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Abstract. We theoretically investigate the optical response of a 3 system
interacting with a semi-infinite waveguide field. In particular, we focus on the
case of an impedance-matched 3 system, in which the two decay rates from
the top level are identical. We derive the analytical formulae to evaluate the
amplitude and the power spectrum of the output field, and present numerical
results assuming an implementation by a circuit quantum electrodynamics
system. For a low input power (single-photon regime), input photons are down-
converted deterministically by inducing the Raman transition in the 3 system. In
contrast, for a high input power (multi-photon regime), the conversion efficiency
decreases because of the saturation of the 3 system.
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1. Introduction

One of the hottest research topics in recent quantum optics is waveguide quantum
electrodynamics (QED), in which radiation from a single emitter (atom, quantum dot,
superconducting qubit, etc) is guided completely to a one-dimensional field propagating in a
waveguide [1]. Such one-dimensional optical setups have been usually realized by coupling
an emitter to a resonator and then to a propagating field, enhancing the one dimensionality
by the Purcell effect [2–6]. However, in circuit QED systems [7–18], where superconducting
qubits strongly interact with the microwave fields propagating in waveguides, we can achieve
excellent one dimensionality by simply coupling a qubit directly to an open waveguide field. In
these waveguide-based quantum optics systems, radiation from an emitter inevitably interferes
with the excitation field applied via the waveguide due to its one dimensionality. This results
in a drastic enhancement of the cross section in the light–matter interaction. By using a single
two-level emitter, the following phenomena that are characteristic of one-dimensional systems
have been achieved: the giant optical nonlinearity sensitive to single photons [2, 5, 7] and the
perfect reflection of single photons [6, 8–10]. Further developments have been accomplished
by using the second excited state of the qubit, i.e. the ladder-type three-level system [11–14].
These results imply that input photons deterministically interact with an emitter, and open
the possibilities of deterministic quantum control by single photons. Direct coupling of an
emitter to a tapered fiber or a plasmonic nanowire is also promising for implementation of
one-dimensional quantum-optics systems [19, 20]. We can also expect one-dimensional effects
in free space by using focused light beams [21, 22].

By using a 3-type three-level system as an emitter in waveguide QED, we can enhance
the probability that the input photon induces the Raman transition and accordingly switches
the quantum state of the 3 system. In particular, it has been theoretically revealed that this
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probability may reach unity when the following conditions are satisfied: (i) the 3 system is
coupled to the waveguide field in reflection geometry; and (ii) the two radiative decay rates from
the top level of the 3 system are identical [23–28]. Then, the input photons are never reflected
coherently and the amplitude of the reflected wave vanishes accordingly. We refer to this
phenomenon as the impedance matching by a 3 system, in analogy with properly terminated
electric circuits. Such impedance-matched 3 systems are attractive for quantum information
processing, since the expected deterministic quantum dynamics is applicable to quantum
memories [24–26], single-photon transistors [27, 28], photon sorters [29], photon–photon
gates [24–26, 30, 31] and single-photon detectors in microwave domain [32–34].

Recently, we showed that an impedance-matched 3 system can be implemented by
a practical circuit QED system in the dispersive-coupling regime [35, 36]. In this work,
assuming this circuit QED implementation, we theoretically investigate the optical response of
an impedance-matched 3 system. We consider a classical continuous microwave as the input,
and analyze the coherent amplitude and the power spectrum of the output field. However, the
essence of the results remains unchanged when we use single photons as the input, as long
as the bandwidths of the input photons are sufficiently narrow. We will show that, for a low
input power, all of the input photons are down-converted upon a single interaction with the 3

system as a result of a deterministic Raman transition [23]. This is reflected in spectroscopy
as the complete extinction of the coherent amplitude and the appearance of a dominant peak
at the down-converted frequency in the power spectrum. For a higher input power, we observe
nonlinear optical effects such as power broadening in the spectra and the degradation of the
down-conversion efficiency.

The remainder of this paper is organized as follows. We present the theoretical model and
derive analytical formulae to calculate the amplitude and power spectrum of the output field
in section 2. By assuming a circuit QED implementation, we discuss the numerical results
in section 3. Section 4 summarizes this study. We discuss implementation of an impedance-
matched 3 system by a circuit QED system in appendix A, and present the technical details of
the calculation of the power spectrum in appendix B.

2. Formulation

2.1. Hamiltonian

In this study, we analyze the optical response of a three-level 3 system to a one-dimensional
photon field propagating in a semi-infinite waveguide (figure 1). We denote the three levels and
their frequencies with |n〉 and ωn (n = 1, 2, 3) from the lowest. Putting h̄ = v = 1, where v is
the microwave velocity in the waveguide, the Hamiltonian of the overall system is

H=Hs +Hsw +Hse, (1)

Hs =

∑
m

ωmσmm, (2)

Hsw =

∫
dk ka†

k ak +
∑
m,n

∫
dk

√
κmn

2π

(
σmnak + a†

kσnm

)
, (3)

Hse =

∫
dk kb†

kbk +
∑
m,n

∫
dk

√
γmn

2π

(
σmnbk + b†

kσnm

)
, (4)
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Figure 1. Schematic representation of the setup. A three-level 3 system
interacts with the waveguide photons in reflection geometry. ωn is the
eigenfrequency of level |n〉, and κmn (γmn) is the decay rate into the
waveguide (environment). Assuming a circuit QED implementation, we
employ the following parameters in numerical simulations: (ω1, ω2, ω3)/2π =

(0, 0.08, 10.02) GHz and (κ31, κ32, γ21)/2π = (10, 10, 1) MHz. Other decay
rates are set to zero.

where σmn = |m〉〈n|, and ak is the annihilation operator of a waveguide photon with
wavenumber k. The environment is modeled by a one-dimensional boson field and bk

denotes its annihilation operator. κmn is the decay rate for |m〉 → |n〉 transition emitting a
waveguide photon. γmn is the decay rate for |m〉 → |n〉 transition dissipating the energy into
the environment. We assumed that the microwave velocity and the coupling constants (κmn and
γmn) are constant in the frequency range of interest.

Throughout this study, we consider the case in which the present setup is highly one-
dimensional (κmn � γmn) and satisfies the impedance-matching condition (κ31 = κ32). This
case is of particular interest, because the Raman transition (|1〉 → |3〉 → |2〉) is induced
deterministically by a single input photon, due to destructive interference between the incident
and elastically scattered photons. These conditions can be satisfied in a driven circuit QED
system under a proper choice of the drive frequency and the power (see appendix A).

For later convenience, we define the real-space representation ãr of the waveguide field.
We may simply define it as the Fourier transform of ak:

ãr = (2π)−1/2

∫
dk eikr ak (5)

neglecting the phase factor upon reflection [37, 38]. In this representation, the field interacts with
the 3 system at r = 0, and the r < 0 (r > 0) region represents the incoming (outgoing) field.
Throughout this study, we work in the Heisenberg picture and denote the operator A at time
t with A(t)[= eiHt Ae−iHt ]. The conventional input and output field operators of the waveguide
field are, respectively, defined by

ain(t) = ã−0(t), (6)

aout(t) = ã+0(t). (7)

bin(t) and bout(t) are defined similarly.
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2.2. State vector

In this study, we apply a continuous probe field Ein(r, t) via the waveguide and measure the
reflected field in the stationary state. We assume that the 3 system is in its ground state |1〉

initially (t = 0). Then, the initial state vector of the whole system is given by

|9i〉 =N exp

(∫
dr Ein(r, 0)̃a†

r

)
|1〉, (8)

whereN is a normalization constant. In this study, we consider up to two tones µ1 and µ2 (close
to ω31 and ω32, respectively, where ωi j = ωi − ω j ) in the input wave. Therefore,

Ein(r, t) = E1eiµ1(r−t) + E2eiµ2(r−t). (9)

2.3. Heisenberg equations

From the Hamiltonian of equation (1), we can rigorously derive the following operator
equations. The relation between the incoming (r < 0) and outgoing (r > 0) waveguide fields
is ãr(t) = ãr−t(0) − iθ(r)θ(t − r)

∑
m,n

√
κmnσnm(t − r), where θ(r) is the Heaviside step

function. By using the input and output field operators defined by equations (6) and (7), we
obtain the input–output relation of the conventional form [39]

aout(t) = ain(t) − i
∑
m,n

√
κmnσnm(t). (10)

The input–output relation for bin(t) and bout(t) is obtained by replacing κ with γ .
The Heisenberg equation for the system operator σi j is given by

d

dt
σi j =

∑
m,n

[
η

(1)

i jmnσmn − iη(2)

i jmnσmnain(t) − iη′(2)

i jmnσmnbin(t) +iη(2)

j inma†
in(t)σmn + iη′(2)

j inmb†
in(t)σmn

]
,

(11)

where η
(1)

i jmn = i(ωi − ω j)δimδ jn + ξ
(1)

i jmn + ξ ′(1)

i jmn, η
(2)

i jmn = δim
√

κ jn − δ jn
√

κmi and ξ
(1)

i jmn =
√

κmiκnj − δim
∑

ν

√
κ jνκnν/2 − δ jn

∑
ν

√
κiνκmν/2. ξ ′(1)

i jmn and η′(2)

i jmn are obtained by replacing
κ with γ .

2.4. Amplitude

In order to calculate the amplitude of the reflected field, we need the one-point correlation
functions of the system operator, 〈σmn(t)〉 = 〈9i |σmn(t)|9i〉. When the input field contains up
to two tones as in equation (9), 〈σmn(t)〉 evolves in time as 〈σmn(t)〉 =

∑
p,q s p,q

mn ei(pµ1+qµ2)t

in the stationary state, where p, q = 0, ±1, . . .. The simultaneous equations to determine
s p,q

mn are obtained from equation (11). Note that the input field operators ain(t)[= ã−t(0)] and
bin(t)[= b̃−t(0)] can be rigorously replaced with Ein(0, t) and 0, respectively, since the initial
state vector |9i〉 is an eigenstate of these operators. Thus, we have

i(pµ1 + qµ2)s
p,q
i j =

∑
m,n

[
η

(1)

i jmns p,q
mn − iE1η

(2)

i jmns p+1,q
mn − iE2η

(2)

i jmns p,q+1
mn

+iE∗

1η
(2)

j inms p−1,q
mn + iE∗

2η
(2)

j inms p,q−1
mn

]
. (12)
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The diagonal components of these equations are not linearly independent since
∑

m σmm = 1̂.
Therefore, we should replace one of them with the following equality:∑

m

s p,q
mm = δp0δq0. (13)

By solving these simultaneous equations numerically, we determine s p,q
mn . These simultaneous

equations have infinite dimension in principle, but reliable numerical results are obtained by
setting p, q = 0, . . . ,±3.

The coherent amplitude of the reflected field is determined by Eout(r, t) = 〈̃ar(t)〉. In
particular, we evaluate the field at r = +0, i.e. Eout(0, t) = 〈aout(t)〉. From the input–output
relation of equation (10), we have

Eout(0, t) = Ein(0, t) − i
∑
m,n

√
κmn〈σnm(t)〉. (14)

In the stationary state, Eout(0, t) evolves as Eout(0, t) =
∑

p,q E p,q
out ei(pµ1+qµ2)t . When we measure

the reflection coefficient, the field components at the fundamental frequencies, µ1 and µ2, are
relevant. They are, respectively, given by Eout(µ1) = E1 − i

∑
m,n

√
κmns−1,0

nm and Eout(µ2) =

E2 − i
∑

m,n

√
κmns0,−1

nm . The reflection coefficients are, respectively, given by r(µ1) = 1 −

i
∑

m,n

√
κmns−1,0

nm /E1 and r(µ2) = 1 − i
∑

m,n

√
κmns0,−1

nm /E2.

2.5. Power spectrum

The power spectrum density S(ω) of the reflected field is calculated by S(ω) =

Re
∫

∞

0 dτ eiωτ
〈a†

out(t)aout(t + τ)〉/π . This consists of the coherent and incoherent components.
The coherent component is determined by the amplitude of the reflected field. It is
given by

Sc(ω) = |Eout(µ1)|
2δ(ω − µ1) + |Eout(µ2)|

2δ(ω − µ2) + · · · . (15)

On the other hand, the incoherent component is determined by the two-point correlation
functions of the system operators, 〈σuv(t), σi j(t + τ)〉, where 〈A, B〉 = 〈AB〉 − 〈A〉〈B〉. Similar
to the one-point correlation function, this quantity is also written as 〈σuv(t), σi j(t + τ)〉 =∑

p,q〈σuv, σi j(τ )〉p,qei(pµ1+qµ2)t in the stationary state, and the static component (p = q = 0) is
measured in actual experiments. The incoherent component is then given by

Si(ω) = Re
∑

u,v,i, j

√
κuvκ j i

∫
∞

0
dτ eiωτ

〈σuv, σi j(τ )〉0,0/π. (16)

We present the technical details of the numerical calculation of Si(ω) in appendix B.

3. Numerical results

In this section, we present the numerical results. Assuming implementation by a practical circuit
QED system [35, 36], we employ the following parameters in numerical simulations (see
appendix A for derivation): (ω1, ω2, ω3)/2π = (0, 0.08, 10.02) GHz and (κ31, κ32, γ21)/2π =

(10, 10, 1) MHz. Other decay rates are assumed to be zero.
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Figure 2. (a) Stationary populations of the three levels as functions of the input
power |E1|

2. The input frequency is fixed at ω31. |1〉 is dominantly populated
for |E1|

2 . γ21 (single-photon regime), whereas |2〉 becomes more populated
for |E1|

2 & γ21 (multi-photon regime). (b) Reflection coefficient |r(µ1)| as a
function of the input power |E1|

2 and frequency µ1. The reflection amplitude
vanishes when the input field is resonant (µ1 = ω31) and weak (single-photon
regime).

3.1. Amplitude: monochromatic input

Here we assume a monochromatic input, i.e. Ein(0, −t) = E1e−iµ1t , and discuss the amplitude
of the reflected field. The input frequency is tuned close to the |1〉 ↔ |3〉 transition (µ1 ' ω31),
where the input photons interact with the 3 system most efficiently. We quantify the input power
by |E1|

2, which has a dimension of inverse of time and represents the input photon number per
unit time.

Since the present system is impedance-matched (κ31 = κ32), a resonant input photon
induces the Raman transition |1〉 → |3〉 → |2〉 almost deterministically and |2〉 → |1〉 relaxation
follows afterwards. The bottleneck process in this cycle is |2〉 → |1〉 relaxation since κ31,

κ32 � γ21. Therefore, the maximal rate of the down-conversion by this 3 system is γ21. On
the other hand, photons are input into the 3 system with a rate of |E1|

2. Therefore, we can
define the single-photon and multi-photon regimes by |E1|

2 . γ21 and |E1|
2 & γ21, respectively.

In the single-photon regime, only a single photon is involved in the dynamics of the 3 system
and the linear optical response is expected. In contrast, in the multi-photon regime, more than
two photons are involved and nonlinear effects appear.

The stationary populations of the three levels, Pn = 〈σnn〉, are plotted as functions of the
input power in figure 2(a), where µ1 = ω31. Since γ21/2π = 1 MHz, the boundary between
the single-photon and multi-photon regimes is located at |E1|

2
∼ 106 s−1. We observe that

the ground level |1〉 is populated dominantly in the single-photon regime. In contrast, in the
multi-photon regime, the metastable level |2〉 becomes more populated than |1〉 because of the
saturation.

The reflection coefficient is plotted as a function of the input power |E1|
2 and frequency

µ1 in figure 2(b). We observe a dip centered at µ1 = ω31 in the single-photon regime. The
width of the dip is determined by κ31 (2π × 10 MHz). In the single-photon regime, the reflection
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coefficient is analytically given by

r(µ1) = |Eout/Ein| =

∣∣∣∣−κ31 + κ32 + γ31 + γ32 + i(µ1 − ω31)

κ31 + κ32 + γ31 + γ32 + i(µ1 − ω31)

∣∣∣∣ . (17)

Therefore, the conditions for the complete extinction of reflection (in other words, impedance
matching) are µ1 = ω31 and κ31 = κ32 + γ31 + γ32. Note that, even under the existence of finite
dissipation (γ31 and γ32), impedance matching may take place. The physical origin of this
phenomenon is the destructive interference between the input field and elastically scattered
field, which is characteristic of one-dimensional optical systems. For a higher input power
in the multi-photon regime, level |2〉 is more populated than |1〉 because of the saturation
(figure 2(a)). Then, the input field at ω31 tends to be reflected without interacting with the 3

system, and the amplitude of the reflected field increases monotonically in the multi-photon
regime.

3.2. Amplitude: dichromatic input

Here we assume a dichromatic input, i.e. Ein(0, −t) = E1e−iµ1t + E2e−iµ2t , where µ1 ' ω31 and
µ2 ' ω32. We refer to E1e−iµ1t (E2e−iµ2t ) as the first (second) field in this subsection. The
stationary populations of the three levels are plotted as functions of |E2|

2 in figure 3(a), where
µ1 = ω31, µ2 = ω32 and |E1|

2
= 105 s−1 (single-photon regime). We observe that, except for

the cases where the second field is extremely strong, the second field has little effect and the 3

system remains unexcited. This is because the resonance frequency of the 3 system is ω31 when
it occupies the ground level, and the second field is highly out of resonance.

However, the second field generates the dressed states by mixing |2〉 and |3〉, and shifts
the resonance of the 3 system. In figure 3(b), we plot the reflection coefficient |r(µ1)| of
the first field as a function of µ1 and |E2|

2, fixing µ2 (= ω32) and |E1|
2 (= 105 s−1, single-

photon regime). We clearly observe the Rabi splitting of level |3〉. The dip frequencies can
be fitted simply by ω31 ±

√
κ32|E2|, by considering the dressing between only two levels, |2〉

and |3〉. However, this fitting breaks down when the second field is extremely strong, where
level |1〉 becomes involved in the formation of the dressed states [14]. In figure 3(c), we plot the
reflection coefficient |r(µ1)| as a function of µ2 and |E2|

2, fixing µ1(= ω31) and |E1|
2(= 105 s−1,

single-photon regime). When the second field is absent or weak, reflection of the first field is
prohibited nearly completely, as we discussed in section 3.1. However, as we increase |E2|

2, the
first field gradually goes out of resonance due to the Rabi splitting of level |3〉 and the perfect
extinction of the reflected wave breaks down. We observe a peak at µ2 = ω32 (2π × 9.94 MHz),
which indicates the revival of reflection. The width of the revived peak is of the order of Rabi
splitting induced by the second field,

√
κ32|E2|. The physical mechanism of this phenomenon

is essentially the same as that of electromagnetically induced transparency (EIT) [11, 40]. The
only difference is the following point: in EIT, the input field transmits the optical system when
they do not interact. In contrast, in the present phenomenon, the input field is reflected at the end
of the waveguide when the field does not interact with the 3 system. Another remarkable point
in figure 3(b) is the asymmetric spectrum in the high-power region. This is due to excitation of
the ω31 transition (2π × 10.02 GHz) by the second field.

The reflection coefficient of the second field, |r(µ2)|, is also plotted in figure 3(c). Since
the levels |2〉 and |3〉 are nearly unoccupied (see figure 3(a)), the second field interacts with the
3 system only virtually. Therefore, the second field is almost unaffected in comparison with the
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Figure 3. (a) Stationary populations of the three levels as functions of |E2|
2. The

other parameters are fixed at µ1 = ω31, µ2 = ω32 and |E1|
2
= 10−5 s−1 (single-

photon regime). (b) Reflection coefficient |r(µ1)| of the first field as a function
of µ1 and |E2|

2. The other parameters are µ2 = ω32 and |E1|
2
= 10−5 s−1. Rabi

splitting of level |3〉 induced by the second field is observed. The dip frequencies
are fitted by ω31 ±

√
κ32|E2| (white dotted lines). (c) Reflection coefficient

|r(µ1)| as a function of |E2|
2 and µ2. The other parameters are µ1 = ω31

and |E1|
2
= 10−5 s−1. The reflected wave revives by applying the second field.

(d) Reflection coefficient |r(µ2)| of the second field as a function of µ2 and
|E2|

2. The other parameters are µ1 = ω31 and |E1|
2
= 10−5 s−1.

first field. The background spectrum is asymmetric in the high-power region of figure 3(c) due
to the ω31 resonance.

3.3. Power spectrum

In this subsection, we discuss the power spectrum of the reflected field. We investigate the cases
of a monochromatic input of the first field (µ1 ' ω31) only. The second field (µ2 ' ω32) does
not yield remarkable effects on the power spectrum. The power spectrum is composed of the
coherent part Sc(ω) and the incoherent part Si(ω), as we discussed in section 2.5. We mainly
discuss the incoherent part here, since most of the input photons are scattered inelastically upon
interaction with the impedance-matched 3 system.

We plot Si(ω) in figure 4(a), by fixing the input frequency at µ1 = ω31 and varying the
power |E1|

2. In the single-photon regime (|E1|
2 . γ21), we observe a dominant peak at the
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Figure 4. Spectral shapes of Si(ω). (a) The input frequency is fixed at µ1 = ω31

and the power is varied: |E1|
2
= 105 (solid), 106 (dotted), 107 (dashed) and 108

(dash-dotted). The down-converted peak (ω32) is dominant in the single-photon
regime (|E1|

2 . γ21), implying the nearly deterministic down-conversion of the
input photons. For a stronger input power (|E1|

2 & γ21), the conversion efficiency
decreases. (b) The input power is fixed at |E1|

2
= 106 (single-photon regime)

and the frequency is varied: µ1 = 10.01 GHz (solid), 10.02 GHz (dotted) and
10.03 GHz (dashed). The down-converted peak is centered at µ1 − ω21.

down-converted frequency ω32 and a much weaker peak at the input frequency ω31. Furthermore,
as observed in figure 2(b), elastic scattering is strongly suppressed. Thus, most input photons are
down-converted upon a single interaction with the 3 system. The spectral width is determined
by γ21, i.e. the inversed lifetime of level |2〉. The peak height increases linearly with the input
power. In contrast, in the multi-photon regime (|E1|

2 & γ21), the spectrum becomes broader as
the input power increases (power broadening) [41, 42]. We also observe that the peak at the input
frequency becomes comparable to the peak at the down-converted frequency. Namely, the down-
conversion efficiency decreases by increasing the input power. We plot Si(ω) in figure 4(b),
by fixing the input power at |E1|

2
= 105 s−1 (single-photon regime) and varying the frequency

µ1. As we increase the detuning |µ1 − ω31|, the interaction between the input field and the
3 system becomes weaker and the probability of inelastic scattering decreases. However, the
spectral shape is almost unchanged. The down-converted peak appears at µ1 − ω21. Namely,
the red-shift from the input frequency is always ω21 (= 2π × 80 MHz).

We examine the properties of the down-converted photons in more detail. We define the
down-conversion efficiency with the area of the down-converted peak normalized by the input
flux, i.e.

∫ ω′′

ω′

dω

2π
Si(ω)/|E1|

2, where we have chosen (ω′, ω′′)/2π = (9.9, 9.98) GHz. Figures 5(a)
and (b) plot the conversion efficiency and the linewidth of the peak as functions of the input
power, by assuming a resonant input (µ1 = ω31). In order to observe the effects of the maximal
down-conversion rate, γ21 is varied in figure 5. In the single-photon regime (|E1|

2 . γ21),
the 3 system responds to the input field linearly. The linewidth takes a constant value of
γ21/2π regardless of the input power. The down-conversion efficiency is analytically given
by κ32/(κ32 + γ31 + γ32) in the single-photon regime. Since κ32 � γ31, γ32 in this system, the
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Figure 5. (a) Down-conversion efficiency and (b) linewidth of the down-
converted peak, as functions of the input power |E1|

2. The input frequency
is fixed at µ1 = ω31. γ21/2π = 0.5 MHz (solid), 1 MHz (dotted) and 2 MHz
(dashed). A larger γ21 avoids saturation (population of |2〉) and therefore
improves the down-conversion efficiency. The width of the down-converted peak
is determined by γ21 for a weak input.

down-conversion efficiency is almost unity. In contrast, in the multi-photon regime (|E1|
2 &

γ21), we observe nonlinear effects. The conversion efficiency decreases monotonically due to
saturation, and the efficiency is halved when |E1|

2
' γ21. We also confirm the power broadening

of the spectral width [41, 42].

4. Summary

We theoretically investigated the interaction between an impedance-matched 3 system and a
semi-infinite waveguide field. By assuming a classical continuous field as the input, we analyzed
the coherent amplitude and the power spectrum of the output (reflected) field. By the ratio of the
maximal rate of the down-conversion and the input flux, we can define the single-photon and
multi-photon regimes of the input power. In the single-photon regime, all of the input photons
are down-converted deterministically. The coherent amplitude vanishes in the reflected field and
the power spectrum has a dominant peak at the down-converted frequency. In the multi-photon
regime, due to the saturation of the 3 system, we observe nonlinear optical effects such as
power broadening in the spectrum and the decrease of the down-conversion efficiency. We also
investigated the two-tone spectroscopy, showing that the additional field breaks the impedance
matching and revives the coherent amplitude in the reflected field.
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frequency (ωq − 3χ < ωd < ωq − χ ). (c) Energy diagram of the dressed states
(E 6= 0). Dotted lines in (b) and (c) indicate the allowed optical transitions.
Oblique decay paths are generated by driving.

Appendix A. Implementation in circuit quantum electrodynamics

Here, we outline how to implement an impedance-matched 3 system in circuit QED [35].
Figure A.1(a) is the schematic of the considered system [36]. It is composed of a driven qubit,
a resonator and two waveguides. Waveguide 1 is the probe input/output port and waveguide 2
is the qubit drive port. This system is described by a driven Jaynes–Cummings Hamiltonian

H(t) =Hs(t) +Hsw +Hse, (A.1)

Hs(t) = ωqσ
†σ + ωra

†a + g(σ †a + a†σ) +
√

γ [E(t)σ † + E∗(t)σ ], (A.2)

Hsw =

∫
dk

[
kb†

kbk +
√

κ/2π(a†bk + b†
ka)

]
, (A.3)

Hse =

∫
dk

[
kc†

kck +
√

γ /2π(σ †ck + c†
kσ)

]
. (A.4)

where σ and a are the annihilation operators for the qubit and the resonator, and bk and ck

are the field operators for waveguides 1 and 2, respectively. The meanings of the parameters
are as follows: ωq (qubit frequency), ωr (resonator frequency), g (qubit–resonator coupling),
κ (decay rate of resonator into waveguide 1) and γ (decay rate of qubit into waveguide 2).
The qubit drive is monochromatic, E(t) = Ee−iωdt . The parameter values are as follows:
(ωq, ωr)/2π = (5, 10) GHz and (g, κ, γ )/2π = (500, 20, 1) MHz. Note that the qubit and the
resonator are highly detuned and are coupled dispersively.

The Hamiltonian becomes static in the frame rotating at ωd. Then, Hs = (ωq − ωd)σ
†σ +

(ωr − ωd)a†a + g(σ †a + a†σ) +
√

γ (Eσ † + E∗σ). Hsw and Hse remain unchanged except that
the origin of frequency is shifted by ωd. We denote the product state of the qubit and the
resonator by |i, j〉(= |i〉q| j〉r), where i = 0, 1 and j = 0, 1, . . .. When the drive is off (E = 0),
their eigenfrequencies are given, within the second-order perturbation in g, by ω|0,n〉 = n(ωr −

ωd + χ) and ω|1,n〉 = ωq − ωd − χ + n(ωr − ωd − χ), where χ = g2/(ωr − ωq) is the dispersive
level shift. Here, only the four lowest levels (|0, 0〉, |0, 1〉, |1, 0〉 and |0, 1〉) are relevant. In order
to achieve the impedance matching by driving, it is necessary to make the energy diagram
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Figure A.2. (a) Decay rates (κ31, κ32 and γ21) and (b) transition frequencies (ω31,
ω32, ω41 and ω42, where ωi j = ω j − ωi ) as functions of the drive power. The
impedance-matching condition is satisfied at �R/2π = 19 MHz (dotted vertical
line). At this point, the two lower states are almost unmixed, i.e. |1〉 = |0〉q|0〉r

and |2〉 = |1〉q|0〉r.

nested as in figure A.1(b) [35]. Therefore, the drive frequency should be chosen to satisfy
ωq − 3χ < ωd < ωq − χ . We set ωd/2π = 4.87 GHz to satisfy this.

We refer to the eigenstates ofHs as the dressed states and denote them and their frequencies
by |n〉 and ωn (n = 1, 2, . . .). By switching to the dressed-state base, we obtain the static
Hamiltonian of equation (1). The decay rates κmn and γmn of equation (1) are given by

κmn = κ|〈m|a†
|n〉|

2, (A.5)

γmn = γ |〈m|σ †
|n〉|

2. (A.6)

The drive field mixes the lower (higher) two levels in figure A.1(b) to form the dressed states |1〉

and |2〉 (|3〉 and |4〉) in figure A.1(c). We may use the three states |1〉, |2〉 and |3〉 or |1〉, |2〉 and
|4〉 as the 3 system. We choose the former in the following. The decay is of resonator origin
for |3〉 → |1〉 and |3〉 → |2〉, whereas the decay is of qubit origin for |2〉 → |1〉. Figures A.2(a)
and (b), respectively, plot the decay rates (κ31, κ32 and γ21) and the transition frequencies (ω31,
ω32, ω41 and ω42 where ωi j = ωi − ω j ) as functions of the drive power. We employ the Rabi
frequency of the qubit, �R =

√
γ |E |, as a measure of the drive power here. It is observed that

the impedance-matching condition, κ31 = κ32, can be satisfied at a drive power of �R/2π =

19 MHz. At this drive power, the decay rates are (κ31, κ32, γ21)/2π ' (10, 10, 1) MHz and the
transition frequencies are (ω31, ω32)/2π ' (10.02, 9.94) GHz. Note that the drive frequency ωd,
which has been subtracted in this section due to the rotating frame, is recovered here.

Appendix B. Calculation of S i(ω)

Here we discuss technical details in the evaluation of Si(ω). The two-point correlation functions,
〈σuv(t), σi j(t + τ)〉, have the following properties: (i) the correlation between the two operators is
lost in the τ → ∞ limit. Therefore, limτ→∞〈σuv(t), σi j(t + τ)〉 = 0. (ii) the equations of motion
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for the two-point functions with respect to τ(> 0) are the same as those for the one-point
functions.

For calculation of Si(ω), we introduce the following two quantities:

H pq
uv,i j(ω) =

1

π

∫
∞

0
dτei(ω−pµ1−qµ2)τ 〈σuv, σi j(τ )〉p,q, (B.1)

J pq
uv,i j(ω) =

1

π

∫
∞

0
dτei(ω−pµ1−qµ2)τ

d

dτ
〈σuv, σi j(τ )〉p,q, (B.2)

where the variable t is omitted for simplicity. By partially integrating equation (B.2),
J pq

uv,i j = −〈σuv, σi j〉
p,q/π − i(ω − pµ1 − qµ2)H pq

uv,i j . We can evaluate 〈σuv, σi j〉
p,q from the one-

point quantities as 〈σuv, σi j〉
p,q

= δvi s
p,q
u j −

∑
p′,q ′ s p−p′,q−q ′

uv s p′,q ′

i j . On the other hand, from the

equation of motion, we have J pq
uv,i j =

∑
m,n(η

(1)

i jmn H p,q
uv,mn − iE1η

(2)

i jmn H p+1,q
uv,mn − · · ·). From these

two equations, we have

−
1

π
〈σuv, σi j〉

p,q
− i(ω − pµ1 − qµ2)H pq

uv,i j =

∑
m,n

(
η

(1)

i jmn H p,q
uv,mn − iE1η

(2)

i jmn H p+1,q
uv,mn − · · ·

)
.

(B.3)

Note that the right-hand side of equation (B.3) is obtained by replacing s p,q
mn with H p,q

uv,mn in

equation (12). Since
∑

m σmm(= 1̂) commutes with any operator, we replace one of the diagonal
components with the following equality:∑

m

H p,q
uv,mm = 0. (B.4)

By solving the above simultaneous equations numerically, we can determine H p,q
uv,i j(ω). The

incoherent component of the spectrum, Si(ω), is given by

Si(ω) = Re
∑

u,v,i, j

√
κuvκ j i H 0,0

uv,i j(ω). (B.5)

The validity of the numerical results is checked by the sum rule of
∫

dωSi(ω) =

Re
∑

u,v,i, j
√

κuvκ j i〈σuv, σ j i〉
0,0.
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