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The multiphoton wave function after Kerr interaction is obtained analytically for an arbitrary photon number.
The wave function is composed of two fundamental functions: the input mode function and the linear response
function. The nonlinear effects appearing in this wave function are evaluated quantitatively, revealing the
limitations of nonlinear quantum optics theories based on single-mode approximations.
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I. INTRODUCTION

With the goal of achieving all-optical quantum-
information processing, single-photon engineering has be-
come one of the hottest research topics in physics. Rapid
progress has been made in generating and detecting single
photons and also in information processing based on linear
optics �1–11�. Furthermore, the discovery of optical nonlin-
earity that is sensitive to individual photons has raised the
possibility of using one photon to control another photon,
increasing the need to develop a quantitative theory of non-
linear quantum optics �12–15�. The simplest method to ana-
lyze the nonlinear dynamics of photons is to introduce an
effective nonlinear-interaction Hamiltonian based on the
single-mode approximation. For example, the following time
evolution operator has conventionally been used for the self-
Kerr interaction:

Û = exp�− it�c†c†cc� , �1�

where c† is a single-mode photon creation operator, t is the
interaction time, and � is the coupling coefficient, which is
proportional to the nonlinear susceptibility. �For other types
of nonlinear processes, refer to Ref. �16�.� This method of-
fers intuitive pictures of nonlinear dynamics and has led to
many proposals in photon engineering based on nonlinear
optics �17–22�. However, such theories are unsuitable for
more quantitative analyses due to the phenomenological in-
troduction of t and �. Furthermore, the single-mode treat-
ment generally becomes invalid after photons mutually inter-
act.

Since nonlinear optical processes are sensitive to the spa-
tiotemporal distribution of the photon field, in quantitative
analyses it is essential to incorporate the multimode nature of
the field. In this direction, a successful approach has been the
noise-operator formalism, in which photons are treated as
active mechanical degrees of freedom, while optical materi-
als are treated implicitly through noninstantaneous response
functions and noise operators �23–25�. A more rigorous ap-
proach is the full-quantum formalism, in which both photons
and materials are treated as active mechanical degrees of
freedom �26�. Since the exchange of quantum coherence be-
tween photons and materials can be handled rigorously, this

approach is the most convincing in revealing the true nature
of nonlinear dynamics of photons.

In this study, the Kerr interaction of photons is analyzed
using the full-quantum formalism, by explicitly accounting
for the intrinsic wave-packet nature of photons �see Fig. 1�.
By using a two-level system as a model Kerr system, the
output n-photon wave function is derived in an analytic form
for an arbitrary photon number n, and the nonlinear effects
appearing in this wave function are evaluated quantitatively.
As a result, a microscopic basis is provided for effective
theories such as that represented by Eq. �1�, and the limita-
tions of such theories are simultaneously exposed. The cur-
rent results demonstrate both the necessity and the potential
of multimode full-quantum analysis in nonlinear quantum
optics theory.

II. SYSTEM

A. Hamiltonian

The physical situation considered in this study is illus-
trated in Fig. 1. The overall system consists of a one-
dimensional photon field and a Kerr system. A n-photon
pulse is input from the left-hand side �r�0�, interacts with
the Kerr system located at the center �r�0�, and is output
into the right-hand side �r�0�. The Kerr system is assumed
to be transparent and to conserve the photon number. As the
simplest system showing third-order optical nonlinearity, we
employ a single two-level system �referred to hereafter as an
“atom”� as a model Kerr system. In a rotating frame with
respect to the atomic resonance, the Hamiltonian of the
whole system is given by �setting �=c=1�
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FIG. 1. The physical situation considered in this study. Initially
��=0�, the n input photons are uncorrelated and have identical
mode functions f�r�. After nonlinear interaction ��= t� the photons
become correlated. The output wave function is denoted by
gn�r1 , . . . ,rn ; t�.
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H =� dk�kck
†ck + i��/2���†ck − ck

†��� , �2�

where �† is the Pauli raising operator for the atomic excita-
tion, ck

† is the photon creation operator in the wave-number
representation, and � represents the natural linewidth of the
atom. The commutators for � and ck are given by �� ,�†�
=1−2�†� and �ck ,ck�

† �=	�k−k��, respectively. The real-
space photon operator c̃r is connected to ck by

c̃r = �2��−1/2� dk eikrck. �3�

The ground state of the whole system �product of the atomic
ground state and the photonic vacuum state� is denoted by
�0	.

B. Input and output photons

The input and output photons are characterized as fol-
lows. Throughout this study, the time variable is denoted by
�, and the initial and final times are set to �=0 and t, respec-
tively. At the initial moment ��=0�, the input photons are in
the n-photon Fock state �n	= �n!�−1/2�c†�n�0	, where c† is a
single-mode photon creation operator. In the multimode no-
tation, c† is given by c†=
dr f�r�c̃r

†, where f�r� denotes the
input mode function, normalized as 
dr�f�r��2=1 and local-
ized in the r�0 region. Thus, in the multimode notation the
input state vector is given by

�nin	 = �n!�−1/2� dnr f�r1� ¯ f�rn�c̃r1

†
¯ c̃rn

† �0	 . �4�

Namely, the n input photons are identical and uncorrelated.
In contrast, at the final moment ��= t�, the n photons become
correlated as a result of the nonlinear interaction. We there-
fore employ a general form for the output state vector:

�nout	 = �n!�−1/2� dnr gn�r1, ¯ ,rn;t�c̃r1

†
¯ c̃rn

† �0	 , �5�

where gn is a symmetric function of the space coordinates,
normalized as 
dnr�gn�r1 , . . . ,rn ; t��2=1 and localized in the
r�0 region.

III. ANALYSIS

A. Strategy

We now start to determine the output wave function gn. A
straightforward method is to solve the Schrödinger equation
�nout	=e−iHt�nin	 in the n-quantum Hilbert space. However,
instead of working in this Hilbert space, it is more conve-
nient to consider a classical input pulse and to collect the
relevant terms afterwards �27,28�. Thus, we consider the fol-
lowing classical state as the input:

�
in	 = N exp��� dr f�r�c̃r
†��0	 , �6�

where � is a complex amplitude and N�=e−���2/2� is a nor-
malization constant. This state represents a classical photon

pulse having an amplitude of �f�r�. This state consists of
different number states, as expressed by

�
in	 = N

n=0

�
�n

�n!
�nin	 . �7�

From the linearity of the Schrödinger equation, the output
state for this classical input is given by

�
out	 = e−iHt�
in	 = N

n=0

�
�n

�n!
�nout	 . �8�

The n-point correlation function for this output, defined by
Gn�r1 , . . . ,rn ; t�= �
out�c̃r1

¯ c̃rn
�
out	, is given by

Gn�r1, . . . ,rn;t� = �ngn�r1, . . . ,rn;t� + O����n+2� , �9�

which is derived with the help of Eq. �5�. Thus, the n-photon
output wave function gn can be obtained by assuming a clas-
sical input pulse of Eq. �6�, calculating the n-point correla-
tion function Gn, and collecting the lowest-order components
proportional to �n.

B. Field correlation function

The correlation functions are calculated in the Heisenberg
representation. Throughout this study, the initial and final
field operators c̃r�0� and c̃r�t� are referred to as the input and
output operators, respectively. As observed in Fig. 1, the
negative-r region �−t�r�0� is relevant for input operators,
whereas the positive-r region �0�r� t� is relevant for output
operators. Setting �=1, the Heisenberg equation for the atom
is given by

d

d�
� = −

�

2
+ �1 − 2�†��c̃−��0� , �10�

where c̃−��0� is the input operator at r=−���0�. The output
operator is given by

c̃r�t� = c̃r−t�0� − ��t − r� , �11�

where 0�r� t. Note that both Eqs. �10� and �11� are deriv-
able from Eq. �2� �see Appendix A�. Employing the notation
�¯	��
in�¯ �
in	 hereafter, the correlation function Gn can
be written as

Gn�r1, . . . ,rn;t� = �c̃r1
�t� ¯ c̃rn

�t�	 . �12�

Since the simultaneous field operators are commutable, we
can set r1
 ¯ 
rn in Eq. �12� without loss of generality.
Furthermore, Eqs. �11� and �12� show that Gn is a function of
t−rj �j=1, . . . ,n�. Therefore, we introduce a new set of vari-
ables tj � t−rj �j=1, . . . ,n�, satisfying 0� tn
 ¯ 
 t1� t.

The following properties are useful for evaluating the cor-
relation function. �I� �
in	 is an eigenstate of the input opera-
tor c̃r�0�—namely, c̃r�0��
in	=�f�r��
in	. Note that c̃r�0� is
an operator, whereas �f�r� is a c number. �II� The input
operator c̃r�0� commutes with ���� if r�−� �see Appendix
B�.

Using these properties and Eqs. �11� and �12�, we obtain,
for n=1,2, for example,
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G1�r1;t� = �f�− t1� − S1�t1� , �13�

G2�r1,r2;t� = �2f�− t1�f�− t2� − �f�− t1�S1�t2�

− �f�− t2�S1�t1� + S2�t1,t2� , �14�

where Sn�t1 , . . . , tn� is the n-point atomic correlation func-
tion, defined by Sn= ���t1�¯��tn�	. As will be observed
later, Sn is composed of terms proportional to �n���2j

�j=0,1 , . . . �. However, by comparing Eqs. �13� and �14�
with Eq. �9�, it is noticed that only the lowest-order compo-
nents of Sn �proportional to �n� are relevant for gn. Denoting
the lowest-order components of Sn by sn, the output wave
function gn is given by

gn�r1, . . . ,rn;t�

= f�− t1� ¯ f�− tn��1 − 

i

s1�ti�
f�− ti�

+ 

i�j

s2�ti,tj�
f�− ti�f�− tj�

− 

i�j�k

s3�ti,tj,tk�
f�− ti�f�− tj�f�− tk�

+ ¯

+ �− 1�n sn�t1, . . . ,tn�
f�− t1� ¯ f�− tn�� , �15�

where, for example, 
i�j runs over i and j satisfying
1
 i� j
n. Thus, gn is expressed in terms of the input
mode function f and the atomic correlation functions
s1 , . . . ,sn.

C. Atomic correlation function

Our final task is to evaluate the atomic correlation func-
tion. From Eqs. �6� and �10�, we obtain

d

dt1
S1�t1� = −

S1�t1�
2

+ �f�− t1� − 2�f�− t1���†�	 . �16�

Since ��†�	 is at least a second-order quantity in ���, the last
term is irrelevant for the first-order quantity s1. Thus, the
equation of motion for s1 is given by

d

dt1
s1�t1� = −

s1�t1�
2

+ f�− t1� , �17�

which describes the linear response of the atom. This equa-
tion is formally integrated to give

s1�t1� = �
0

�

d�f�− t1 + ��e−�/2. �18�

The equation of motion for S2�t1 , t2� is given, from Eqs. �6�
and �10�, by

d

dt1
S2�t1,t2� = −

S2�t1,t2�
2

+ �f�− t1�S1�t2�

− 2�f�− t1���†�t1���t1���t2�	 . �19�

Neglecting again the last term yielding the higher-order con-
tributions, the equation of motion for the second-order com-
ponent s2 is given by

d

dt1
s2�t1,t2� = −

s2�t1,t2�
2

+ s1�t2�f�− t1� , �20�

with the initial condition of s2�t2 , t2�=0 since �2=0. s2 is
given by

s2�t1,t2� = �s1�t1� − e�t2−t1�/2s1�t2��s1�t2� , �21�

where the second term in the brackets is introduced to satisfy
the initial condition. Using the same logic for arbitrary n, sn
can be expressed in terms of s1 as

sn�t1, . . . ,tn� = �s1�t1� − e�t2−t1�/2s1�t2��sn−1�t2, . . . ,tn�

= s1�tn��
j=1

n−1

�s1�tj� − e�tj+1−tj�/2s1�tj+1�� . �22�

D. n-photon output wave function

Thus, the output wave function gn�r1 , . . . ,rn ; t� can be ex-
pressed in terms of two fundamental one-variable functions
�the input mode function f�r� and the linear response func-
tion s1��� given by Eq. �18�� for an arbitrary photon number
n. gn is a symmetric function of the space coordinates and is
given, for r1
 ¯ 
rn, by Eqs. �15� and �22�, where
tj = t−rj. For example, g1 and g2 are given by

g1�r;t� = f�r − t� − s1�t − r� , �23�

g2�r1,r2;t� = g1�r1;t�g1�r2;t� − e�r1−r2�/2s1
2�t − r2� . �24�

IV. CHARACTERIZATION OF NONLINEAR EFFECTS

A. Input mode function

Now that we have obtained the output wave functions, we
proceed to characterize the nonlinear effects appearing in the
output photons. Hereafter, we employ the following form for
the input mode function:

f�r� = ��2/der/d+ikr �r 
 0� ,

0 �r � 0� ,
� �25�

where d and k represent the coherence length and the fre-
quency �measured from the atomic resonance� of the input
photons, respectively. The nonlinear effects are maximized
when the input photons are in resonance with the material
�k�0�. However, since off-resonant photons are actually
used to avoid absorption by the material, we discuss off-
resonant photons ��k���� in the following.

B. Nonlinear phase shift

First, we evaluate the nonlinear phase shift appearing in
the output wave function gn. For this purpose, we define a
linear n-photon output wave function by

gn
L�r1, . . . ,rn;t� = �

j=1

n

g1�rj;t� . �26�

This linear output is expected in the absence of the nonlinear
interaction. The nonlinear effects are evaluated through the
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overlap �n between the linear and nonlinear output, as given
by

�n =� dnr�gn
L�r1, . . . ,rn;t��*gn�r1, . . . ,rn;t� , �27�

which becomes independent of t sufficiently after the inter-
action. The nonlinear phase shift �n is expressed by the phase
of �n—namely, �n�−Im�ln �n�. The effective theory pre-
dicts that �n is proportional to n�n−1�, since �n=e−it�n�n−1�

due to Eq. �1�. In Fig. 2, the nonlinear phase shift is plotted
as a function of the photon number. As expected, the nonlin-
ear phase shift increases with the photon number n and de-
creases with the detuning �k�. The prediction of the effective
theory, �n=�2�n�n−1� /2, is also plotted with dotted lines
for reference. It is observed that the effective theory agrees
well with the rigorous results, provided the nonlinear phase
shift is small �k=−15� in Fig. 2�. However, the effective
theory becomes invalid for evaluating larger nonlinear phase
shifts. The actual phase shifts are considerably smaller than
those predicted by the effective theory �k=−5� in Fig. 2�.
For example, if the allowable error is set at 5%, the effective
theory of Eq. �1� can be justified only in the small phase-shift
region satisfying ��10−2.

C. Shape of output pulse

Next, we observe the shape of the output photon pulse. In
the input state of Eq. �4�, all photons have an identical
single-mode function f�r�. However, such a single-mode de-
scription cannot be used for the output photons, since the
photons become correlated after the nonlinear interaction, as
indicated by Eq. �24�. Instead, we characterize the profile of
the output photons using a normalized intensity distribution
In

out�r ; t�, defined by

In
out�r;t� =

�nout�c̃r
†c̃r�nout	
n

. �28�

Note that In
out�r ; t� is a real and positive function normalized

as 
dr In
out�r ; t�=1. In Fig. 3, In

out�r ; t� is plotted for the photon
numbers n=1, 4, and 8. The input photon profile

�Iin�r���nin�cr
†cr�nin	 /n= �2 /d�e2r/d, regardless of n� is also

plotted for reference. The weak oscillation observed in the
output photon profile is due to the interference between the
transmission and emission components �i.e., the first and sec-
ond terms in Eq. �23��. It is observed that the output photons
are delayed relative to the input, due to the absorption and
reemission by the material. The nonlinear effect appears as a
slight advancing of the output pulse. This is because the
efficiency per photon of the delay mechanism decreases the
more photons are involved. This n-dependent deformation of
the pulse profile is completely neglected in the effective
theory based on the single-mode approximation. However,
since the interferability of photon pulses is sensitive to the
pulse profile, such a deformation must be taken into account
in the construction of single-photon devices.

V. SUMMARY

In summary, the Kerr interaction of n photons occurring at
a two-level system has been investigated using a multimode
full-quantum formalism. The n-photon output wave function
has been obtained analytically for an arbitrary photon num-
ber n, and the nonlinear effects appearing in the output have
been quantitatively evaluated. The following two features,
which are essential for the construction of single-photon de-
vices, have been clarified: �i� the actual nonlinear phase shift
is smaller than the phase shift predicted by the effective
theory �Fig. 2� and �ii� the output pulse profile varies consid-
erably with the photon number �Fig. 3�. These results dem-
onstrate both the necessity and the potential of multimode
analysis in nonlinear quantum optics theory.
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APPENDIX A: DERIVATION OF EQS. (10) and (11)

The Heisenberg equations for � and ck are given from Eq.
�2� by

1

N
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)
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Photon Number n

FIG. 2. The nonlinear phase shift as a function of the photon
number. The input pulse parameters are d=2�−1 and k=−5�
�triangles�, −10� �squares�, and −15� �circles�. The dotted lines
show the predictions of the effective Hamiltonian of Eq. �1�,
�n=�2n�n−1� /2.
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FIG. 3. The intensity profile In
out�r ; t� of the output photons for

the photon numbers n=1 �solid line�, 4 �dotted line�, and 8 �dashed
line�. The input pulse parameters are d=2�−1 and k=−10�. The
input photon profile Iin�r�= �2 /d�e2r/d is also plotted using a thin
solid line for reference.
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d

d�
� = ���1 − 2�†��c̃0, �A1�

d

d�
ck = − ikck −� �

2�
� . �A2�

From Eq. �A2�, the operator ck at time � �0��� t� is repre-
sented in two ways:

ck��� = ck�0�e−ik� −� �

2�
�

0

�

d�� �����e−ik��−��� �A3�

=ck�t�e−ik��−t� +� �

2�
�

�

t

d�� �����e−ik��−���. �A4�

Using the above two forms of ck��� , c̃0��� is recast into the
following two forms:

c̃0��� = c̃−��0� −
��

2
���� �A5�

= c̃t−��t� +
��

2
���� . �A6�

Note that c̃r is in the real-space representation, as defined by
Eq. �3�. Equating the right-hand sides and introducing a new
label r�=t−��, we obtain the input-output relation of Eq.

�11�, in which the output field operator is expressed in terms
of the input field operator and the atomic operator at
�= t−r. Substituting Eq. �A5� into Eq. �A1�, the atomic
Heisenberg equation �10� is obtained.

APPENDIX B: PROOF OF COMMUTATIVITY

Here we prove that the input operator c̃r�0� commutes
with the atomic operator ����, if r�−� is satisfied. For this
purpose, we formally solve Eq. �10� as the following form:

���� = ��0�e−�/2 + �
0

�

d�� e���−��/2�1 − 2�†����������c̃−���0� .

�B1�

Thus, ���� is composed of ��0�, c̃r��0�, and ����� and its
conjugate, where r� and �� satisfy −��r��0 and
0�����, respectively. In order to express ���� in terms
only of the initial operators, we use an iteration method.
Then, ����� in Eq. �B1� is composed of ��0�, c̃r��0�,
and ����� and its conjugate, where r� and �� satisfy
−���r��0 and 0������. Note that r� necessarily satisfies
−��r��0 since ����.

After infinite iterations, we can confirm that ���� becomes
a function of ��0� and c̃r��0� and their conjugates, where the
space coordinate r� lies in the −��r��0 region. Therefore,
���� commutes with the input operator c̃r�0� satisfying
r�−�.

�1� M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther,
Nature �London� 431, 1075 �2004�.

�2� J. McKeever et al., Science 303, 1992 �2004�.
�3� G. Fujii et al., Opt. Express 15, 12769 �2007�.
�4� K. Edamatsu, Jpn. J. Appl. Phys., Part 1 46, 7175 �2007�.
�5� G. Ribordy et al., J. Mod. Opt. 51, 1381 �2004�.
�6� N. Namekata, S. Sasamori, and S. Inoue, Opt. Express 14,

10043 �2006�.
�7� R. H. Hadfield et al., Appl. Phys. Lett. 89, 241129 �2006�.
�8� A. P. VanDevender and P. G. Kwiat, J. Opt. Soc. Am. B 24,

295 �2007�.
�9� P. G. Kwiat, J. R. Mitchell, P. D. D. Schwindt, and A. G.

White, J. Mod. Opt. 47, 257 �2000�.
�10� E. Knill, R. Laflamme, and G. J. Milburn, Nature �London�

409, 46 �2001�.
�11� P. Kok et al., Rev. Mod. Phys. 79, 135 �2007�.
�12� Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J.

Kimble, Phys. Rev. Lett. 75, 4710 �1995�.
�13� K. M. Birnbaum et al., Nature �London� 436, 87 �2005�.
�14� M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod.

Phys. 77, 633 �2005�.

�15� N. Matsuda et al., Appl. Phys. Lett. 91, 171119 �2007�.
�16� L. Mandel and E. Wolf, Optical Coherence and Quantum Op-

tics �Cambridge University Press, Cambridge, England, 1995�.
�17� N. Imoto, H. A. Haus, and Y. Yamamoto, Phys. Rev. A 32,

2287 �1985�.
�18� M. Kitagawa and Y. Yamamoto, Phys. Rev. A 34, 3974 �1986�.
�19� G. J. Milburn, Phys. Rev. Lett. 62, 2124 �1989�.
�20� I. L. Chuang and Y. Yamamoto, Phys. Rev. A 52, 3489 �1995�.
�21� W. J. Munro, K. Nemoto, and T. P. Spiller, New J. Phys. 7,

137 �2005�.
�22� H. F. Hofmann and T. Ono, Phys. Rev. A 76, 031806�R�

�2007�.
�23� L. Boivin, F. X. Kärtner, and H. A. Haus, Phys. Rev. Lett. 73,

240 �1994�.
�24� P. L. Voss and P. Kumar, Opt. Lett. 29, 445 �2004�.
�25� J. H. Shapiro, Phys. Rev. A 73, 062305 �2006�.
�26� G. D. Mahan, Many-Particle Physics, 2nd ed. �Plenum, New

York, 1990�.
�27� K. Koshino and H. Ishihara, Phys. Rev. Lett. 93, 173601

�2004�.
�28� K. Koshino, Phys. Rev. Lett. 98, 223902 �2007�.

MULTIPHOTON WAVE FUNCTION AFTER KERR INTERACTION PHYSICAL REVIEW A 78, 023820 �2008�

023820-5


