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Photon statistics of atomic fluorescence after π-pulse excitation

Kazuyoshi Yoshimi1 and Kazuki Koshino1,2

1College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
2PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan

(Received 2 July 2010; published 17 September 2010)

The photon statistics of atomic fluorescence after π -pulse excitation is investigated in a system in which
the input and output ports are connected to an atom. Since spontaneous decay during input pulse excitation
occurs, the output pulse generally contains a multiphoton component with a certain probability. We quantitatively
evaluate the probability of the output pulse containing multiple photons and determine the conditions for ideal
single-photon generation.
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I. INTRODUCTION

Generation of single photons on demand is a key topic
in quantum information technology, since photons have long
quantum coherence times, which are required for qubits [1–4].
Indeed, some experiments have succeeded in constructing
quantum gates by controlling a photon by another photon
through a nonlinear medium [5–7]. A two-level quantum
system (hereafter, referred to as an atom) is generally used to
generate single photons [8–10]. The basic strategy is given by
the following process: (i) A classical π pulse is input to induce
an atomic transition from the initial ground state to the excited
state. (ii) After excitation, a photon is emitted to the output port
due to spontaneous decay to the ground state. By repeating
these steps, it is expected to be possible to generate single
photons on demand. However, spontaneous decay also occurs
during π -pulse excitation in actual processes. This causes
undesirable multiphoton generation with a certain probability
[11,12].

The aim of this paper is to determine the conditions
for ideal single-photon generation in a system that has two
photon-propagation paths (i.e., input and output ports) that
are connected to a two-level system (see Fig. 1). In this
system, emitted photons can be efficiently collected when
the coupling to the output port is larger than that to the
input port. Although this condition is advantageous for an
ideal single-photon source, it also increases the probability
of multiple-photon generation, since atomic fluorescence may
be emitted to the output port during π -pulse excitation. To
evaluate multiple-photon generation, we investigate the photon
statistics of atomic fluorescence after π -pulse excitation using
a quantum multimode formalism in which both the atomic
system and the photon fields are quantized and the multimode
nature of the photon field is precisely accounted for [13]. We
analytically derive the equations of motion for the multipoint
functions and numerically calculate the multipoint functions
and the multiple-photon probabilities over a wide range of
parameters. Finally, we determine the conditions for single-
photon generation.

II. FORMULATION

A. Model

Figure 1 schematically depicts the physical setup consid-
ered in this paper. A two-level system (atom) is coupled to two

semi-infinite one-dimensional optical paths (ports A and B).
A classical π pulse is input from port A to excite the atom.
Port B is used as the output port, into which radiation from the
atom is predominantly forwarded. The radiative decay rates
of the atom to ports A and B are denoted by �a and �b,
respectively. For simplicity, we neglect the loss here, assuming
recent low-loss setups realized in several experiments [14,15]
(the loss from the atom, such as radiation to the environment
and nonradiative decay can be modeled by introducing another
port coupled to the atom, as discussed in Appendix B).
Setting h̄ = c = 1, the Hamiltonian under the rotating-wave
approximation is given by

H = �σ †σ +
∫

dk [ka
†
kak + kb

†
kbk]

+ (i
√

�aσ
†ãr=0 + i

√
�bσ

†b̃r=0 + H.c.), (1)

where � is the atomic transition energy and σ is the atomic
lowering operator. ak and bk denote photonic annihilation
operators for a wave number k in ports A and B, respectively.
The real-space representations of ak and bk are defined
by ãr = (2π )−1/2

∫
dk ake

ikr and b̃r = (2π )−1/2
∫

dk bke
ikr ,

respectively. The atom interacts radiatively with the two ports
at r = 0, as shown in Fig. 1. Therefore, the r < 0 and r > 0
regions, respectively, represent the incoming and outgoing
fields.

B. Input and output states

Next, we describe the initial-state vector of the overall
system. The atom is initially in the ground state. A classical
π pulse is input from the r < 0 region of port A, whereas no
photon is input from port B. The input state vector is then
given by

|�i〉 = N exp

[∫
dr E(r )̃a †

r

]
|0〉, (2)

where E(r) is the amplitude of the input π pulse [see
Eq. (8) for its detailed form], N = exp [−∫

dr |E(r)|2/2] is
the normalization constant, and |0〉 is the overall ground state
(the product of the photonic vacuum and atomic ground-state
vectors).

The atom is excited by this input pulse, and decays to the
ground state by emitting photons into ports A and B. We choose
the final moment t to be an arbitrary large time at which the
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FIG. 1. (Color online) Schematic of the physical setup. A two-
level system is coupled to ports A and B with the radiative decay
rates �a and �b, respectively. A classical π pulse is input from port
A for excitation. Port B is used as the output port as radiation from
the atom is predominantly transferred to it.

atom is completely deexcited. The final state vector is related
to the initial one by the Schrödinger equation as |�f (t)〉 =
e−iHt |�i〉. The t dependence of |�f (t)〉 is inessential for
sufficiently large t , since it describes the translational motion
of outgoing photons. The final-state vector can formally be
written as

|�f (t)〉 =
∞∑

n=0

|ψn(t)〉, (3)

where |ψn(t)〉 represents a state vector for which n photons are
emitted to port B,

|ψn(t)〉 =
∞∑

m=0

∫
dmξ dnr√

m!n!
gmn(r,ξ ; t )̃a†

ξ1
· · · ã†

ξm
b̃†r1

· · · b̃†rn
|0〉,

(4)

where gmn denotes a part of the output wave function, which
contains m + n photons (m photons in port A and n photons
in port B). The probability that n photons are emitted to port B
is given by

Pn(t) = 〈ψn(t)|ψn(t)〉 =
∞∑

m=0

∫
dmξ dnr |gmn(r,ξ ; t)|2. (5)

Note that the norms of gmn satisfy the sum rule
of

∑
m,n

∫
dmξ dnr |gmn(r,ξ ; t)|2 = ∑

n Pn(t) = 1. Hereafter,
we refer to the photons emitted to port B as the output photons.

C. Photon statistics

The output photon statistics are given by Pn (n = 0,1, . . .).
To calculate Pn, we introduce the m-point intensity correlation
functions defined by

Cm(rm; t) ≡ 〈�f (t)|̃b†r1
· · · b̃†rm

b̃rm
· · · b̃r1 |�f (t)〉, (6)

where rm ≡ (r1, . . . ,rm) denotes the m spatial coordinates of
m photons in port B. The norms of the correlation functions
Im(t) = ∫

dmrm Cm(rm; t), are related to Pn by

Im(t) =
∞∑

k=m

k!

(k − m)!
Pk(t). (7)

The procedure for determining Pn is as follows. We derive ana-
lytic expressions for Cm(rm; t) and evaluate Im(t) numerically
for small m. (Typically, calculating up to I4 is sufficient for
our purpose, since I4 becomes negligibly small for π -pulse
excitation.) We then obtain Pm(t) from Eq. (7) with high
accuracy. The details are described in Sec. III B.

III. RESULTS

In this section, we numerically characterize the output pulse
in terms of the spatial shape and the photon statistics. The input
π pulse E(r) is chosen to be a single rectangle pulse with a
pulse length d and a central frequency ω:

E(r) =
{

π

2d
√

�a
exp (iωr), −d < r < 0

0, otherwise
. (8)

The pulse amplitude E0 ≡ π/(2d
√

�a) is adjusted based on
the pulse length d. This pulse induces complete excitation of
the atom when radiative damping of the atom is assumed to be
absent. For this input π pulse, the m-point function Cm(rm; t)
is given by (see Appendix A for derivation)

Cm(rm; t) =

⎧⎪⎪⎨⎪⎪⎩
π2�b

2d2(λ+−λ−)

[− 1−eλ+ (rm−1−rm )

λ+
+ 1−eλ− (rm−1−rm)

λ−

]
Cm−1(rm−1; t), 0 < t − rm−1 < t − rm < d

Cm(rm; t)|rm=t−d exp [−�(t − d − rm)] , 0 < t − rm−1 < d < t − rm

0, d < t − rm−1 < t − rm

, (9)

where � = �a + �b and we have set r1 > · · · > rm without
loss of generality. The eigenfrequencies λ± are given by

λ± = −3�

4
± i

√
π2

d2
− �2

16
. (10)

Since C0 = 1 by definition, Cm(rm; t) can be obtained itera-
tively. The fact that Cm (m � 2) is nonvanishing implies that
more than two photons may appear in the output pulse.

The objective of this paper is to determine the conditions
for obtaining only one photon in the output, namely, Pn ∼ δn,1,

where δi,j is the Kronecker delta. In particular, we study the
dependence of the photon statistics on the input pulse length
d. Hereafter, we take �−1

a as the unit of time by setting �a = 1,
and we focus on the resonant input (ω = �).

A. Pulse profile

We first discuss the spatial profile of the output pulse that is
characterized by C1(r; t) = 〈̃b †

r (t )̃br (t)〉. As mentioned earlier,
C1(r; t) becomes a function of only one variable t − r if
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FIG. 2. (Color online) The spatial profile of the pulse. The input
pulse length d is chosen at 0.1�−1

a (solid line), 0.5�−1
a (dashed line),

and �−1
a (dotted line) at �b/�a = 10.

t is sufficiently large. In Fig. 2, by setting �b = 10 � �a ,
C1(r; t) is plotted for several input pulse lengths d. C1 increases
monotonically in the 0 < t − r < d region, since the atomic
excitation increases during π -pulse excitation. In contrast, C1

decreases monotonically in the d < t − r region, since the
atom decays radiatively without being excited. In Secs. III B
and III C, we calculate the multiple-photon probabilities and
determine the condition for single-photon generation.

B. Photon statistics

In this section, we investigate the photon statistics of the
output pulse. Figure 3(a) shows the norms of the multipoint
functions (I1, I2, and I3) as functions of the pulse length d.
I1(=∑∞

k=1 kPk), which represents the average photon number
in the output pulse, is approximately unity for a short pulse
(d � 1), whereas it approaches zero for a long pulse (d � 1).
This behavior is understood by the following considerations.
In the short-pulse limit, the input π pulse can be considered
to induce instantaneous complete excitation of the atom. The
atomic excitation is converted into a single photon, which is
forwarded to ports A and B with ratios of �a/� and �b/�,
respectively. This assumption reproduces the value of I1 ∼
�b/� ∼ 0.91 well in the short-pulse region of Fig. 3(a). The
increase in d gives rise to two effects: generation of more
than two photons and incomplete π -pulse excitation. Thus, as
d increases from the short-pulse limit, I1, I2, and I3 initially
increase due to the former effect and then decrease due to the
latter effect.

Next, we show the photon statistics for the output pulse.
As observed in Fig. 3(a), the values of Im rapidly approach
zero as m increases. Therefore, we can evaluate the values
of Pn by setting Im = 0 for m � 4. Then, from Eq. (7), we
have P1 = I1 − I2 + I3/2, P2 = (I2 − I3)/2, P3 = I3/6, and
Pm = 0 for m � 4. Figure 3(b) shows a plot of Pn as a function
of d. Ideal single-photon generation Pn ∼ δn,1 is achieved in
the short-pulse limit (d � 1). The ratio between P1 and P0

is approximately given by P1/P0 = �b/�a for d � 1. As
d increases, P1 (P0) decreases (increases) and approaches 0 (1)
for d � 1 because the π -pulse excitation becomes incomplete.
The two-photon probability P2 increases around d = 1 and
has a maximum value of about 0.1. In other words, when
the pulse length is comparable to the lifetime of the atom,
the output pulse contains a multiple-photon component with a
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FIG. 3. (Color online) The pulse-length dependences of
(a) Ii (i = 1,2,3) and (b) Pi (i = 0,1,2,3), where �b = 10.

high probability. The three-photon probability P3 is negligible
at all pulse lengths.

C. Conditions for single-photon generation

Before discussing the conditions for single-photon genera-
tion (Pn ∼ δn,1), we observe that there are two characteristic
frequencies that govern photon generation in the present setup.
They are obtained by dividing λ± into two components:
λD ≡ 3�/4 and λR ≡

√
π2/d2 − �2/16 [see Eq. (10)]. The

former determines the time scale of atomic decay, and the
latter determines the time scale of atomic excitation by
the input pulse, which coincides with the Rabi frequency π/d

in the short-pulse limit of d � 1.
The condition for ideal single-photon generation involves

two factors. (i) The multiple-photon component P2 should be
suppressed. This component is most suppressed when the two
time scales coincide (i.e., λD = λR). This equation can be
recast as d = √

8/5π/�, which becomes 0.361 for �b = 10.
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This value agrees well with the pulse length that maximizes P2,
as shown in Fig. 2(b). (ii) The π -pulse excitation is complete,
and the output pulse contains nearly one photon (I1 ∼ 1).
Perfect excitation is achieved in the short-pulse limit where
the atomic radiation during the π -pulse excitation is negligible.
On the other hand, atomic excitation disappears in the long-
pulse limit, as seen from Eq. (9): C1(r,t) = �b〈σ †(t)σ (t)〉 ∼
π2�b/(d2�2)(1 − e−�t/2)2 → 0. The boundary between these
two behaviors is characterized by λR = 0, which can be
rewritten as d = 4π/� ∼ 1.14 for �b = 10. As seen from
Fig. 3(b), this condition provides a good estimate for the
pulse length above which the output photon number starts
to decrease.

Based on these considerations, we clarify the conditions for
single-photon generation. Figure 4 plots I1 and I2 as functions
of d and �b. The equalities d = √

8/5π/� and d = 4π/�

are also indicated by the solid and broken lines, respectively.
Figure 4 shows that both I1 and I2 have broad peaks around
the solid line. Thus, radiation to port B is most active when
d ∼ √

8/5π/�. Figure 5 plots the photon statistics P1 and
P2 as functions of d and �b. P2 has a broad peak around the
solid line, whereas P1 does not. This means that the peak of
I1 around the solid line is solely due to increasing multiple-
photon generation. Therefore, dm = √

8/5π/� gives the upper
limit of the input pulse length for generating a single-photon
state.

IV. SUMMARY

We have studied the photon statistics of atomic fluorescence
after π -pulse excitation in a two-level system coupled to input
and output ports. The equations of motion for multipoint func-
tions have been analytically derived, and multipoint functions
and multiple-photon probabilities were numerically calculated
from them. It is demonstrated that single-photon generation
becomes effective when the condition d <

√
8/5π/� is

satisfied, where atomic radiation during π -pulse excitation is
considered to be negligible. This result is expected to provide a
useful guide when constructing an ideal single-photon source
for experiments.
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APPENDIX A: DERIVATION OF EQ. (9)

In this appendix, we derive analytical expressions for the
multipoint functions for the output state. We also obtain an
exact formula for the multipoint functions, where the input
mode function is chosen as a classical π pulse given by
Eq. (8).

First, we derive the input-output relations in the 0 < r < t

region from the Heisenberg equations for the output field
operators ãr (t) and b̃r (r),

ãr (t) = ãr−t (0) − √
�aσ (t − r), (A1)

b̃r (t) = b̃r−t (0) − √
�bσ (t − r), (A2)

where ãr (t) and b̃r (t) are the real-space representations of ak(t)
and bk(t), respectively. Since the initial state is given by Eq. (2),
we can obtain the following equations: ãr (0)|�i〉 = E(r)|�i〉
and b̃r (0)|�i〉 = 0. By using the input-output relations, we
obtain the Heisenberg equation for σ as

d

dt
σ = −�

2
σ − (2σ †σ − 1)[

√
�aã−t (0) +

√
�bb̃−t (0)],

(A3)

where � ≡ �a + �b.
The m-point function for the output state in an output port

is given by Cm(rm; t) ≡ 〈�i(t)|̃b †
r1 · · · b̃ †

rm
b̃rm

· · · b̃r1 |�i(t)〉,
where the spatial ordering is set as r1 > r2 > · · · > rm without
loss of generality. By using the input-output relation Eq. (A2)
and the commutation relation [̃br (0),σ (τ )] = 0 (r < −τ ) due
to causality, Cm(rm; t) can be rewritten as

Cm(tm) ≡ Cm(rm; t) = �m
b 〈σ †(t1) · · · σ †(tm)σ (tm) · · · σ (t1)〉,

(A4)

where tm = t − rm and tm ≡ (t1,t2, . . . ,tm). Thus, we can
obtain Cm(tm) by solving the atomic equation of motion.
By using Eq. (B2), the equation of motion for Cm(tm) under
0 < tm−1 < tm is given by

d

dtm
Cm(tm) = −�Cm(tm) + 2E(−tm)Sm(tm), (A5)

where Sm(tm) ≡ �m
b 〈σ †(t1) · · · σ †(tm−1)σ (tm) · · · σ (t1)〉 obeys

the following equation of motion:

d

dtm
Sm(tm) = −�

2
Sm(tm) − E(−tm)

× [2Cm(tm) − �bCm−1(tm−1)] . (A6)

By definition, the initial conditions are given by C0(0) = 1 and
S0(0) = 0, respectively.

When we choose E(r) as a π pulse given by Eq. (8), the
preceding simultaneous differential equations can be solved
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analytically. In this case, Cm(tm) is given by

Cm(tm) =

⎧⎪⎪⎨⎪⎪⎩
π2�b

2d2(λ+−λ−)

[− 1−eλ+ (tm−tm−1)

λ+
+ 1−eλ− (tm−tm−1)

λ−

]
Cm−1(tm−1), 0 < tm−1 < tm < d

Cm(tm = d,tm−1) exp [−�(tm − d)] , 0 < tm−1 < d < tm

0, d < tm−1 < tm

, (A7)

where λ± ≡ −3�/4 ± (�2/16 − π2/d2)1/2 is the eigenfre-
quency.

APPENDIX B: THE LOSS FROM THE ATOM

The loss from the atom can be taken into account by
assuming an imaginary port as dealing the environment, into
which the atom decays with a rate of �c. The input-output
relation for this port is given by

c̃r (t) = c̃r−t (0) − √
�cσ (t − r), (B1)

where c̃r (t) denotes a photonic annihilation operator for a
real-space position r in the environment. The initial state is
given by c̃r (0)|�i〉 = 0, since no photon is input from the

environment. By using the input-output relations of Eqs. (A1),
(A2), and (B1), the Heisenberg equation for σ is obtained as

d

dt
σ = −�′

2
σ − (2σ †σ − 1)

× [
√

�aã−t (0) +
√

�bb̃−t (0) +
√

�cc̃−t (0)], (B2)

where �′ = � + γ (=�a + �b + �c). By taking the same
procedures as in Appendix A, the m-point function for the
output state Cm(rm; t) is given in Eq. (A7) by replacing � with
�′. Thus, the upper limit of the input pulse length for generating
a single-photon state dm is modified as dm = √

8/5π/�′. For
example, a recent cavity-QED experiment attained �/γ ∼ 6,
where � and γ are the decay rates to the optical paths and the
environment, respectively [14]. In this case, dm has 15% error
compared to the complete lossless case and should multiply
dm by a factor �/�L ∼ 0.857.
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[8] B. Darquié et al., Science 309, 454 (2005).
[9] A. A. Houck et al., Nature (London) 449, 328 (2007).

[10] M. Hofheinz et al., Nature (London) 454, 310 (2008).
[11] C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, Phys. Rev. Lett.

83, 2722 (1999).
[12] Y. He and E. Barkai, Phys. Rev. A 74, 011803

(2006).
[13] K. Koshino, Phys. Rev. Lett. 98, 223902 (2007).
[14] T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan,

E. Ostby, K. J. Vahala, and H. J. Kimble, Phys. Rev. Lett. 102,
083601 (2009).

[15] O. Astafiev et al., Science 327, 840 (2010).

033818-5

http://dx.doi.org/10.1103/RevModPhys.74.145
http://dx.doi.org/10.1103/RevModPhys.74.145
http://dx.doi.org/10.1038/nphoton.2007.22
http://dx.doi.org/10.1088/0034-4885/68/5/R04
http://dx.doi.org/10.1038/nature02054
http://dx.doi.org/10.1103/PhysRevLett.95.210506
http://dx.doi.org/10.1103/PhysRevLett.95.210506
http://dx.doi.org/10.1038/nphoton.2009.229
http://dx.doi.org/10.1038/nphoton.2009.229
http://dx.doi.org/10.1126/science.1113394
http://dx.doi.org/10.1038/nature06126
http://dx.doi.org/10.1038/nature07136
http://dx.doi.org/10.1103/PhysRevLett.83.2722
http://dx.doi.org/10.1103/PhysRevLett.83.2722
http://dx.doi.org/10.1103/PhysRevA.74.011803
http://dx.doi.org/10.1103/PhysRevA.74.011803
http://dx.doi.org/10.1103/PhysRevLett.98.223902
http://dx.doi.org/10.1103/PhysRevLett.102.083601
http://dx.doi.org/10.1103/PhysRevLett.102.083601
http://dx.doi.org/10.1126/science.1181918

