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Theory of resonance fluorescence from a solid-state cavity QED system: Effects of pure dephasing
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We theoretically analyze the resonance fluorescence of a solid-state cavity quantum electrodynamics (QED)
system that consists of a quantum dot and a cavity. We clarify the effects of pure dephasing by investigating
the elastic and inelastic scattering probabilities, the fluorescence power spectrum, and the energy exchange
with the environment. Pure dephasing interactions with the environment both enhance nonresonant coupling
between the dot and the cavity and enable the pump light to continuously absorb energy from the environment
under appropriate conditions.
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I. INTRODUCTION

Indistinguishable single photons that undergo perfect two-
photon interference are the key physical resource for optical
quantum information processing [1]. It is thus critical to
develop techniques for high-fidelity deterministic generation
of such single photons [2–5]. Cavity quantum electrody-
namics (QED) systems are promising for deterministically
generating single photons. In these systems, spontaneous
emission from a single emitter is predominantly forwarded to
a one-dimensional field (the radiation pattern of the cavity)
due to the Purcell effect [6]. Cavity QED systems have
been realized in various physical systems, including real
atoms in Fabry-Perot or toroidal cavities [7–9], semiconductor
quantum dots in planar or photonic crystal cavities [10,11], and
superconducting qubits coupled to a microwave transmission
line [12,13]. The principal advantage of systems employing
real atoms or molecules is the long quantum coherence
times of the atoms and the cavity photons. In contrast,
solid-state cavity QED systems have practical advantages such
as dominant coupling to a one-dimensional external field [14]
and spatial compactness. These advantages make them suitable
for constructing scalable quantum networks.

A recent hot topic in the field of solid-state cavity QED
systems is nonresonant coupling between the quantum dot and
the cavity. In several experiments, strong emission has been
observed at the cavity frequency, although the pump laser is
tuned to the dot that has a large detuning from the cavity
[15–19]. This phenomenon has not been observed in atomic
cavity QED systems and is considered to be unique to
solid-state systems. Recent theoretical studies have investi-
gated radiative decay of an excited dot coupled to a cavity
and have clarified the effects of pure dephasing on the
spontaneous-emission power spectrum [20–22]. The emitted
photon spectrum obeys the following formula [20,23]:

Sse(ω) ∝ |(ω − ω̃d )(ω − ω̃c) − g2|−2, (1)

where ω̃d and ω̃c are the complex frequencies of the dot and
cavity, respectively. When the dot linewidth is much narrower
than the cavity linewidth (Im ω̃d � Im ω̃c), as is the case in
atomic cavity QED systems, a dominant peak of Sse(ω) appears
at the dot frequency. In contrast, when the dot linewidth far
exceeds the cavity linewidth due to pure dephasing (Im ω̃d �
Im ω̃c), a dominant peak appears at the cavity frequency.

This partly explains the experimentally observed strong
emission at the cavity frequency in solid-state cavity QED
systems.

In actual experiments, a continuous laser beam is commonly
employed as a pump and resonance fluorescence from the
system is measured in the stationary state. The spontaneous-
emission and resonance fluorescence spectra are expected
to be strongly related, but their quantitative relationship is
still unclear. Resonance fluorescence consists of coherent
and incoherent components (i.e., elastically and inelastically
scattered light), but the spontaneous-emission spectrum ap-
parently has no connection with the coherent component.
Furthermore, regarding the incoherent component, strong-field
effects such as Mollow triplets and stimulated emission can
never appear in Sse(ω). The objective of this study is to
quantitatively analyze resonance fluorescence from solid-state
cavity QED systems and to reveal the effects of strong pure
dephasing of the dot induced by the solid-state environments.
In this study, we treat the five elements of the overall system
(dot, cavity, leakage from cavity, noncavity radiation of the
dot, and pure dephasing of the dot due to the environ-
ment) as active quantum-mechanical degrees of freedom. By
rigorously solving the resultant Heisenberg equations, we
present numerical results for the elastic and inelastic scattering
probabilities and the power spectrum of the cavity radiation.
Furthermore, we show that the pump light can absorb energy
from the environment through pure-dephasing coupling under
appropriate conditions.

The effects of pure dephasing have been investigated
intensively in atomic cavity QED systems in light of quantum
nondemolition measurements [24–29]. The differences be-
tween these works and the present one are as follows: In Refs.
[24–29], the atom is used as a probe for inferring the quantum
state of cavity photons and interacts with intracavity photons
without being pumped. The main concern of these studies is the
correlation between the atomic and photonic states generated
by their interaction. In contrast, in this study, the quantum dot
is pumped continuously by an external laser. We are mainly
concerned with the stationary optical response of the dot-cavity
system and investigate the quantum-mechanical properties of
resonance fluorescence from this system.

The remainder of this paper is organized as follows: We
present the theoretical model in Sec. II and the resultant
Heisenberg equations in Sec. III. We discuss the correlation
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FIG. 1. (Color online) Schematic illustration of the solid-state
cavity QED system considered. It consists of a quantum dot, a cavity,
leakage from the cavity (b field), noncavity radiation modes (c field),
and the environment that causes pure dephasing of the dot (d field).
The pump light is input from the c field. The coupling constants are
defined in the text.

functions of system operators in Sec. IV and present analytic
and numerical results for the fluorescence in Secs. V and VI,
respectively. Section VII summarizes the study.

II. SYSTEM

Figure 1 shows the physical setup considered in this study.
A quantum dot in a one-sided cavity is pumped by a continuous
laser beam incident from the side. The overall system consists
of the following elements: (i) a quantum dot, (ii) a cavity, (iii) a
radiation field leaking from the cavity, (iv) noncavity radiation
modes, and (v) the environment that causes pure dephasing of
the dot. In this study, we treat these five elements as active
quantum-mechanical degrees of freedom. Putting h̄ = c = 1,
the Hamiltonian is given by

H = H1 + H2 + H3 + H4, (2)

H1 = ωdσ11 + ωca
†a + g(σ10a + a†σ01), (3)

H2 =
∫

dk[kb
†
kbk +

√
κ/(2π )(a†bk + b

†
ka)], (4)

H3 =
∫

dk[kc
†
kck +

√
γ /(2π )(σ10ck + c

†
kσ01)], (5)

H4 =
∫

dk[kd
†
kdk + √

γp/πσ11(d†
k + dk)], (6)

where H1 describes the coherent interaction between the
dot and the cavity (Jaynes-Cummings Hamiltonian [30]), H2

describes the leakage of cavity photons into the radiation
pattern, H3 describes the radiative decay of the dot into
noncavity modes, and H4 describes pure dephasing of the
dot.

The parameters are defined as follows: ωd and ωc respec-
tively denote the resonance frequencies of the dot and the
cavity, g is the coherent coupling between them, κ is the
cavity photon decay rate, γ is the radiative decay rate of
the dot into noncavity modes, and γp is the pure-dephasing
rate. The operators are defined as follows: The dot has
ground and excited states (|0〉 and |1〉, respectively), and
its transition operator is denoted by σij = |i〉〈j |. a is the
annihilation operator of the cavity. bk , ck , and dk respectively
denote the field operators (wave-number representation) of
leakage from the cavity, noncavity radiation modes, and the
environment causing pure dephasing of the dot. The real-space

representations of these operators are defined in terms of their
Fourier transforms. For example,

b̃r = (2π )−1/2
∫

dkeikrbk. (7)

In the real-space representations, the fields interact with the
dot-cavity system at r = 0.

As illustrated in Fig. 1, we consider resonance fluorescence
from the system pumped by a laser beam incident from the
noncavity modes. At the initial time (t = 0), we assume that
the pump has not arrived at the dot and that there are no
other excitations in the overall system besides the pump light.
Denoting the total vacuum state by |0〉, the initial state vector
is given by

|ψi〉 = N exp

(∫
drEin(r )̃c†r

)
|0〉, (8)

where N = exp(− ∫
dr|Ein(r)|2/2) is a normalization con-

stant and Ein(r) represents the pump light at the initial time,
which is given by

Ein(r) =
{
Eeiωpr (r < 0)
0 (0 < r),

(9)

where E is the pump amplitude and ωp is the pump frequency.
Note that |ψi〉 is in a coherent state and thus is an eigenstate
of the initial field operators, satisfying c̃r (0)|ψi〉 = Ein(r)|ψi〉
and b̃r (0)|ψi〉 = d̃r (0)|ψi〉 = 0. It is often useful to character-
ize the pump amplitude by the Rabi frequency �, which is
defined by

� = 2
√

γE. (10)

Although we have modeled the noncavity radiation modes
by a single continuum (ck) for simplicity, they should in
principle be modeled by many independent continua in order
to reflect their in-plane directions. Furthermore, although
we have modeled pure dephasing of the dot by coupling
only |1〉 to the environment, in reality |0〉 also interacts
with the environment and is subject to energy fluctuations.
These extensions are straightforward and require redefining
the parameters, but the essence of the theory remains the same.

III. HEISENBERG EQUATIONS

Throughout this study, our analysis is based on the
Heisenberg equations that are derivable from the Hamiltonian
of Eq. (2), together with the initial state vector of Eq. (8). The
input-output relations connecting the incoming (r < 0) and
outgoing (r > 0) fields are given by [31]

b̃r (t) = b̃r−t (0) − i
√

κθ (r)θ (t − r)a(t − r), (11)

c̃r (t) = c̃r−t (0) − i
√

γ θ (r)θ (t − r)σ01(t − r), (12)

d̃r (t) = d̃r−t (0) − i
√

2γpθ (r)θ (t − r)σ11(t − r), (13)

where θ (r) is the Heaviside step function. The Heisenberg
equations for a, σ01, and σ11 are given by

d

dt
a = −iω̃ca − igσ01 − iNb(t), (14)
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d

dt
σ01 = −iω̃dσ01 − ig(1 − 2σ11)a − i(1 − 2σ11)Nc(t)

− i[N †
d (t)σ01 + σ01Nd (t)], (15)

d

dt
σ11 = −γ σ11 + ig(a†σ01 − σ10a)

+ i
[
N †

c (t)σ01 − σ10Nc(t)
]
, (16)

where the complex frequencies of dot and cavity are defined
respectively by ω̃d = ωd − i(γ /2 + γp) and ω̃c = ωc − iκ/2
and the noise operators are defined by Nb(t) = √

κb̃−t (0),
Nc(t) = √

γ c̃−t (0), and Nd (t) = √
2γpd̃−t (0). The Heisen-

berg equations for general system operators (Am,n
0,0 = a†man,

A
m,n
0,1 = σ01a

†man, and A
m,n
1,1 = σ11a

†man) are given by

d

dt
A

m,n
0,0 = ε

m,n
0,0 A

m,n
0,0 + ig

(
mA

m−1,n
1,0 − nA

m,n−1
0,1

)
+ i

[
mN

†
b (t)Am−1,n

0,0 − nA
m,n−1
0,0 Nb(t)

]
, (17)

d

dt
A

m,n
0,1 = ε

m,n
0,1 A

m,n
0,1 + ig

(
2A

m,n+1
1,1 − A

m,n+1
0,0 + mA

m−1,n
1,1

)
+ i

[
mN

†
b (t)Am−1,n

0,1 − nA
m,n−1
0,1 Nb(t)

]
+ i

(
2A

m,n
1,1 − A

m,n
0,0

)
Nc(t)

− i
[
N

†
d (t)Am,n

0,1 + A
m,n
0,1 Nd (t)

]
, (18)

d

dt
A

m,n
1,1 = ε

m,n
1,1 A

m,n
1,1 + ig

(
A

m+1,n
0,1 − A

m,n+1
1,0

)
+ i

[
mN

†
b (t)Am−1,n

1,1 − nA
m,n−1
1,1 Nb(t)

]
+ i

[
N †

c (t)Am,n
0,1 − A

m,n
1,0 Nc(t)

]
, (19)

where εm,n
μ,v = i(m − n)ωc − i(μ − v)ωd − m+n

2 κ − μ+v

2 γ −
δμ+v,1γp. The equation of motion for A

m,n
1,0 is given by

A
m,n
1,0 = (An,m

0,1 )†.

IV. CORRELATION FUNCTIONS

A. One-time correlation functions

In this section, we discuss the one- and two-time correlation
functions of the system operators. The one-time correlation
function can be evaluated immediately from the Heisenberg
equations and the initial state vector. We discuss 〈a(t)〉
and 〈σ01(t)〉 as examples. Generalization to other quantities,
including higher-order ones, is straightforward. Since the
noise operators can be replaced by c numbers as Nb(t)|ψi〉 =
Nd (t)|ψi〉 = 0 and Nc(t)|ψi〉 = (�/2)e−iωpt |ψi〉, we have

d

dt
〈a〉 = −iω̃c〈a〉 − ig〈σ01〉, (20)

d

dt
〈σ01〉 = −iω̃d〈σ01〉 − ig(〈a〉 − 2〈σ11a〉)

− i�e−iωpt (1/2 − 〈σ11〉). (21)

When stationary, 〈σμva
†man(t)〉 evolves in time as 〈σμva

†m

an(t)〉=〈σμva
†man〉sei(m−n+μ−v)ωpt , where 〈σμva

†man〉s is a

constant. We then have

0 = −iω̃′
c〈a〉s − ig〈σ01〉s , (22)

i�/2 = −iω̃′
d〈σ01〉s − ig(〈a〉s − 2〈σ11a〉s) + i�〈σ11〉s ,

(23)

where ω̃′
c = ω̃c − ωp and ω̃′

d = ω̃d − ωp are complex
frequencies in the rotating frame. The above equations,
together with those for other higher-order quantities, form
a set of simultaneous inhomogeneous linear equations.
Although these simultaneous equations involve an infinite
number of variables, accurate numerical results can be
obtained by considering up to 15 cavity photons.

B. Two-time correlation functions

As an example of a two-time correlation function, we inves-
tigate 〈a†(t)a(t + τ )〉. This quantity becomes independent of t

when stationary and the correlation between the two operators
is lost in the τ → ∞ limit. Therefore, we can divide it into
transient and stationary components as

〈a†(t)a(t + τ )〉 = [〈a†,a(τ )〉 + 〈a〉∗s 〈a〉s]e−iωpτ . (24)

The equation of motion for the transient component is
derivable from Eq. (14). Since 〈a†,a(−τ )〉 = 〈a†,a(τ )〉∗, we
assume τ � 0 in the following. Since the noise operators at
t + τ commute with the system operators at t , we have

d

dτ
〈a†,a(τ )〉 = −iω̃′

c〈a†,a(τ )〉 − ig〈a†,σ01(τ )〉. (25)

Thus, the equations of motion for the two-time functions
are similar to those for the one-time functions. The initial
and asymptotic values are given respectively by 〈A,B(0)〉 =
〈AB〉s − 〈A〉s〈B〉s and 〈A,B(∞)〉 = 0 for any two system
operators.

As we see in Sec. V B, we are interested in the following
integral:

Ia†,a(ω) =
∫ ∞

0
dτ 〈a†,a(τ )〉ei(ω−ωp)τ . (26)

In order to evaluate this quantity compactly, we calculate
Ja†,a(ω) = ∫ ∞

0 dτ d
dτ

〈a†,a(τ )〉ei(ω−ωp)τ in two ways. By par-
tially integrating the right-hand side, we have Ja†,a(ω) =
−〈a†,a(0)〉 − i(ω − ωp)Ia†,a(ω). On the other hand, by using
Eq. (25), we have Ja†,a(ω) = −iω̃′

cIa†,a(ω) − igIa†,σ01
(ω).

From the above two equations, we obtain the following
equation:

−〈a†,a(0)〉 = −iω̃′′
c Ia†,a(ω) − igIa†,σ01

(ω), (27)

where ω̃′′
c = ω̃′

c − (ω − ωp). This equation, together with
those for other variables such as Iσ10,σ01 (ω), also forms a set of
simultaneous inhomogeneous linear equations.

V. ANALYTIC RESULTS

In this section, we discuss how the system variables
discussed in Sec. IV affect the output radiation proper-
ties such as its amplitude and power spectrum. We also
express the photon and energy fluxes in terms of the system
variables and observe how the photon number and energy are
conserved between the input and output.
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A. Coherent amplitude

We first discuss the coherent amplitudes of the output
fields, which are defined as the one-time correlation functions
of field operators by Eb

out(r,t) = 〈̃br (t)〉, Ec
out(r,t) = 〈̃cr (t)〉,

and Ed
out(r,t) = 〈d̃r (t)〉. Such amplitudes can, in principle, be

measured by homodyne measurements and yield the coherent
components in the power spectra. From Eqs. (11)–(13) and
(8), we have in the stationary state (t → ∞)

Eb
out(r,t) = −i

√
κ〈a〉seiωp(r−t), (28)

Ec
out(r,t) = (E − i

√
γ 〈σ01〉s)eiωp(r−t), (29)

Ed
out(r,t) = −i

√
2γp〈σ11〉s . (30)

Note that the input wave is superimposed on the emission from
the system in Ec

out, whereas Eb
out and Ed

out consist only of the
emission.

B. Power spectrum

The power spectrum Sb(ω) of cavity emission is defined as
the Fourier transform of the two-time correlation function in
the b field. It is given by

Sb(ω) = lim
T →∞

∫∫ T

0

dt1dt2

2πT
eiω(t2−t1)〈̃b†r (t1)̃br (t2)〉, (31)

where r (>0) represents the detector position. Since the two-
time correlation function depends only on the difference in
time when stationary, the above equation is rewritten as

Sb(ω) = Re
∫ ∞

0

dτ

π
eiωτ 〈̃b†r (t )̃br (t + τ )〉, (32)

where t � r . Using the results of Sec. IV B, we can divide the
spectrum into coherent and incoherent components as Sb(ω) =
Sb

coh(ω) + Sb
inc(ω), where

Sb
coh(ω) = ∣∣Eb

out

∣∣2
δ(ω − ωp), (33)

Sb
inc(ω) = (κ/π )Re[Ia†,a(ω)]. (34)

Repeating the same arguments, Sc(ω) and Sd (ω) are also
divided into coherent and incoherent components. They are
given by

Sc
coh(ω) = ∣∣Ec

out

∣∣2
δ(ω − ωp), (35)

Sc
inc(ω) = (γ /π )Re[Iσ10,σ01 (ω)], (36)

Sd
coh(ω) = ∣∣Ed

out

∣∣2
δ(ω), (37)

Sd
inc(ω) = (2γp/π )Re[Iσ11,σ11 (ω)]. (38)

C. Flux conservation

The photon flux corresponding to Sb
inc(ω) is defined by

Fb
inc = ∫

dωSb
inc(ω). This quantity can be evaluated as follows.

From Eqs. (26) and (34), Sb
inc(ω) is rewritten as

Sb
inc(ω) = κ

π
Re

∫ ∞

0
dτei(ω−ωp)τ 〈a†,a(τ )〉. (39)

By integrating this equation with respect to ω, Fb
inc is obtained

as Fb
inc = κ〈a†,a(0)〉 = κ〈a†a〉s − κ|〈a〉s |2. Repeating similar

calculations, other flux components can be expressed in terms
of the stationary system variables as

Fb
coh = κ|〈a〉s |2, (40)

Fb
inc = κ〈a†a〉s − κ|〈a〉s |2, (41)

F c
coh = |E − i

√
γ 〈σ01〉s |2, (42)

F c
inc = γ 〈σ11〉s − γ |〈σ01〉s |2, (43)

Fd
coh = 2γp〈σ11〉2

s , (44)

Fd
inc = 2γp(〈σ11〉s − 〈σ11〉2

s ). (45)

We can confirm that

Fb
coh + Fb

inc + F c
coh + F c

inc = E2. (46)

This represents the flux (number) conservation law since E2

is the input flux. Therefore, for example, Fb
inc/E

2 represents
the probability of the pump light being inelastically scattered
into the b field.

D. Energy conservation

The energy flux corresponding to Sb
inc(ω) is defined by

Eb
inc = ∫

dω ωSb
inc(ω). This quantity can be evaluated as

follows: Using Eq. (39), ωSb
inc(ω) can be rewritten as

ωSb
inc(ω) = κωp

π
Re

∫ ∞

0
dτei(ω−ωp)τ 〈a†,a(τ )〉

+ κ

π
Im

∫ ∞

0
dτei(ω−ωp)τ d

dτ
〈a†,a(τ )〉. (47)

Eb
inc is obtained by integrating this equation with respect to ω.

The first term yields ωpFb
inc. The second term can be rewritten

as κRe[ω′
c〈a†,a(0)〉 + g〈a†,σ01(0)〉] using Eq. (25), which is

further simplified as κω′
c〈a†a〉s + κg(〈a†σ01〉s + c.c.)/2 us-

ing Eq. (20). Thus, Eb
inc = κωc〈a†a〉s + κg

2 (〈a†σ01〉s + c.c.) −
κωp|〈a〉s |2. Repeating similar calculations, other energy flux
components can be expressed in terms of the stationary system
variables as

Eb
coh = ωpFb

coh, (48)

Eb
inc = κωc〈a†a〉s + κg

2
(〈a†σ01〉s + c.c.) − Eb

coh, (49)

Ec
coh = ωpF c

coh, (50)

Ec
inc = ωp|E|2 + γωd〈σ11〉s +

[
γg

2
〈σ10a〉s + √

γE(γ /2

+ iωp)〈σ10〉s + c.c.

]
− Ec

coh, (51)

Ed
coh = 0, (52)

Ed
inc = γp(g〈σ10a〉s + √

γE〈σ10〉s + c.c.). (53)

We can confirm that

Eb
coh + Eb

inc + Ec
coh + Ec

inc + Ed
inc = ωpE2. (54)

This represents the energy conservation law since ωpE2

represents the energy flux of the input pump. It differs
remarkably from the flux conservation law of Eq. (46) in
that the input energy is not necessarily conserved within the
light fields (b and c fields). Equation (53) indicates that Ed

inc
may become nonzero when pure dephasing occurs (γp �= 0).

033824-4



THEORY OF RESONANCE FLUORESCENCE FROM A . . . PHYSICAL REVIEW A 84, 033824 (2011)

(a) (b) (c)

(d) (e) (f)

ωp

Pb
inc

Pb
coh

ωd ωc 50μeVωd ωc

100

10−1

10−2

10−3

10−4

10−5

100

10−1

10−2

10−3

10−4

10−5

ωd ωc

ωp

50μeV
ωp

50μeV

Ω=1μeV
γp=1μeV

Ω=20μeV
γp=1μeV

Ω=20μeV
γp=10μeV

Ω=1μeV
γp=10μeV

Ω=20μeV
γp=100μeV

Ω=1μeV
γp=100μeV

S
ca

tt
er

in
g 

pr
ob

ab
il

it
y

FIG. 2. (Color online) Probabilities of elastic scattering (solid lines) and inelastic scattering (dashed lines) to the b field as functions of the
pump frequency. Pump intensity and pure dephasing rate are indicated in each panel. Other parameters are as follows: ωc − ωd = 200 μeV,
g = 25 μeV, κ = 50 μeV, and γ = 1 μeV.

This implies that the pump light can continuously absorb
energy from the environment (Ed

inc < 0) or release energy to
the environment (Ed

inc > 0) as a result of inelastic scattering.

VI. NUMERICAL RESULTS

A. Scattering probabilities to b field

We present the numerical results in this section. To discuss
the nonresonant coupling between the dot and the cavity, we
assume that the system has a large dot-cavity detuning and is in

the weak-coupling regime. We first consider the probabilities
of elastic and inelastic scattering to the b field. From the flux
sum rule of Eq. (46), they are defined by Pb

coh = Fb
coh/E

2

and Pb
inc = Fb

inc/E
2. In the present configuration, most of the

input pump light is output coherently in the c field and only
a small fraction is scattered to the b field. Figures 2(a)–2(c)
show the results for a weak pump for three different values
of the pure dephasing rate γp. Pb

inc has a single peak at ωd ,
whereas Pb

coh has two peaks at ωd and ωc. The peak at ωd

has a width of γ /2 + γp and is therefore broadened as γp is
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FIG. 3. (Color online) Power spectrum of radiation in the b field: coherent component (solid lines), incoherent component (dashed lines),
and spontaneous emission (thin dotted lines). The pump is tuned to the dot (ωp = ωd ). Other parameters are the same as those in Fig. 2. Sb

inc

and Sb
se overlap in (a)–(c) and (f).
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FIG. 4. (Color online) Same plots as Fig. 3 but for pumping at the cavity frequency (ωp = ωc). Sb
inc and Sb

se overlap in (a)–(c) and (f).

increased, whereas the peak at ωc has a width of κ/2 and is
therefore unaffected. As expected, inelastic scattering (Pb

inc)
becomes increasingly dominant as γp increases.

Figures 2(d)–2(f) show the results for a strong pump. The
scattering probabilities remain almost the same as those for
a weak pump when the pump is out of resonance with the
dot. However, in contrast with the weak-pump cases, Pb

coh is
drastically suppressed near the dot frequency, as observed in
Figs. 2(d) and 2(e). As we will see later, the energy level
of the dot is Rabi split under a strong pump. The sharp dip
can be attributed to destructive interference of waves scattered
elastically by these two levels.

B. Power spectrum in b field

We now discuss the power spectrum of light scattered to the
b field. The spectrum is composed of coherent and incoherent
components, as given by Eqs. (33) and (34), respectively.
They are plotted after normalization [

∫
dωSb

coh(ω) = Pb
coh

and
∫

dωSb
inc(ω) = Pb

inc] in Figs. 3 and 4. To visualize the
coherent component, which is a delta function in princi-
ple, we replaced it with a Gaussian function, Sb

coh(ω) =
Pb

coh exp[−(ω − ωp)2/
2]/(
√

π
), where 
 (=1 μeV) is an
artificially introduced width. We cannot obtain a compact
analytic expression for the incoherent component Sb

inc since
it is determined after solving a set of simultaneous equations
involving an infinite number of variables. However, we expect
that Sb

inc will be similar to the spontaneous-emission spectrum
Sse of Eq. (1). Therefore, we also plot Sb

se as a reference for
Sb

inc after normalization [
∫

dωSb
se(ω) = Pb

inc].
Figure 3 shows the results for pumping at the dot frequency

(ωp = ωd ). Sb
inc agrees well with Sse, particularly for the

weak-pump cases of Figs. 3(a)–3(c). Therefore, radiation
in the b field consists of elastically scattered light and
spontaneous emission from the excited dot, and their strengths
are determined by Eqs. (40) and (41). This simple picture

breaks down for stronger inputs. Rabi splitting of the dot
(� = 20 μeV) is clearly visible in Figs. 3(d) and 3(e). This
splitting is smeared out as the dot linewidth is increased,
as observed in Fig. 3(f). For pumping at the dot resonance,
the incoherent component generally dominates the coherent
component in the b field (see Fig. 2) and, consequently,
the whole spectrum Sb = Sb

coh + Sb
inc is governed by the

incoherent component. When the pure dephasing rate is large,
the peak at ωc may become larger than the peak at the pump
frequency ωd even when the elastic component is included.

Figure 4 shows the results for pumping at the cavity
frequency (ωp = ωc). It is observed again that Sb

inc agrees
well with Sse, particularly for the weak-pump cases of
Figs. 4(a)–4(c). However, deviations are apparent between
Sb

inc and Sse in the strong-pumping cases of Figs. 4(d)–4(f).
The incoherent emission close to the pump frequency is
drastically enhanced. This is due to stimulated emission of
the dot induced by the strong elastically scattered light. When
pumping at the cavity resonance, the coherent component
generally dominates the incoherent component in the b field
(see Fig. 2) and, therefore, the peak at the pump frequency is
always larger than the peak at ωd .

C. Energy exchange with the environment

As discussed in Sec. V D, the pump light can exchange
energy with the environment: a negative Ed

inc indicates absorp-
tion of energy from the environment, whereas a positive Ed

inc
indicates emission. This exchanged energy per unit pump flux
(Ed

inc/E
2) is plotted as a function of ωp in Fig. 5. This figure

reveals that effective energy exchange occurs for pumping
near the dot frequency. This is because energy exchange
occurs as a result of inelastic scattering and the probability
of inelastic scattering is large near the dot resonance, as
observed in Fig. 2. For pumping at the dot frequency, the
light frequency becomes closer to the cavity frequency after
inelastic scattering, as Fig. 3 shows. Therefore, the pump
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FIG. 5. (Color online) Plots of energy exchanged with the environment (Ed
inc/E

2) as functions of the pump frequency ωp . The values
of γp and ωd − ωc are indicated in each panel. Solid lines indicate weak pumping (� = 1 μeV) and dashed lines show strong pumping
(� = 20 μeV). Other parameters are as follows: g = 25 μeV, κ = 50 μeV, and γ = 1 μeV.

light absorbs energy when ωd < ωc, whereas it emits energy
when ωd > ωc. When ωc ∼ ωd , energy exchange becomes
ineffective since the frequency shifts only slightly on inelastic
scattering. These results indicate an interesting possibility of
laser cooling of solid-state optical systems by utilizing pure-
dephasing coupling with the environment. However, although
not considered explicitly in this study, an excited dot may
decay nonradiatively and release its energy to the environment.
Consequently, whether laser cooling will occur will depend on
the rates of pure dephasing and nonradiative decay.

We discuss here the relationship between the existing
scheme for solid-state laser cooling using ytterbium- or
thulium-doped glass [32,33] and the current scheme. In the
scheme of Refs. [32,33], the mean energy of emission from the
solid is determined by the electronic structure of this material.
When the pump energy is lower (higher) than this mean
energy, the pumping results in cooling (heating) of the solid. In
contrast, in the current scheme, the mean energy of emission
from the dot is sensitive to its dielectric environment, which
can be controlled by the cavity resonance. A cavity enhances
the coupling between the dot and the radiation field in the
frequency region close to its resonance. Therefore, when ωc >

ωd (ωc < ωd ), the dot tends to emit blue- (red-)shifted photons
and the pumping results in cooling (heating) of the solid.

VII. SUMMARY

In this study, we theoretically investigated resonance
fluorescence from a solid-state cavity QED system. We
employed a model in which all the elements of the system
(including environmental ones) are treated as active quantum-
mechanical degrees of freedom. By rigorously solving the
resultant Heisenberg equations, we revealed the properties of
output light, such as the probabilities of elastic and inelastic
scattering, the power spectrum, and the energy exchanged
with the environment. In particular, we focused on cases with
large dot-cavity detuning and observed the effects of pure
dephasing. The results are summarized as follows: (i) The
incoherent component of the power spectrum agrees well with
the spontaneous-emission spectrum for a weak pump. Using a
stronger pump results in Rabi splitting and stimulated emission
near the pump frequency. (ii) Pure dephasing enhances the
nonresonant coupling between the dot and the cavity and
yields strong emission at the cavity frequency, as observed
in experiments. (iii) The pump light exchanges energy with
the environment that causes pure dephasing of the dot. Under
appropriate conditions, the pump can continuously absorb
energy from the environment, indicating the possibility of laser
cooling in solid-state optical systems.
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[22] A. Auffèves, Jean-Michel Gérard, and J.-P. Poizat, Phys. Rev. A
79, 053838 (2009).

[23] R. J. Glauber, in Quantum Optics and Electronics, edited by
C. de Witt, A. Blandin, and C. Cohen-Tannoudji (Gordon and
Breach, New York, 1965), pp. 65–185.

[24] M. J. Gagen and G. J. Milburn, Phys. Rev. A 45, 5228
(1992).

[25] G. J. Milburn and M. J. Gagen, Phys. Rev. A 46, 1578
(1992).

[26] M. Brune, S. Haroche, V. Lefevre, J. M. Raimond, and N. Zagury,
Phys. Rev. Lett. 65, 976 (1990).

[27] M. Brune, S. Haroche, J. M. Raimond, L. Davidovich, and
N. Zagury, Phys. Rev. A 45, 5193 (1992).

[28] L. Davidovich, M. Brune, J. M. Raimond, and S. Haroche, Phys.
Rev. A 53, 1295 (1996).

[29] R. Onofrio and L. Viola, Phys. Rev. A 58, 69 (1998).
[30] E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89

(1963).
[31] D. F. Walls and G. J. Milburn, Quantum Optics (Springer, New

York, 1995), Sec. 7.1.
[32] R. I. Epstein et al., Nature (London) 377, 500 (1995).
[33] C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and

J. E. Anderson, Phys. Rev. Lett. 85, 3600 (2000).

033824-8

http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1038/nature01086
http://dx.doi.org/10.1038/nature02961
http://dx.doi.org/10.1126/science.1095232
http://dx.doi.org/10.1126/science.1113394
http://dx.doi.org/10.1103/PhysRev.69.37
http://dx.doi.org/10.1103/RevModPhys.73.565
http://dx.doi.org/10.1103/RevModPhys.73.565
http://dx.doi.org/10.1088/0953-4075/38/9/007
http://dx.doi.org/10.1103/PhysRevLett.102.083601
http://dx.doi.org/10.1103/PhysRevLett.102.083601
http://dx.doi.org/10.1103/PhysRevLett.99.187402
http://dx.doi.org/10.1103/PhysRevLett.99.187402
http://dx.doi.org/10.1103/PhysRevLett.95.013904
http://dx.doi.org/10.1103/PhysRevLett.95.013904
http://dx.doi.org/10.1103/PhysRevA.69.062320
http://dx.doi.org/10.1002/andp.200710261
http://dx.doi.org/10.1002/andp.200710261
http://dx.doi.org/10.1126/science.1181918
http://dx.doi.org/10.1038/nature03119
http://dx.doi.org/10.1103/PhysRevLett.96.127404
http://dx.doi.org/10.1103/PhysRevB.77.161303
http://dx.doi.org/10.1103/PhysRevB.77.161303
http://dx.doi.org/10.1038/nphoton.2009.215
http://dx.doi.org/10.1103/PhysRevLett.104.073904
http://dx.doi.org/10.1103/PhysRevLett.104.073904
http://dx.doi.org/10.1103/PhysRevA.78.045802
http://dx.doi.org/10.1103/PhysRevA.78.045802
http://dx.doi.org/10.1103/PhysRevA.79.053838
http://dx.doi.org/10.1103/PhysRevA.79.053838
http://dx.doi.org/10.1103/PhysRevA.45.5228
http://dx.doi.org/10.1103/PhysRevA.45.5228
http://dx.doi.org/10.1103/PhysRevA.46.1578
http://dx.doi.org/10.1103/PhysRevA.46.1578
http://dx.doi.org/10.1103/PhysRevLett.65.976
http://dx.doi.org/10.1103/PhysRevA.45.5193
http://dx.doi.org/10.1103/PhysRevA.53.1295
http://dx.doi.org/10.1103/PhysRevA.53.1295
http://dx.doi.org/10.1103/PhysRevA.58.69
http://dx.doi.org/10.1109/PROC.1963.1664
http://dx.doi.org/10.1109/PROC.1963.1664
http://dx.doi.org/10.1038/377500a0
http://dx.doi.org/10.1103/PhysRevLett.85.3600

