ef
1

)−1
Ce0,f0 (S19)

d

dt
Cf0,f0 = ig∗eff(t)Cg1,f0 − igeff(t)Cf0,g1 −

(
1/T ef

1

)
Cf0,f0 (S20)

d

dt
Cg1,g1 = igeff(t)Cf0,g1 − ig∗eff(t)Cg1,f0 − κCg1,g1 (S21)

d

dt
Cf0,g1 = ig∗eff(t)(Cg1,g1 − Cf0,f0)−

(
κ/2 + 1/T ef

2

)
Cf0,g1 (S22)

d

dt
Cg0,g0 = κCg1,g1 + (1/T ge

1 )Ce0,e0 (S23)

d

dt
Ce0,e0 = − (1/T ge

1 )Ce0,e0 +
(
1/T ef

1

)
Cf0,f0, (S24)

where T ge
2 = (γge/2 + γp,1)−1 (T ef

2 = (γef/2 + γp,2)−1) is the dephasing time of the qubit between |g〉 and |e〉 (|e〉 and
|f〉).

To simulate the time-bin qubit generation process, we solve the equations numerically for two separate time periods.
In the first period, we simulate the generation of the first time-bin. After the transfer, we simulate the Xef

π pulse by
swapping the |e0〉 terms with |f0〉 in the equations and performing a second calculation simulating the generation of
the second time-bin with the initial condition matching the state of the system after the Xef

π pulse.
To simulate generation of coherent time-bin qubit state signal amplitude, we initialize the system state as C0 =

1/
√

2 , C1 = C2 = 1/2. We show the geff(t) defined in the simulations together with the change in the qubit population
as a function of time in Supplementary Figure 2c and d calculated with the parameters for the sample given in
Table Supplementary Table 1.

In order to calculate the generation efficiency of the system in the simulation, we prepare the system in the initial
state C0 = C2 = 1/

√
2, C1 = 0. We perform the photon generation process for the first temporal mode only. We

evaluate the photon generation efficiency as

ηgen =
1

1− P sc
e0

∫ ∞
0

dt
|f(0, t)|2

|C0|2|C2|2
, (S25)
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Supplementary Figure 2. Analytical model for time-bin qubit generation. a Energy level diagram of the qubit–cavity
system in a frame rotating at the drive frequency. b Schematic of the qubit–cavity system coupled to a transmission line.
c Simulated change in qubit–cavity state populations as a function of time during time-bin qubit generation. d Effective
coupling between the |f0〉 and |g1〉 states defined in the simulation using the parameters in the experiments.

where we have defined P sc
e0 as the leftover population in the |e0〉 state at 0.95 µs. The leftover population is used

to match the conditions in the simulation with the experiments. The scaling imposes the condition that the qubit
must be in the ground state both before and after the generation protocol. We do not take the leftover population
in the |f0〉 state into account in the scaling since it is smaller than P sc

e0 by over one order. For a calculated value of
P sc

e0 = 0.02, we thus obtain a generation efficiency of ηgen = 0.83± 0.02.

III. OPTIMIZATION OF QUBIT CONTROL AND READOUT PULSE PARAMETERS

To optimize the qubit readout and control parameters, we first perform a rough optimization of the parameters
by using a readout with enough visibility to obtain reasonable resolution. We define the Xge

π and Xef
π qubit control

pulses as Gaussian pulses with a fixed width of 15 ns. We define the amplitude and frequency of the pulses with
Rabi oscillation and Ramsey measurements, respectively. We optimize the |f0〉–|g1〉 coupling pulse parameters by
measuring the Rabi oscillation between the states as a function of the drive frequency and pulse amplitude, finding
the optimal point that maximizes state transfer and effective coupling strength.

For further optimization of the qubit readout pulse, we perform two consecutive readouts of the qubit state and
maximize the measured assignment fidelity (1/2) [P (g|g) + P (e|e)] by sweeping over different readout pulse parameter
values. The readout frequency is set constant at the frequency of the dressed cavity when the qubit is in the ground
state. We vary the rectangular shape readout pulse width, amplitude, and separation between the two pulses in the
assignment fidelity measurement sequence. In addition, since the measurements are performed in single shot, we also
sweep over different JPA pump pulse amplitudes, widths, and phases to maximize the assignment fidelity. Since we
operate the JPA in the degenerate mode, we use the JPA to perform a measurement of the qubit being either in
state ‘s’ or ‘not s’ instead of being able to distinguish between the different qubit states at the same time. Here the
state ‘s’ refers to either |g〉, |e〉 or |f〉. Depending on whether we want to measure the |g〉, |e〉 or |f〉 state, we change
the direction of the phase to match the correct state. Since the readout is a result of IQ demodulated signal, we
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Supplementary Figure 3. Calibration of DRAG coefficient for qubit control pulses. a Measured normalized |g〉 state
population during DRAG optimization of a π pulse for the |g〉–|e〉 transition as a function of the DRAG coefficient βge. The
black curve is a cosine function fit to the measured data. b Same as a but for a sequence corresponding to optimizing the
DRAG coefficient βef of a π pulse for the |e〉–|f〉 transition.

also optimize the shape of the demodulation integration weight function to match the readout signal. With these
optimizations, we measure an assignment fidelity of 0.99 for our readout with a pulse length of 400 ns.

To increase the fidelity of the gate operations for short pulses with relatively high power, we apply the Derivative
Removal by Adiabatic Gate (DRAG) [S1] technique to the qubit control pulses. The DRAG technique reduces leakage
to unwanted transitions due to the short high power drive pulses. We can write the amplitude of the generated control
pulse shape with drive frequency ωd as

A(t) = X(t) cos (ωdt+ φg) + β
dX(t)

dt
sin (ωdt+ φg), (S26)

where φg is the drive phase that controls around what axis in the equatorial plane the qubit state rotates in the Bloch
sphere and β is the DRAG coefficient. The amplitude without DRAG correction is applied as X(t).

We optimize the DRAG coefficient separately for the |g〉-|e〉 and |e〉-|f〉 pulses experimentally by measuring the
population in the |g〉 state after a specific control pulse sequence. The sequence for optimizing the Xge

π pulse with
DRAG can be written as Xge

π/2(Xge
−π/2X

ge
π/2)NXge

−π/2, as shown in Supplementary Figure 3a, where N corresponds to

an integer number describing the number of repetitions of the sequence. In the figure we show measured population
in the |g〉 state normalized to unity as a function of the control pulse amplitude and DRAG coefficient βge for N = 20.
The sequence amplifies the phase error caused by virtual excitation through undesired states. By tuning the DRAG
coefficient βge to βopt

ge = 0.92, we find the optimal point where the population is maximized, corresponding to minimal

phase error. A similar sequence can be defined for the Xef
π pulse by exchanging the Xge

−π/2 and Xge
π/2 pulses with their

Xef equivalents and by preceding the sequence with a Xge
π pulse reversed after the sequence by a Xge

−π pulse. We
show the results of this optimization in a similar plot to Supplementary Figure 3a in Supplementary Figure 3b with
N = 20 and an optimal point at βopt

ef = 1.08 maximizing the population in the ground state. With the optimized
parameters for the readout and qubit control pulses, we obtain a probability of 0.979 for the qubit to be measured in
the first excited state after initialization by post-selection and performing the Xge

π pulse.

IV. CANCELLATION OF THE EFFECT OF AC STARK SHIFT ON THE |f〉 STATE

Due to the ac Stark shift caused by the qubit–cavity excitation swapping pulse, the shape of the generated pho-
ton will become distorted. To compensate the effect of the |f〉-state shift, we generate a chirped pulse ac(t) =
ap(t) exp[iφf0g1(t)] by time-modulating the phase of the original control pulse ap(t) with a method based on Ref. [S2].
Here, both pulse amplitudes are defined in an arbitrary unit. We apply time-modulation to the phase φf0g1(t) of the
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drive pulse according to

dφf0g1(t)

dt
= −∆f0g1(t), (S27)

where ∆f0g1(t) is the Stark shift of the transition caused by the drive pulse at a given time. Since the ac Stark shift has
a quadratic dependence on the pulse amplitude, the general form of the chirped pulse satisfying the above equation
reduces to

ac(t) = ap(t) exp

(
−i
∫ t

0

dt′Cch|ap(t′)|2
)
, (S28)

where Cch is the coefficient mapping the amplitude of the pulse to a corresponding ac Stark shift value. Here we have
ignored the global phase coefficient.

In the experiment, the chirped form of the pulse is calculated by first measuring the ac Stark shift of the qubit
as a function of the drive amplitude of an effective coupling pulse with a rectangular shape. We show the results
of these measurements together with a quadratic fit in Supplementary Figure 4a with coefficient Cch = −2.15. The
maximum drive-pulse amplitude corresponds to an effective coupling rate gmax

eff /2π = 2.2 MHz. We measure the qubit
population transfer in the |f0〉–|g1〉 transition as a function of coupling pulse drive frequency and find the optimal
frequency where the transfer is maximal for each drive amplitude. The shift of this frequency relative to the optimal
frequency at low drive amplitude corresponds to the ac Stark shift. We calculate the necessary phase shift at each
amplitude in the pulse with Eq. (S28) with the coefficient obtained from the quadratic fit. Due to effect of filtering
on different pulse shapes and non-linearity of the effective coupling at high pulse amplitudes, the fit values are not
necessarily optimal and we need to sweep the coefficient to minimize the effect by the Stark shift.

We measure the |g〉 state population Pg after excitation transfer from |f0〉 to |g1〉 as a function of the chirping

coefficient for a cosine coupling pulse in Supplementary Figure 4b. The optimal chirping parameter value Copt
ch = −1.66

matches the region where the |g〉 state population is the largest, indicating highest transfer between the two states.
The difference between the optimal value and the fit value is due to leakage of the cosine coupling pulse power
to the image sideband, which limits the effective coupling rate to gcos

eff /2π = 1.3 MHz. We show the difference
in state transfer depending on the amount of Stark shift for an effective coupling pulse without any Stark-shift
cancellation [Supplementary Figure 4c] and with the optimized Stark-shift correction [Supplementary Figure 4d]. The
optimization causes the transfer to become more uniform across all frequencies and drive amplitudes.

V. CALIBRATION OF THE JOSEPHSON PARAMETRIC AMPLIFIER FOR THE AMPLIFICATION
OF SINGLE-PHOTON SIGNAL

We perform quantum state tomography on the quantum state of a propagating microwave mode with a Josephson
parametric amplifier operated in the degenerate mode by driving it with a pulse of phase ϕ to measure a projected
quadrature qϕ of the single photon signal. The amplification anti-squeezes the single photon wave packet along a
direction orthogonal to ϕ. For the quadrature amplification in tomography, we use a JPA gain of 26.8 dB [Supple-
mentary Figure 5a)]. We optimize the amplitude of the JPA pump pulse so that there is no significant distortion in
the amplified shape of the single-photon wave packet, as shown in Supplementary Figure 5b.

VI. OPTIMIZATION OF THE COUPLING PULSE FOR TIME-BIN QUBIT GENERATION AND
LOSS-CORRECTION OF THE TIME-BIN QUBIT DENSITY MATRIX

The chirping of the coupling pulse accounts for the ac Stark shift affecting the qubit |f〉 state, however shift of the
|e〉 state is not corrected by the chirping. During the generation of any coherent superposition state of the time-bin
qubit, there is population in the |e〉 state during the emission of the first bin. The first coupling pulse therefore causes
a shift of the |e〉 state that results in a constant shift of the time-bin qubit phase. To correct this offset and generate
the target state, we apply a phase offset to the second coupling pulse relative to the first pulse. To calibrate this
phase offset, we measure the difference in amplitude between the signal in the two bins for a coherent time-bin qubit
state as a function of the JPA pump phase ϕJPA and coupling pulse phase offset φL in Supplementary Figure 5c. At
φopt

L = 0.74π the difference between the signal amplitude in the two bins is the smallest, corresponding to correction
of the phase shift due to ac Stark shift.

For the tomography of the time-bin qubit state, we apply a loss correction to the density matrix in post-processing
by reducing the measured complete time-bin qubit density matrix shown in Supplementary Figure 5d to the single-
photon subspace, which corresponds to the time-bin subspace. We pick the submatrix inside the raw data density
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Supplementary Figure 4. Chirping of the coupling pulse. a Measured Stark shift ∆f0g1 for the |f0〉–|g1〉 transition as a
function of the drive-pulse amplitude (red points). A quadratic fit Cch|ap(t′)|2 with coefficient Cch = −2.15 is shown with
the black curve. b Normalized population of qubit |g〉 state measured after |f0〉–|g1〉 transition as a function of the chirping
coefficient Cch. The optimal parameter Copt

ch for cancelling the Stark shift caused by the effective coupling pulse is marked by

the white dashed line at Copt
ch = −1.66. c,d Measured |g〉 state population as a function of the maximum effective coupling

pulse amplitude and detuning for a coupling pulse c without ac-Stark-shift cancellation and d with cancellation.

matrix corresponding to the elements with a single photon in one of the temporal modes. The resulting density matrix
is subsequently normalized. This operation can be realized in real-time if one has a single-photon detector or up to
high degree with a parity measurement in quantum-non-demolition manner [S3, S4].

VII. ERRORS IN THE PHOTONIC QUBIT GENERATION

In the generation sequence of the photonic qubits, we measure the superconducting qubit state before and after
the generation. Here, we discuss the measurement events corresponding to errors in the generation. In 12.2%
of measurement events for the single-rail and in 14.4% of the time-bin qubit, we measure an initial excited state
and a final state corresponding to the ground state. These events correspond to measurements where an initially
(thermally) excited qubit has a state prepared and transferred to the photonic qubit. Events corresponding to an
initial measurement in the ground state and a final measurement in the excited state, caused mostly by errors in
the system transitions, correspond to 2.90% of the events in the single-rail measurement and to 4.25% of the events
in the time-bin measurement. Some of these errors also occur due to the limited assignment fidelity of our readout.
In the case of the single-rail qubit measurements, these events show a relatively large two-photon component in the
reconstructed density matrices compared to the other measurement events, possibly due to JPA back-action [S5].

[S1] Motzoi, F., Gambetta, J. M., Rebentrost, P. & Wilhelm, F. K. Simple pulses for elimination of leakage in weakly nonlinear
qubits. Phys. Rev. Lett. 103, 110501 (2009).
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Supplementary Figure 5. Optimization of time-bin qubit generation and tomography. a Measured JPA gain as a
function of JPA pump amplitude. b Measured amplified single-photon packet shape as a function of the JPA pump pulse
amplitude. c Absolute difference in measured time-bin qubit signal amplitude between the two bins as a function of JPA pump
phase ϕJPA and second coupling pulse phase offset φL. By modifying the second coupling pulse phase to where the difference
is the smallest, φopt

L = 0.74π, we can correct the offset in phase between the two bins caused by ac Stark shift. d Measured

real part of density matrix elements for a time-bin qubit state (1/
√

2)(|E〉+ |L〉). The basis represents the number of photons
measured in each temporal mode.

[S2] Pechal, M. et al. Microwave-controlled generation of shaped single photons in circuit quantum electrodynamics. Phys.
Rev. X 4, 041010 (2014).

[S3] Kono, S., Koshino, K., Tabuchi, Y., Noguchi, A. & Nakamura, Y. Quantum non-demolition detection of an itinerant
microwave photon. Nat. Phys. 14, 546 (2018).

[S4] Besse, J.-C. et al. Single-shot quantum nondemolition detection of individual itinerant microwave photons. Phys. Rev. X
8, 021003 (2018).

[S5] Kindel, W. F., Schroer, M. D. & Lehnert, K. W. Generation and efficient measurement of single photons from fixed-
frequency superconducting qubits. Phys. Rev. A 93, 033817 (2016).
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