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Dressed-state engineering for continuous detection of itinerant microwave photons
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We propose a scheme for continuous detection of itinerant microwave photons in circuit quantum
electrodynamics. In the proposed device, a superconducting qubit is coupled dispersively to two resonators:
one is used to form an impedance-matched � system that deterministically captures incoming photons, and the
other is used for continuous monitoring of the event. The present scheme enables efficient photon detection: for
realistic system parameters, the detection efficiency reaches 0.9 with a bandwidth of about 10 MHz.
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I. INTRODUCTION

Microwave quantum optics using superconducting qubits
and transmission lines, which is realized in circuit-quantum-
electrodynamics setups, is one of the hottest research areas
in modern quantum physics [1]. Exploiting the large dipole
moment of superconducting qubits, circuit QED enables var-
ious quantum-optical phenomena that have not been reached
by quantum optics in the visible domain. In particular,
we can readily construct optical setups with excellent one-
dimensionality [2–4], which are suitable for constructing a
scalable quantum circuit. However, the lack of an efficient
detector for itinerant microwave photons has been a long-
standing problem, and several approaches have been proposed
to date. One approach is to capture a propagating photon
deterministically into a resonator mode and detect it afterward.
In recent experiments, the possibility of such capturing has
been demonstrated with an excellent fidelity [5,6]. However,
this approach requires precise temporal control of the system
parameters that depends on the exact pulse shapes of the signal
photons. Another approach is to use the Kerr effect mediated by
superconducting qubits [7–9], which may enable nondestruc-
tive photon detection. However, it has been revealed that a high
distinguishability of the signal photon number can be achieved
only by cascading several identical qubits with negligible
photon loss in between, which is a challenging technical task
presently [8,9]. Recently, microwave photon detectors using
the optomechanical systems have been proposed [10,11].

An alternative approach is to use the deterministic switching
of a � system induced by individual photons [12–14], which
has been experimentally realized in one-dimensional systems
[15,16]. Note that this occurs as a result of single-photon
dynamics: The destructive interference between the input and
the elastically scattered photons enables the deterministic
operation. Recently, detection of propagating microwave
photons has been demonstrated using a � system realized
in a tilted washboard potential of a current-biased Josephson
junction [17–19]. A problem with this scheme could be the
substantial dissipation upon detection and the resultant long
dead time before resetting. More recently, we realized a �

system formed by the dressed states of a qubit-resonator
system and discussed its performance as a photon detector
[14,15,20]. This detector attains a high detection efficiency

within the detection bandwidth, regardless of the signal pulse
profile and with negligible dark counts. However, this detector
should be operated in the time-gated mode, since the drive field
to generate the �-type transition must be turned off during the
qubit readout to obtain a high fidelity.

In this study, we present a practical scheme for continuous
detection of itinerant microwave photons. We couple two
resonators to a qubit: One is used for forming a � system
[14,15] and the other is used for continuous qubit monitoring
[21–24]. The proposed device enables continuous operation of
the photon detector, preserving the advantages of our previous
scheme [20], such as a high detection efficiency, insensitivity
to the signal pulse shape, and short dead times after detection.
Moreover, the efficient detection is possible without cascading
qubits [8,9].

II. SYSTEM

We consider a device in which a superconducting qubit is
coupled to two resonators A and B (Fig. 1). When setting
� = 1, this system is described by

Hsys = ω̄aa
†a + ω̄bb

†b + ω̄qσ
†σ

+ ga(a† + a)(σ † + σ ) + gb(b† + b)(σ † + σ ), (1)

where a, b, and σ respectively denote the annihilation
operators for resonators A, B, and the qubit. ω̄a , ω̄b, and ω̄q are
their bare frequencies, and ga and gb are the qubit-resonator
couplings. We consider a case in which the qubit is coupled
to two resonators dispersively, namely, |ω̄r − ω̄q | � gr (r =
a,b). Then, up to the second-order perturbation in gr , we can
rewrite Hsys into the following diagonal form:

Hsys = (ωaa
†a + ωbb

†b)σσ †

+ [ωq + (ωa − 2χa)a†a + (ωb − 2χb)b†b]σ †σ, (2)

where χr = g2
r /(ω̄r − ω̄q) − g2

r /(ω̄r + ω̄q) is called the dis-
persive shift (r = a,b), and the renormalized frequencies
of the resonators and the qubit are ωa = ω̄a + χa , ωb =
ω̄b + χb, and ωq = ω̄q − χa − χb [25]. In the following,
we set (ωa,ωb,ωq)/2π = (10,12,5) GHz and (χa,χb)/2π =
(50,20) MHz for concreteness.
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FIG. 1. Schematic of the single-photon detector. A qubit is
coupled dispersively to two resonators. Resonators A and B and the
qubit are respectively coupled to waveguides A, B, and C. We input a
signal photon through waveguide A, a probe field through waveguide
B, and a drive field through waveguide C.

The qubit and the resonators are respectively coupled
to waveguides, through which we apply three kinds of
microwaves (Fig. 1). Through waveguide C, we apply a
continuous drive field to the qubit to generate a so-called
impedance-matched � system by the dressed states of the
qubit and resonator A. Through waveguide A, we input a
signal photon to be detected, which deterministically induces
a Raman transition and excites the qubit. Through waveguide
B, we apply a continuous probe field for the dispersive readout
of the qubit state.

We denote the radiative decay rates of resonators A and B
and the qubit by κa , κb, and γ ′, respectively. κa determines
the bandwidth of the photon detector, which should be smaller
than or comparable to the level separation of the dressed states
[|̃3〉 and |̃4〉 of Fig. 2(b)]. κb determines the phase shift of
the probe field upon reflection and κb � 2χb is favorable
for qubit readout [26]. We set (κa,κb)/2π = (20,40) MHz.
Additionally, the qubit undergoes nonradiative decay and its
overall decay rate γ often dominates γ ′. The photon detection
efficiency is sensitive to γ . We assume a reasonably long-lived
qubit of γ /2π = 0.01 MHz (T1 ≈ 16 μs) [27,28].

III. DRESSED-STATE ENGINEERING

We engineer the dressed states of the qubit-resonators
system through the qubit drive. Theoretically, the qubit drive
is described by Hdr (t) = √

γ ′[Ed (t)σ † + E∗
d (t)σ ], where

Ed (t) = Ede
−iωd t is a monochromatic drive field. In the frame

rotating at ωd , we obtain a static Hamiltonian,

Hsys+dr = (ωaa
†a + ωbb

†b)σσ † + [(ωq − ωd )

+(ωa − 2χa)a†a + (ωb − 2χb)b†b]σ †σ

+	d (σ † + σ ), (3)

where 	d = √
γ ′Ed is the Rabi frequency of the qubit drive.

Hereafter, 	d represents the drive power.
First, we consider the case with 	d = 0. The eigenstates

of Hsys+dr are the Fock states |q,na,nb〉, where q(= g,e)
denotes the qubit state and na and nb(= 0,1, . . . ) denote
the resonator photon numbers. To find the optimal drive
conditions, we restrict ourselves to the zero- and one-photon
states [Fig. 2(a)]. In this study, we use resonator A to
form a � system and resonator B as a readout resonator
that preserves the qubit state upon transitions. For this
purpose, we should realize the level structure of Fig. 2(a),
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FIG. 2. Dressed-state engineering of the qubit-resonators system.
(a) Level structure of the bare states (	d = 0) in the rotating
frame. (b) Level structure of the dressed states at the operation
point (	d = 	

imp
d ). (c) Dependences of the decay rates on the drive

power. The drive frequency is set at ωd/2π = 4.905 GHz. An
impedance-matched � system is formed at 	

imp
d /2π = 10.897 MHz.

κ̃a
ji (̃κb

ji) is normalized by κa (κb). (d) Amplitude of the reflection
coefficient |rs | of a continuous signal field applied through waveguide
A, as a function of the signal frequency ωs and the drive power 	d .
The upper (lower) curve represents ω̃41 (ω̃31).

where ω|g,0,0〉 < ω|e,0,0〉 < ω|e,1,0〉 < ω|g,1,0〉 (nesting regime
for resonator A) and ω|g,0,0〉 < ω|e,0,0〉 < ω|g,0,1〉 < ω|e,0,1〉 (un-
nesting regime for resonator B) [14]. This is done by setting
the drive frequency within the range of ωq − 2χa < ωd <

ωq − 2χb.
Next, we consider the case with 	d > 0. The drive field

mixes the bare states to form the dressed states. We denote the
dressed states by |̃1〉,|̃2〉, . . . and label them from the lowest
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in energy [Fig. 2(b)]. From Eq. (3), they are given by

|̃1〉 = cos θ12|g,0,0〉 − sin θ12|e,0,0〉, (4)

|̃2〉 = sin θ12|g,0,0〉 + cos θ12|e,0,0〉, (5)

|̃3〉 = cos θ34|e,1,0〉 − sin θ34|g,1,0〉, (6)

|̃4〉 = sin θ34|e,1,0〉 + cos θ34|g,1,0〉, (7)

|̃5〉 = cos θ56|g,0,1〉 − sin θ56|e,0,1〉, (8)

|̃6〉 = sin θ56|g,0,1〉 + cos θ56|e,0,1〉, (9)

θ12 = arctan[2	d/(ω|e,0,0〉 − ω|g,0,0〉)]/2, (10)

θ34 = arctan[2	d/(ω|g,1,0〉 − ω|e,1,0〉)]/2, (11)

θ56 = arctan[2	d/(ω|e,0,1〉 − ω|g,0,1〉)]/2. (12)

The radiative decay rate from |j̃〉 (j = 3,4) to |̃i〉 (i = 1,2)
is given by κ̃a

ji = κa|〈j̃ |a† |̃i〉|2. We confirm that κ̃a
31 = κ̃a

42,

κ̃a
32 = κ̃a

41, and κ̃a
31 + κ̃a

32 = κ̃a
41 + κ̃a

42 = κa . Namely, |̃3〉 and
|̃4〉 decay in two directions, satisfying the sum rule of decay
rates. Similarly, κ̃b

51 = κ̃b
62, κ̃b

52 = κ̃b
61, and κ̃b

51 + κ̃b
52 = κ̃b

61 +
κ̃b

62 = κb. Figure 2(c) plots κ̃a
ji and κ̃b

ji as functions of the drive
power. In the drive-off case (	d = 0), κ̃a

32 = κ̃a
41 = κa , κ̃b

51 =
κ̃b

62 = κb, and others vanish. This represents the simple decay
of the resonator modes preserving the qubit state [Fig. 2(a)].
As we increase the drive power, the decay rates for resonator
A are inverted, whereas those for resonator B remain almost
unchanged. This is because of our choice of the drive frequency
ωd . At 	

imp
d in Fig. 2(c), the four decay rates concerning

resonator A become identical. Then, a resonant signal photon
deterministically induces a Raman transition of |̃1〉 → |j̃ 〉 →
|̃2〉 (j = 3,4). Regarding resonator B, we should make κ̃b

52(=
κ̃b

61) as small as possible to suppress the |̃1〉 → |̃k〉 → |̃2〉
and |̃2〉 → |̃k〉 → |̃1〉 transitions (k = 5,6). For this purpose,
ωd close to ωq − 2χa is advantageous. We set ωd/2π =
4.905 GHz [5 MHz above (ωq − 2χa)/2π ] hereafter, which
results in 	

imp
d /2π = 10.897 MHz. Then, cos2 θ12 = 0.99,

cos2 θ34 = 0.61, and cos2 θ56 = 0.96. Namely, the dressed
states |̃1〉, |̃2〉, |̃5〉, and |̃6〉 are almost identical to the bare states
|g,0,0〉, |e,0,0〉, |g,0,1〉, and |e,0,1〉, respectively. κ̃b

52(= κ̃b
61)

is about 0.6% of κb.

IV. SNR AND DETECTION EFFICIENCY

In the proposed detector, a signal photon is expected
to excite the qubit with a high probability. In order to
continuously monitor this event, we apply a probe field,
Ep(t) = Epe−iωpt , through waveguide B [21–24]. From Eq.
(2), the resonant frequency of resonator B depends on the qubit
state. This is reflected in the phase shift of the probe field upon
reflection. The phase shift θg for the qubit ground state is given
by θg = 2 arctan[κb/2(ωb − ωp)], and θe for the qubit excited
state is obtained by replacing ωb with ωb − 2χb. Hereafter, in
order to suppress the |̃1〉 → |̃5〉 transition, we set the probe
frequency at ωp = ωb − 2χb rather than the usually chosen

condition ωp = ωb − χb. This results in eiθg = (3 + 4i)/5 and
eiθe = −1. We measure one quadrature of the reflected field for
discriminating the qubit state. We infer the qubit state through
the time-averaged probe field with an integration time �t . The
signal-to-noise ratio (SNR) is given, assuming that the noise
is purely of quantum origin, by

SNR =
√

κb〈nb〉�t

4

∣∣eiθg − eiθe
∣∣, (13)

where 〈nb〉 = 4|Ep|2/κb represents the probe power in terms
of the mean photon number in resonator B [21]. The readout
fidelity F is given by

F = erf(SNR/
√

2), (14)

where erf denotes the error function [29]. In practice, the noise
could be enhanced by technical reasons such as the noise from
the amplifiers. Here, we assume the noiseless phase-sensitive
amplification preserving the SNR [30].

The single-photon detection efficiency η, which is the
probability to find the qubit excitation, is evaluated as follows.
We denote the qubit excitation probability by pe(t). Since we
infer the qubit state through the time-averaged amplitude, we
introduce the time-averaged excitation probability,

pe(t) = 1

�t

∫ t

t−�t

dt ′pe(t ′), (15)

and find the maximum probability pe(tm) in time. Considering
that the probability to correctly infer the qubit state is
(1 +F)/2, η is given by

η = pe(tm)
1 + F

2
+ [1 − pe(tm)]

1 − F
2

. (16)

η � 1/2 for a low SNR, implying that the qubit state is
completely indistinguishable. In contrast, η � pe(tm) for a
high SNR. Note that the detection efficiency is defined in terms
of the quantum jumps in actual measurements. In Appendix B,
we observe that the present detection efficiency, which is based
on the time-averaged qubit excitation probability, is justified
by considering the quantum jumps.

V. NUMERICAL RESULTS

In this section, we observe the microwave response of the
qubit-resonator system to the signal photon and evaluate the
detection efficiency of the detector. The equations of motion
used in the numerical simulation are presented in Appendix A.

A. Impedance matching

In the proposed setup, we input a signal photon through
waveguide A. Here, in order to find the optimal operating point
of the detector, we apply a weak continuous field Es(t) =
Ese

−iωs t through waveguide A and observe its reflection
coefficient. The amplitude |rs | of the reflection coefficient is
plotted in Fig. 2(d). We observe that impedance matching
(|rs | � 0) takes place at 	d � 	

imp
d and ω̃31 � ωs � ω̃41,

where ω̃ji denotes the transition frequency between |j̃〉 and
|̃i〉. This indicates that each signal photon induces the Raman
transition in the � system and is absorbed deterministically.
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FIG. 3. Microwave response to a signal photon. The signal photon
has a carrier frequency of ωs/2π = 10.00 GHz and a Gaussian pulse
shape with the length of l = 100 ns. (a) Time evolution of the qubit
excitation probability pe(t). The probe power 〈nb〉 is indicated. The
signal-photon profile |fs(t)|2 is also shown in units of (8 ln 2/πl2)1/2.
(b) Time-averaged qubit excitation probability pe(t) for 〈nb〉 = 0.05.
The integration time �t is indicated.

We choose the drive power and signal frequency as the
operating points of the photon detector.

B. Time evolution of qubit excitation probability

We observe the time evolution of the qubit excitation
probability pe(t) induced by a single-photon signal. The signal
photon is assumed to be a Gaussian pulse with length l and
frequency ωs , namely,

fs(t) =
(

8 ln 2

πl2

)1/4

2−(2t/ l)2
e−iωs t , (17)

which is normalized as
∫

dt |fs(t)|2 = 1. Setting ωs/2π =
10.00 GHz and l = 100 ns, we plot in Fig. 3(a) the time
evolution of the qubit excitation probability pe(t) for various
probe power 〈nb〉. First, we observe the case with no probe
field [red solid line in Fig. 3(a)]. pe(t) increases within the
pulse duration and approaches to unity, which agrees well with∫ t

−∞ dt ′|fs(t ′)|2. A high efficiency is attained regardless of the
pulse shape as long as the linewidth of the photon is narrower
than that of the � system. After the pulse duration, pe(t)
decreases gradually by natural decay of the qubit with rate γ .

We observe that the near-deterministic qubit excitation is
degraded by increasing the probe power [green dashed and
blue dotted lines in Fig. 3(a)]. This is attributed mainly to the

enhanced qubit decay through the |̃2〉 → |̃k〉 → |̃1〉 transition
(k = 5,6). However, for the probe power considered here, the
backaction of the qubit readout is not severe and the qubit
excitation is maintained for several microseconds. Hereafter,
we fix the probe power at 〈nb〉 = 0.05. Then, F = 0.99
(0.999) [SNR = 2.58 (3.29)] is attained by taking �t = 660
(1077) ns. The long qubit lifetime enables us to take such
long integration times.

In Fig. 3(b), we plot the time-averaged qubit excitation
probability pe(t), which is defined by Eq. (15), for various �t .
Expectedly, pe(t) becomes flatter as we increase �t , which
implies the loss of detection signal. However, owing to the long
qubit lifetime, the decrease of pe(t) due to the time-averaging
is at most several percent.

C. Detection efficiency

In Fig. 4(a), we plot the efficiency as a function of the pulse
length l of the signal photon. If the qubit lifetime is infinite,
the efficiency increases monotonically with l. In practice, the
efficiency is maximized at a finite pulse length due to the
qubit decay during the pulse duration. We observe that a high
efficiency is maintained for a wide range of l, which is an
advantage of the �-based scheme. The loss of efficiency is due
to the infidelity of the qubit measurement for short �t , whereas
it is due to the time-averaging for long �t . For �t = 660 ns
(F = 0.99), the maximum efficiency of 0.93 is obtained at
l � 100 ns.

In Fig. 4(b), we plot the efficiency as a function of 	d

and ωs . Comparing this with Fig. 2(d), we confirm that the
impedance matching leads to a high detection efficiency. The
cross section of Fig. 4(b) at 	d = 	

imp
d is shown in Fig. 4(c)

by the red solid line, which shows the detection band of
this detector. The detection efficiency exceeds 0.9 (0.8) for
a bandwidth of 11 MHz (20 MHz).

D. Discussion

Four final comments are in order. (i) The detector is
insensitive to signal photons when the qubit is excited. This
causes a dead time of the detector, which amounts to several
microseconds at the probe power of 〈nb〉 = 0.05 [Fig. 3(a)].
However, by applying a reset pulse upon detection of the
qubit excitation [20], we may shorten the dead time to several
hundreds of nanoseconds. (ii) The detection band center is
tunable by changing the drive condition. We show the detection
band for different drive conditions in Fig. 4(c). The detection
band has two peaks located at ω̃31 and ω̃41 in general. However,
as we increase ωd and accordingly 	

imp
d , κ̃52, and κ̃61 are

increased. This enhances the probe backaction and degrades
the detection efficiency. (iii) In the continuous measurement,
one may worry that the quantum Zeno effect prohibits
efficient photon detection, since the apparent measurement
time interval seems infinitely small. However, even in the
continuous measurement, the effective measurement time
interval �tm remains finite, which is determined by the
dephasing rate induced by the measuring apparatus [31,32].
Here, the probe field functions as the apparatus and �tm is
determined by SNR ∼ 1, namely, �tm ∼ 1/κb〈nb〉 ∼ 100 ns.
This is obviously long enough to avoid the Zeno effect
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FIG. 4. Single-photon detection efficiency. The probe power is
fixed at 〈nb〉 = 0.05. (a) Dependence of the detection efficiency on
the pulse length l for various integration times �t . Values of the
corresponding readout fidelity F are also indicated. The input photon
is tuned at ωs/2π = 10.0 GHz. (b) Detection efficiency as a function
of 	d and ωs for l = 100 ns and �t = 660 ns. The dashed lines
indicate ω̃41, ω̃31, and 	

imp
d . (c) Cross section of (b) at 	

imp
d /2π =

10.90 MHz (red solid). The results for different drive conditions are
also shown: ωd/2π = 4.913 GHz and 	

imp
d /2π = 16.82 MHz (green

dashed) and ωd/2π = 4.921 GHz and 	
imp
d /2π = 20.37 MHz (blue

dotted).

[see Fig. 3(a)]. (iv) The probe photons may cause the dark
counts by inducing the |̃1〉 → |̃k〉 → |̃2〉 transition (k = 5,6).
We can numerically check that this probability is about 0.2%
per one probe photon. Therefore, the dark count rate is
estimated to be (142 μs)−1 for 〈nb〉 = 0.05. A lower dark count
rate is accomplished by reducing the probe power.

VI. SUMMARY

In summary, we proposed a practical scheme for contin-
uous detection of itinerant microwave photons. The detector

consists of a qubit and two resonators in the dispersive regime.
We apply a drive field to the qubit to form an impedance-
matched � system, a signal photon to one of the resonators to
excite the qubit, and a probe field to the other to continuously
monitor the qubit. For realistic system parameters, the detector
has a maximum detection efficiency exceeding 0.9 and a
bandwidth of about 10 MHz. One can improve the performance
of the detector further by increasing the qubit lifetime and/or
the dispersive shifts.
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APPENDIX A: HEISENBERG EQUATIONS

Here we present the equations of motion for the numerical
simulation in Sec. V. The Hamiltonian of the overall system
including the three waveguides in Fig. 1 is given by

H = Hsys + Hdamp, (A1)

Hsys = (ωaa
†a + ωbb

†b)σσ † + [ωq + (ωa − 2χa)a†a

+ (ωb − 2χb)b†b]σ †σ, (A2)

Hdamp =
∫

dk[ka
†
kak +

√
κa/2π (a†ak + a

†
ka)]

+
∫

dk[kb
†
kbk +

√
κb/2π (b†bk + b

†
kb)]

+
∫

dk[kc
†
kck +

√
γ ′/2π (σ †ck + c

†
kσ )], (A3)

where ak , bk , and ck respectively denote the annihilation oper-
ator propagating in waveguides A, B, and C with wave number
k. The term representing the nonradiative decay of the qubit is
omitted here. We introduce the real-space representation of ak

by ãr = (2π )−1/2
∫

dkeikrak . In this representation, the r < 0
(r > 0) region corresponds to the incoming (outgoing) field.
From Hdamp of Eq. (A3), the following input-output relation
is derived:

ãr (t) = ãr−t (0) − i
√

κaa(t − r)θ (r)θ (t − r). (A4)

The input and output field operators are defined at r = ±0 by
ain(t) = ã−0(t) and aout(t) = ã+0(t). bin(t), bout(t), cin(t), and
cout(t) are defined similarly. The Heisenberg equation for any
system operator S (composed of σ , a, b and their conjugates)
is given by

d

dt
S = i[Hsys,S] + κa

2
(2a†Sa − a†aS − Sa†a)

+ κb

2
(2b†Sb − b†bS − Sb†b)

+ γ

2
(2σ †Sσ − σ †σS − Sσ †σ )
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+ i
√

κaa
†
in(t)[a,S] + i

√
κa[a†,S]ain(t)

+ i
√

κbb
†
in(t)[b,S] + i

√
κb[b†,S]bin(t)

+ i
√

γ ′c†in(t)[σ,S] + i
√

γ ′[σ †,S]cin(t). (A5)

Note that γ is the total decay rate of the qubit including the
nonradiative decay.

In our setup, we simultaneously input a single-photon pulse
and continuous classical fields. Analysis of the single-photon
response is simplified by (i) replacing the single-photon state
|1〉 with a coherent state |α〉, (ii) performing perturbation
calculation with respect to α, and (iii) picking up the relevant
terms afterwards [33]. Therefore, we investigate a situation in
which a classical pulse αfs(t) is applied through waveguide
A, a probe field Ep(t) is applied through waveguide B, and
a drive field Ed (t) is applied through waveguide C. Since
classical fields are in the coherent states and are therefore the
eigenstates of the input field operators, we may replace the
input-field operators with the corresponding field amplitudes.
Then, the expectation value of an operator S evolves as

d

dt
〈S〉c = i〈[Hsys,S]〉c + κa

2
(2〈a†Sa〉c − 〈a†aS〉c − 〈Sa†a〉c)

+ κb

2
(2〈b†Sb〉c − 〈b†bS〉c − 〈Sb†b〉c)

+ γ

2
(2〈σ †Sσ 〉c − 〈σ †σS〉c − 〈Sσ †σ 〉c)

+ i
√

κaα
∗f ∗

s (t)〈[a,S]〉c + i
√

κa〈[a†,S]〉cαfs(t)

+ i
√

κbE
∗
p(t)〈[b,S]〉c + i

√
κb〈[b†,S]〉cEp(t)

+ i
√

γ ′Ed (t)〈[σ,S]〉c + i
√

γ ′〈[σ †,S]〉cEd (t). (A6)

We expand 〈S〉c as 〈S〉c = ∑∞
m,n=0(α∗)mαn〈S〉mn

c . The expec-
tation value 〈S〉s for a single-photon input is obtained by

〈S〉s = 〈S〉00
c + 〈S〉11

c . (A7)

Note that 〈S〉00
c is the stationary solution in the absence of

the signal photon. We solve the simultaneous differential
equations for 〈S〉01

c , 〈S〉10
c , and 〈S〉11

c to determine 〈S〉11
c .

APPENDIX B: DETECTION EFFICIENCY

In the main part of this study, we defined the detection ef-
ficiency intuitively through the time-averaged qubit excitation
probability. Here, we investigate the detection efficiency more
rigorously on the basis of the quantum jumps of the qubit.
We observe that the deviation between these two definitions is
negligible for the parameter range discussed in this study.

1. Time-independent case

In the dispersive readout of the qubit state, we infer the
qubit state through the time-averaged probe field. First, we
preliminarily observe a case in which the qubit keeps staying
in its ground or excited state. We denote the field operator for
the probe port by c(t), which is normalized as [c(t),c†(t ′)] =
δ(t − t ′). We apply a classical field (coherent state) as the probe
of the qubit state. The phase of the probe field is sensitive to

the qubit state as

〈c(t)〉 =
{
Epeiθg for |g〉
Epeiθe for |e〉 , (B1)

where the natural phase factor e−iωpt is neglected. We
introduce the time-averaged field operator by

c̄(t) = 1√
�t

∫ t

t−�t

dt ′c(t ′), (B2)

which is normalized as [c̄(t),c̄†(t)] = 1. We infer the qubit state
through one of its quadratures, x̄(t) = Im[e−i(θg+θe)/2c̄(t)],
which maximizes the signal-to-noise ratio (SNR). The expec-
tation value of this operator is

〈x̄(t)〉 =
⎧⎨⎩−Ep

√
�t sin

(
θe−θg

2

)
for |g〉

Ep

√
�t sin

(
θe−θg

2

)
for |e〉

. (B3)

We set the threshold at 〈x̄〉 = 0 and judge the qubit
state through the sign of 〈x̄〉. Since c̄(t) is normalized as
[c̄(t),c̄†(t)] = 1, the quantum noise in each quadrature is 1/2
for a coherent state. The SNR and the readout fidelity are then
given by

SNR = 2Ep

√
�t sin

(
θe − θg

2

)
, (B4)

F = erf(SNR/
√

2), (B5)

which are Eqs. (13) and (14) of the main part. The probability
to correctly infer the qubit state is (1 + F)/2.

2. Time-dependent case

Next we investigate a more realistic situation in which
the qubit is excited at t ∼ 0 and decays gradually afterward
[Fig. 3(a)]. The detection efficiency η is defined as the
probability to detect the qubit excitation. We compare two
methods for evaluating this probability: In method 1, which we
adopted in the main part of this study, we intuitively evaluate
the detection efficiency η1 through the time-averaged qubit
excitation probability. In method 2, we evaluate the detection
efficiency η2 more rigorously based on the quantum jumps of
the qubit observed in actual measurements.

a. Method 1

In the main part of this study, we evaluate the detection
efficiency as follows. From the qubit excitation probability
pe(t), we define the time-averaged probability p̄e(t) by

p̄e(t) = 1

�t

∫ t

t−�t

dt ′pe(t ′), (B6)

and find the moment tm that maximizes p̄e(t). We define the
detection efficiency η1 as the probability to detect the qubit
excitation at this moment. Considering that the probability to
correctly infer the qubit state is (1 + F)/2, η1 is given by

η1 = p̄e(tm)
1 + F

2
+ [1 − p̄e(tm)]

1 − F
2

. (B7)
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FIG. 5. (a) The probability q(τ ) to detect the qubit excitation
as a function of the excitation duration time τ (red solid) and its
step-function approximation (blue dashed). (b) Comparison of η1

(dotted) and η2 (solid). The qubit lifetime �−1 is assumed to be 3 μs
(blue), 6 μs (red), and 16 μs (green).

b. Method 2

The qubit excitation and de-excitation is observed as the
quantum jumps in actual measurements. We consider a single
event where the qubit is excited at t = 0 and is de-excited at
t = τ . Considering the rapid response time of the resonator
(1/κb � 3.5 ns), we may regard that the probe field responds
immediately to the quantum jumps of the qubit as

〈c(t)〉 =
{
Epeiθg (t < 0,τ < t)
Epeiθe (0 � t � τ )

. (B8)

〈x̄〉 is maximized at t = (τ + �t)/2. The maximum value
depends on the duration τ of the qubit excitation as

〈x̄〉 =
⎧⎨⎩−Ep

√
�t sin

(
θe−θg

2

)(
1 − 2 τ

�t

)
(0 < τ < �t)

Ep

√
�t sin

( θe−θg

2

)
(�t < τ )

.

(B9)

Accordingly, the probability q(τ ) to detect the qubit excitation
is

q(τ ) =
{

1
2

{
1 − erf

[
SNR√

2

(
1 − 2 τ

�t

)]}
(0 � τ � �t)

1
2

[
1 + erf

(
SNR√

2

)]
(�t < τ )

.

(B10)

The shape of q(τ ) is shown in Fig. 5(a). It is a monotonically
increasing function of τ and becomes constant for τ > �t .

We denote the probability distribution function of the
duration τ of the qubit excitation by Q(τ ), which is normalized
as

∫ ∞
0 dτQ(τ ) = 1. Then, the overall probability η2 to detect

the qubit excitation is

η2 =
∫ ∞

0
dτQ(τ )q(τ ). (B11)

c. Comparison of η1 and η2

Here we compare η1 and η2 assuming a simple case in
which the qubit is excited at t = 0 and decays exponentially
with a rate of �. The excitation probability pe(t) is given by

pe(t) = θ (t)e−�t , (B12)

where θ (t) is the step function. The probability distribution
Q(τ ) is connected to pe(t) by

∫ ∞
t

dτQ(τ ) = pe(t). Q(τ ) is
therefore given by

Q(τ ) = �e−�τ . (B13)

We can show that η1 and η2 are almost identical if the
qubit decay within the integration time �t is small, namely,
��t � 1. Regarding η1, p̄e(t) is maximized at tm = �t , and
the maximum value p̄e(tm) is approximated well by pe(�t/2).
Equation (B7) is then rewritten as

η1 = pe(�t/2)
1 + F

2
+ [1 − pe(�t/2)]

1 − F
2

. (B14)

On the other hand, regarding η2, we may replace q(τ ) by a
step function [dashed line in Fig. 5(a)] as long as Q(τ ) is
almost constant for 0 � τ � �t . Then, using

∫ ∞
�t/2 dτQ(τ ) =

pe(�t/2), η2 is rewritten as

η2 = pe(�t/2)
1 + F

2
+ [1 − pe(�t/2)]

1 − F
2

, (B15)

which coincides with η1 of Eq. (B14).
In Fig. 5(b), η1 and η2 are plotted as functions of the

integration time �t , setting the probe power at 〈nb〉 = 0.05.
We confirm that the deviation between η1 and η2 is small for
�t � �−1. From Fig. 3(a), we estimate that the qubit lifetime is
about 6 μs for 〈nb〉 = 0.05. Then, |η1 − η2| � 0.01% for �t �
1 μs. Thus, we can safely regard η1 as the detection efficiency.
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